Suggested Answers for Midterm Exam. II

Dec. 14, 2001
1a True. $(A B)^{\prime}=B^{\prime} A^{\prime}=B A=A B$. Therefore, $A B$ is symmetric.
1b False. $\bar{R}^{2}=1-\left(1-R^{2}\right) \frac{n-1}{n-K}$, then $\bar{R}^{2}<R^{2}$ for $K>1$.
1c True. There are more explanatory variables in (2), therefore it has smaller residual sum of squares.

1d False. Since $|A|=0$, the inverse of A does not exist.
2a $\sum u_{i}^{2}=u^{\prime} u=(y-X \beta)^{\prime}(y-X \beta)$.
2b

$$
\begin{aligned}
u^{\prime} u & =(y-X \beta)^{\prime}(y-X \beta)=\left(y^{\prime}-\beta^{\prime} X^{\prime}\right)(y-X \beta) \\
& =y^{\prime} y-\beta^{\prime} X^{\prime} y-y^{\prime} X \beta+\beta^{\prime} X^{\prime} X \beta=y^{\prime} y-2 \beta^{\prime} X^{\prime} y+\beta^{\prime} X^{\prime} X \beta
\end{aligned}
$$

2c The first order conditon is

$$
\begin{aligned}
\frac{\partial u^{\prime} u}{\partial \beta} & =-2 X^{\prime} y+2 X^{\prime} X \beta=0 \\
X^{\prime} X \beta & =X^{\prime} y \\
\hat{\beta} & =\left(X^{\prime} X\right)^{-1} X^{\prime} y
\end{aligned}
$$

2d

$$
\begin{aligned}
\beta & =\left(X^{\prime} X\right)^{-1} X^{\prime} y=\left(X^{\prime} X\right)^{-1} X^{\prime}(X \beta+u)=\beta+\left(X^{\prime} X\right)^{-1} X^{\prime} u \\
\mathrm{E}(\hat{\beta}) & =\beta+\left(X^{\prime} X\right)^{-1} X^{\prime} \mathrm{E}(u)=\beta
\end{aligned}
$$

2e

$$
\begin{aligned}
\operatorname{Var}(\hat{\beta}) & =\mathrm{E}\left[(\hat{\beta}-\mathrm{E}(\hat{\beta}))(\hat{\beta}-\mathrm{E}(\hat{\beta}))^{\prime}\right] \\
& =\mathrm{E}\left[\left(X^{\prime} X\right)^{-1} X^{\prime} u u^{\prime} X\left(X^{\prime} X\right)^{-1}\right] \\
& =\left(X^{\prime} X\right)^{-1} X^{\prime} \mathrm{E}\left(u u^{\prime}\right) X\left(X^{\prime} X\right)^{-1} \\
& =\left(X^{\prime} X\right)^{-1} X^{\prime} \sigma^{2} I X\left(X^{\prime} X\right)^{-1}=\sigma^{2}\left(X^{\prime} X\right)^{-1}
\end{aligned}
$$

3 We have $\beta_{2}=\alpha-\beta_{1}$ and $\beta_{3}=-\alpha-\beta_{1}$. Substituting these in the given equation we get

$$
\begin{aligned}
Y_{i} & =\beta_{1} X_{1 i}+\left(\alpha-\beta_{1}\right) X_{2 i}+\left(-\alpha-\beta_{1}\right) X_{3 i}+u_{i} \\
& =\beta_{1}\left(X_{1 i}-X_{2 i}-X_{3 i}\right)+\alpha\left(X_{2 i}-X_{3 i}\right)+u_{i}
\end{aligned}
$$

Define $Z_{1 i}=X_{1 i}-X_{2 i}-X_{3 i}$ and $Z_{2 i}=X_{2 i}-X_{3 i}$ and estimate a regression of Y_{i} on $Z_{1 i}$ amd $Z_{2 i}$ without constant term. The estimated coefficient of $Z_{2 i}$ gives an estimate of α. Its variance can be obtained as usual.
$4 a$

$$
\begin{array}{r}
\mathrm{E}\left(Y_{i} \mid D_{i}=1\right)=\alpha_{1}+\alpha_{2}+\beta X_{i} \\
\mathrm{E}\left(Y_{i} \mid D_{i}=0\right)=\alpha_{1}+\beta X_{i} \\
\mathrm{E}\left(Y_{i} \mid D_{1}=1\right)-\mathrm{E}\left(Y_{i} \mid D_{i}=0\right)=\alpha_{2}
\end{array}
$$

4b

$$
\begin{array}{r}
\mathrm{E}\left(Y_{i} \mid D_{i}=1\right)=\alpha_{1}+\alpha_{2}+\beta X_{i} \\
\mathrm{E}\left(Y_{i} \mid D_{i}=2\right)=\alpha_{1}+2 \alpha_{2}+\beta X_{i} \\
\mathrm{E}\left(Y_{i} \mid D_{1}=2\right)-\mathrm{E}\left(Y_{i} \mid D_{i}=1\right)=\alpha_{2}
\end{array}
$$

α_{2} is still the difference of male and female average salaries.

4 c

$$
\begin{array}{r}
\mathrm{E}\left(Y_{i} \mid D_{i}=1\right)=\alpha_{1}+\alpha_{2}+\beta X_{i} \\
\mathrm{E}\left(Y_{i} \mid D_{i}=-1\right)=\alpha_{1}-\alpha_{2}+\beta X_{i} \\
\mathrm{E}\left(Y_{i} \mid D_{1}=-1\right)-\mathrm{E}\left(Y_{i} \mid D_{i}=1\right)=-2 \alpha_{2}
\end{array}
$$

Therefore, the difference of male female avaerage salaries is $-2 \alpha_{2}$.
$4 d$

$$
\begin{array}{r}
\mathrm{E}\left(Y_{i} \mid D_{i}=5\right)=\alpha_{1}+5 \alpha_{2}+\beta X_{i} \\
\mathrm{E}\left(Y_{i} \mid D_{i}=0\right)=\alpha_{1}+\beta X_{i} \\
\mathrm{E}\left(Y_{i} \mid D_{1}=5\right)-\mathrm{E}\left(Y_{i} \mid D_{i}=0\right)=5 \alpha_{2}
\end{array}
$$

The difference of male and female average salaries is $5 \alpha_{2}$.

	men	women
5a	intercept	9.35
slope	0.0656	0.96
		0.0744

5b Men: 6.56\%, Women: 7.44\%.
5c Lower since the coefficient of sex*s is significantly negative.
5d The coefficient will be -0.3840 and the standard error will be 0.0174 .

