Econometrics I Problem Set 2 Oct. 11, 2002 Due: Oct. 18, 2002

1. Consider the following formulations of the two-variable PRF.

Model I :
$$Y_i = \beta_1 + \beta_2 X_i + u_i$$

Model II : $Y_i = \alpha_1 + \alpha_2 (X_i - \bar{X}) + u_i$

- (a) Find the estimators of β_1 and α_1 . Are they indetical? Are their variances identical?
- (b) Find the estimators of β_2 and α_2 . Are they indetical? Are their variances identical?
- 2. In the regression $Y_i = \beta_1 + \beta_2 X_i + u_i$, suppose we multiply each X value by a constant, say, 2. Will it change the residuals and fitted value of Y? Explain. What if we add a constant 2 to each X value?
- 3. Let x_1, x_2, \dots, x_n be a sample of size *n* from a distribution with mean μ and variance σ^2 . Consider the following point estimator of μ :

$$\hat{\mu}_1 = \bar{x}$$
, the sample mean
 $\hat{\mu}_2 = x_1$
 $\hat{\mu}_3 = \frac{x_1}{2} + \frac{1}{2(n-1)}(x_2 + x_3 + \dots + x_n)$

- (a) Which of these estimators are unbiased?
- (b) Which of these is the most efficient?
- (c) Which of these are consistent.
- 4. A randome variable *X* follows the exponential distribution if it has the following probability density function:

$$f(X) = \frac{1}{\theta} e^{-\frac{X}{\theta}} \text{ for } X > 0$$

= 0 elsewhere

where $\theta > 0$ is the parameter of the distribution. Show that the ML estimator of θ is $\hat{\theta} = \frac{\sum X_i}{n}$, where *n* is the sample size.

5. State with reasons whether the following statements are true, false, or uncertain.

- (a) Even though the disturbance term in the CLRM is not normally distributed, the OLS estimators are still unbiased.
- (b) In the two-variable PRF, if the slope coefficient β_2 is zero, the intercept β_1 is estimated by the sample mean \overline{Y} .
- 6. Show that the simple regression line of Y against X coincides with the simple regression line of X againist Y if and only if $r^2 = 1$, where r^2 is the sample correlation coefficient between X and Y.
- 7. Consider the regression model

$$Y_i = \beta_1 + \beta_2 X_i + u_i$$

$$u_i \sim IN(0, 1) i = 1, 2, \cdots T$$

where u_i 's are independently and normally distributed. Suppose the model refers to semiannual data, but the data available are either (1) annual data, where $\bar{Y}_1 =$ $Y_1 + Y_2$, $\bar{Y}_2 = Y_3 + Y_4$, \cdots , and \bar{X}_1 , \bar{X}_2 , \cdots defined analogously, or (2) moving average data, where $Y_1^* = \frac{Y_1 + Y_2}{2}$, $Y_2^* = \frac{Y_2 + Y_3}{2}$, \cdots and X_1^* , X_2^* , \cdots defined analogously.

- (a) What are the properties of the error term in the regression model with each set of data: (Y_i, X_i) , (\bar{Y}_i, \bar{X}_i) and (Y_i^*, X_i^*) ? (i.e. What are the distributions of the error terms?)
- (b) Can you use OLS method to estimate β_2 in the case of annual data.