Econometrics I Problem Set 1 Sep. 27, 2002 Due: Oct. 4, 2002

1. The joint density function of two continuous random variables X and Y is as follows

$$f(X, Y) = \frac{1}{3}(4 - X - Y), \quad 0 \le X \le 1, \quad 0 \le Y \le 1$$

= 0, otherwise .

- (a) Find the marginal density functions, f(X) and f(Y).
- (b) Find the conditional density functions, f(X|Y) and f(Y|X).
- (c) Find E(X) and E(Y).
- (d) Find E(X|Y = 0.4).
- 2. Suppose that the joint probability distribution of X and Y is given by the following table:

(x,y)	2	4	6
1	0.2	0	0.2
2	0	0.2	0
3	0.2	0	0.2

- (a) Are X and Y independent? Explain.
- (b) Find the marginal distributions of *X* and *Y*.
- (c) Find the conditional distribution of *Y* given X = 1 and hence E(Y|X = 1) and Var(Y|X = 1).
- 3. Are the following models linear regression model? Why or why not?
 - (a) $Y_i = e^{\beta_1 + \beta_2 X_i + u_i}$

(b)
$$Y_i = \frac{1}{1 + e^{\beta_1 + \beta_2 X_i + u_i}}$$

- (c) $\ln Y_i = \beta_1 + \beta_2 \frac{1}{X_i} + u_i$
- (d) $Y_i = \beta_1 + (0.75 \beta_1)e^{-\beta_2(X_i 2)} + u_i$
- (e) $Y_i = \beta_1 + \beta_2^3 X_i + u_i$