Suggested Answers for Midterm Exam. II

Dec. 20, 2002
1a True. Since A is symmetric, then $A^{\prime}=A .\left(A^{-1}\right)^{\prime}=\left(A^{\prime}\right)^{-1}=A^{-1}$, so A^{-1} is also symmetric.

1b False. R^{2} will definitely decrease but \bar{R}^{2} will not necessarily decrease since $\bar{R}^{2}=$ $1-\left(1-R^{2}\right) \frac{n-1}{n-K}, \frac{\partial \bar{R}^{2}}{\partial K}=\frac{n-1}{n-K} \frac{\partial R^{2}}{\partial K}-\left(1-R^{2}\right) \frac{n-1}{(n-K)^{2}} \gtrless 0$

1c True. To minimize $\sum_{i=1}^{n} \hat{u}_{i}^{2}=\sum_{i=1}^{n}\left(Y_{i}-\hat{\beta} X_{i}\right)^{2}$, the first order condition is $\sum_{i=1}^{n}(-2)\left(Y_{i}-\hat{\beta} X_{i}\right) X_{i}=0$. Therefore, the OLS estimator of β is $\hat{\beta}=\frac{\sum_{i=1}^{n} X_{i} Y_{i}}{\sum_{i=1}^{n} X_{i}^{2}}$.

1d False. In general $A B \neq B A$.
2a $\operatorname{Var}\left(\beta_{K}-\beta_{L}\right)=\operatorname{Var}\left(\hat{\beta}_{K}\right)+\operatorname{Var}\left(\hat{\beta}_{L}\right)-2 \operatorname{Cov}\left(\beta_{K}, \beta_{L}\right)=0.16+0.045-2 * 0.0225=$ 0.16. $t=\frac{0.632-0.452}{\sqrt{0.16}}=\frac{0.18}{0.4}=0.45$, insignificant.

2b $\operatorname{Var}\left(\beta_{K}+\beta_{L}\right)=\operatorname{Var}\left(\hat{\beta}_{K}\right)+\operatorname{Var}\left(\hat{\beta}_{L}\right)+2 \operatorname{Cov}\left(\beta_{K}, \beta_{L}\right)=0.16+0.045+2 * 0.0225=$ 0.25. $t=\frac{0.632+0.452-1}{\sqrt{0.25}}=\frac{0.084}{0.5}=0.168$, insignificant.

3a $\mathrm{E}\left[\hat{\beta}^{*}\right]=\mathrm{E}[\hat{\beta}+C X \beta+u]=\beta+C X \beta$. For $\hat{\beta}^{*}$ to be unbiased, we need $C X=0$.
$3 b$

$$
\begin{aligned}
\hat{\beta}^{*} & =\beta+\left(X^{\prime} X\right)^{-1} X^{\prime} u+C u \\
\operatorname{Var}\left(\hat{\beta}^{*}\right) & =\mathrm{E}\left[\left(\hat{\beta}^{*}-\beta\right)\left(\hat{\beta}^{*}-\beta\right)^{\prime}\right] \\
& =\mathrm{E}\left\{\left[\left(X^{\prime} X\right)^{-1} X^{\prime} u+C u\right]\left[\left(X^{\prime} X\right)^{-1} X^{\prime} u+C u\right]^{\prime}\right\} \\
& \left.=\mathrm{E}\left\{\left[\left(X^{\prime} X\right)^{-1} X^{\prime} u+C u\right]\left[u^{\prime} X X^{\prime} X\right)^{-1}+u^{\prime} C^{\prime}\right]\right\} \\
& \left.\left.=\mathrm{E}\left[\left(X^{\prime} X\right)^{-1} X^{\prime} u u^{\prime} X X^{\prime} X\right)^{-1}+C u u^{\prime} X X^{\prime} X\right)^{-1}+\left(X^{\prime} X\right)^{-1} X^{\prime} u u^{\prime} C^{\prime}+C u u^{\prime} C^{\prime}\right] \\
& =\sigma^{2}\left(X^{\prime} X\right)^{-1}+0+0+\sigma^{2} C C^{\prime} \geq \operatorname{Var}(\hat{\beta})
\end{aligned}
$$

3c $\operatorname{Var}\left(\hat{\beta}^{*}\right) \geq \operatorname{Var}(\hat{\beta})$. This is the Gauss-Markov theorem, the OLS estimator of $\beta-\hat{\beta}$ is the most efficient estimator among the class of the linear unbiased estimators.
$4 \mathbf{a}$

$$
\begin{array}{r}
\mathrm{E}\left(Y_{i} \mid D_{i}=1\right)=\beta_{1}+\beta_{2}+\beta_{3} X_{i}+\beta_{4} X_{i} \\
\mathrm{E}\left(Y_{i} \mid D_{i}=0\right)=\beta_{1}+\beta_{3} X_{i} \\
\mathrm{E}\left(Y_{i} \mid D_{1}=1\right)-\mathrm{E}\left(Y_{i} \mid D_{i}=0\right)=\beta_{2}+\beta_{4} X_{i}
\end{array}
$$

4b

$$
\begin{aligned}
\mathrm{E}\left(Y_{i} \mid D_{i}=-1, X_{i}=10\right) & =\beta_{1}-\beta_{2}+\beta_{3} * 10-\beta_{4} * 10 \\
\mathrm{E}\left(Y_{i} \mid D_{i}=1, X_{i}=10\right) & =\beta_{1}+\beta_{2}+\beta_{3} * 10+\beta_{4} * 10 \\
\mathrm{E}\left(Y_{i} \mid D_{1}=-1, X_{i}=10\right)-\mathrm{E}\left(Y_{i} \mid D_{i}\right. & \left.=1, X_{i}=10\right)=-2 \beta_{2}-20 \beta_{4}
\end{aligned}
$$

5a generate $c=1$ if schyr $>=16$
replace $c=0$ if schyr==.
5b regress c sex
5c male: $26.2-3.5=22.7 \%$, female: 26.2%.
5d $t=\frac{-0.0345699}{0.0099553}=-3.47$. Man is significantly less likely to have a college education.

5e | | son | daughter |
| :---: | :---: | :---: |
| | intercept | -0.083 |
| slope | 0.035 | 0.039 |

5f

Since the coefficient of sex $* f s c h y r$ is not significant, the effect of father schooling on c is not significant different for son and daughter.

