Suggested Answers for Problem Set 1

Oct. 4, 2002
1a

$$
\begin{aligned}
f(x) & =\int_{0}^{1} f(x, y) d y=\int_{0}^{1} \frac{1}{3}(4-x-y) d y=\frac{1}{3}\left[(4-x) y-\frac{1}{2} y^{2}\right]_{0}^{1} \\
& =\frac{1}{3}\left(4-x-\frac{1}{2}-0\right)=\frac{1}{3}(3.5-x) \\
f(y) & =\frac{1}{3}(3.5-y)
\end{aligned}
$$

1b

$$
\begin{aligned}
& f(x \mid y)=\frac{f(x, y)}{f(y)}=\frac{4-x-y}{3.5-y}, 0 \leq x, y \leq 1 \\
& f(y \mid x)=\frac{f(x, y)}{f(x)}=\frac{4-x-y}{3.5-x}, 0 \leq x, y \leq 1
\end{aligned}
$$

1c

$$
\begin{aligned}
& \mathrm{E}(X)=\int_{0}^{1} x f(x) d x=\int_{0}^{1} \frac{1}{3}\left(3.5 x-x^{2}\right) d x=\frac{1}{3}\left[\frac{3.5}{2} x^{2}-\frac{x^{3}}{3}\right]_{0}^{1}=0.4722 \\
& \mathrm{E}(Y)=0.4722
\end{aligned}
$$

1d

$$
\begin{aligned}
\mathrm{E}(X \mid Y=0.4) & =\int_{0}^{1} x f(x \mid y=0.4) d x=\int x \frac{4-x-0.4}{3.5-0.4} d x=\frac{1}{3.1} \int_{0}^{1} 3.6 x-x^{2} d x \\
& =\frac{1}{3.1}\left[1.8 x-\frac{x^{3}}{3}\right]_{0}^{1}=0.4731
\end{aligned}
$$

2a No. $\mathrm{P}(\mathrm{X}=1, \mathrm{Y}=2)=0.2$. But, $P(X=1) P(Y=2)=0.4 \times 0.4=0.16$. Thus, X and Y are not independent.

2b $P(X=1)=0.4, P(X=2)=0.2, P(X=3)=0.4, P(Y=2)=$ $0.4, P(Y=4)=0.6, P(Y=6)=0.4$.

2c $P(Y=2 \mid X=1)=\frac{0.2}{0.4}=0.5, P(Y=4 \mid X=1)=0$, and $P(Y=6 \mid X=1)=$ 0.5. Therefore, $\mathrm{E}(Y \mid X=1)=4$ and $\operatorname{Var}(Y \mid X=1)=0.5(2-4)^{2}+0.5(6-4)^{2}=4$.

3 Only (c) is a linear regression model. However, after some transformations, (a) and (b) can become linear regression model with the transformed dependent variable. For model (a), $\ln Y_{i}=\beta_{1}+\beta_{2} X_{i}=u_{i}$, and for model (c),

$$
\begin{aligned}
\frac{1-Y_{i}}{Y_{i}} & =e^{\beta_{1}+\beta_{2} X_{i}-u_{i}} \\
\ln \left(\frac{1-Y_{i}}{Y_{i}}\right) & =\beta_{1}+\beta_{2} X_{i}-u_{i}
\end{aligned}
$$

can both be written as linear regression model.

