Econometrics I

Midterm Exam. II
Dec. 13, 2002

1. (20\%) State with brief reasons whether the following statements are true, false, or uncertain.
(a) (5\%) With the fact that $\left(A^{-1}\right)^{\prime}=\left(A^{\prime}\right)^{-1}$, if A is symmetric, then A^{-1} is also symmetric.
(b) (5\%) If we drop an explanatory variable from a regression model, both R^{2} and \bar{R}^{2} (adjusted R^{2}) will decrease.
(c) (5\%) For a simple regression model without constant term, $Y_{i}=\beta X_{i}+u_{i}$, the OLS estimator of β is $\frac{\bar{Y}}{\bar{X}}$, where \bar{Y} and \bar{X} are the average of Y_{i} and X_{i} respectively.
(d) (5\%) If A and B are two $m \times m$ matrices, therefore both $A B$ and $B A$ exist. Then $A B=B A$.
2. (15%) The following regression is estimated as a production function:

$$
\ln Q=1.37+0.632 \ln K+0.452 \ln L, \quad R^{2}=0.38
$$

where $\operatorname{Var}\left(\hat{\beta}_{K}\right)=0.160, \operatorname{Var}\left(\hat{\beta}_{L}\right)=0.045, \operatorname{Cov}\left(\beta_{K}, \beta_{L}\right)=0.0225$. The sample size is 100 . Test the following hypotheses at the 5% level of significance.
(a) $(7 \%) \beta_{K}=\beta_{L}$.
(b) (8%) There are constant returns to scale.
3. (25%) Let the multiple regression model be written as

$$
\underset{n \times 1}{y}=\underset{n \times K}{n_{K \times 1}} \underset{n \times 1}{\quad} \quad \underset{n}{u}
$$

where y is the column vector of the dependent variable, X is the matrix of explanatory variables, β is the column vector of the K coefficients and u is the column vector of the error terms. Assume that $\mathrm{E}(u)=0$ and the covariance matrix of u is $\mathrm{E}\left(u u^{\prime}\right)=\sigma^{2} I$. It is known that the OLS estimator of β is $\hat{\beta}=\left(X^{\prime} X\right)^{-1} X^{\prime} Y$.
Let $\hat{\beta}^{*}=\hat{\beta}+C y$ be another linear estimator of β, where C is a $K \times n$ matrix.
(a) (5%) For $\hat{\beta}^{*}$ to be unbiased, what restriction do we need to impose on C ?
(b) (10%) Derive the covariance matrix of $\hat{\beta}^{*}, \operatorname{Var}\left(\hat{\beta}^{*}\right)$?
(c) (10%) Compare $\operatorname{Var}\left(\hat{\beta}^{*}\right)$ with $\operatorname{Var}(\hat{\beta})$. What theorem can we have from the result of comparing the covariance matrix of the two estimators.
4. (10%) Suppose we have the following model,

$$
Y_{i}=\beta_{1}+\beta_{2} D_{i}+\beta_{3} X_{i}+\beta_{4}\left(D_{i} * X_{i}\right)+u_{i}
$$

where Y_{i} is the annual salary of a worker, X_{i} is the years of working experience, and D_{i} is dummy variable with

$$
\begin{aligned}
D_{i} & =1 \text { if male } \\
& =0 \text { if female }
\end{aligned}
$$

(a) (5\%) What is the difference of male and female average salaries in terms of the regression coefficient and other variables?
(b) (5%) Suppose the dummy variable is defined as $D_{i}=1$ if female and $D_{i}=$ -1 if male, then what is the difference of male and female average salaries with 10 years of working experience.
5. (30%) You are given a data set consists of the following 3 variables (1) schyr: one's years of schooling (2) sex : 1 for male and 0 for female (3) fschyr: father's years of schooling.
(a) (5\%) Write down the necessary Stata commands to create a new dummy variable c which indicates that an individual has at least 16 years of schooling (college education).
(b) (5\%) When you regress c on sex and the constant term, what is the Stata command for doing this?
(c) (5%) you have the following result from (b),

$$
\begin{aligned}
c= & .2622419-.0345699 \text { sex } \\
& (.0073647)(.0099553)
\end{aligned}
$$

with standard errors in the parentheses. What is the proportion of male who has a college education? What is the proportion of female who has a college education?
(d) (5\%) Is man more or less likely than woman to have a college education? Is it significant at 5% level of significance?

Now you add f schyr and the interaction between sex and fschyr as the explanatory variables and have the following results.

c	Coef.	Std. Err.	t	$P>\|t\|$	[95\% Conf. Interval]	
sex	.0030215	.0256093	0.12	0.906	-.0471799	.053223
fschyr	.0387226	.001979	19.57	0.000	.0348432	.042602
sex $*$ fschyr	-.0038253	.0026601	-1.44	0.150	-.0090398	.0013893
cons.	-.0856444	.0191131	-4.48	0.000	-.1231115	-.0481774

(e) (5\%) Draw the regression lines of c on $f s c h y r$ for male and female separately.
(f) (5\%) Is the effect of father's schooling on c significantly different for son and daughter?

Suggested Answers for Midterm Exam. II

Dec. 20, 2002
1a True. Since A is symmetric, then $A^{\prime}=A .\left(A^{-1}\right)^{\prime}=\left(A^{\prime}\right)^{-1}=A^{-1}$, so A^{-1} is also symmetric.

1b False. R^{2} will definitely decrease but \bar{R}^{2} will not necessarily decrease since $\bar{R}^{2}=$ $1-\left(1-R^{2}\right) \frac{n-1}{n-K}, \frac{\partial \bar{R}^{2}}{\partial K}=\frac{n-1}{n-K} \frac{\partial R^{2}}{\partial K}-\left(1-R^{2}\right) \frac{n-1}{(n-K)^{2}} \gtrless 0$

1c True. To minimize $\sum_{i=1}^{n} \hat{u}_{i}^{2}=\sum_{i=1}^{n}\left(Y_{i}-\hat{\beta} X_{i}\right)^{2}$, the first order condition is $\sum_{i=1}^{n}(-2)\left(Y_{i}-\hat{\beta} X_{i}\right) X_{i}=0$. Therefore, the OLS estimator of β is $\hat{\beta}=\frac{\sum_{i=1}^{n} X_{i} Y_{i}}{\sum_{i=1}^{n} X_{i}^{2}}$.

1d False. In general $A B \neq B A$.
2a $\operatorname{Var}\left(\beta_{K}-\beta_{L}\right)=\operatorname{Var}\left(\hat{\beta}_{K}\right)+\operatorname{Var}\left(\hat{\beta}_{L}\right)-2 \operatorname{Cov}\left(\beta_{K}, \beta_{L}\right)=0.16+0.045-2 * 0.0225=$ 0.16. $t=\frac{0.632-0.452}{\sqrt{0.16}}=\frac{0.18}{0.4}=0.45$, insignificant.

2b $\operatorname{Var}\left(\beta_{K}+\beta_{L}\right)=\operatorname{Var}\left(\hat{\beta}_{K}\right)+\operatorname{Var}\left(\hat{\beta}_{L}\right)+2 \operatorname{Cov}\left(\beta_{K}, \beta_{L}\right)=0.16+0.045+2 * 0.0225=$ 0.25. $t=\frac{0.632+0.452-1}{\sqrt{0.25}}=\frac{0.084}{0.5}=0.168$, insignificant.

3a $\mathrm{E}\left[\hat{\beta}^{*}\right]=\mathrm{E}[\hat{\beta}+C X \beta+u]=\beta+C X \beta$. For $\hat{\beta}^{*}$ to be unbiased, we need $C X=0$.
$3 b$

$$
\begin{aligned}
\hat{\beta}^{*} & =\beta+\left(X^{\prime} X\right)^{-1} X^{\prime} u+C u \\
\operatorname{Var}\left(\hat{\beta}^{*}\right) & =\mathrm{E}\left[\left(\hat{\beta}^{*}-\beta\right)\left(\hat{\beta}^{*}-\beta\right)^{\prime}\right] \\
& =\mathrm{E}\left\{\left[\left(X^{\prime} X\right)^{-1} X^{\prime} u+C u\right]\left[\left(X^{\prime} X\right)^{-1} X^{\prime} u+C u\right]^{\prime}\right\} \\
& \left.=\mathrm{E}\left\{\left[\left(X^{\prime} X\right)^{-1} X^{\prime} u+C u\right]\left[u^{\prime} X X^{\prime} X\right)^{-1}+u^{\prime} C^{\prime}\right]\right\} \\
& \left.\left.=\mathrm{E}\left[\left(X^{\prime} X\right)^{-1} X^{\prime} u u^{\prime} X X^{\prime} X\right)^{-1}+C u u^{\prime} X X^{\prime} X\right)^{-1}+\left(X^{\prime} X\right)^{-1} X^{\prime} u u^{\prime} C^{\prime}+C u u^{\prime} C^{\prime}\right] \\
& =\sigma^{2}\left(X^{\prime} X\right)^{-1}+0+0+\sigma^{2} C C^{\prime} \geq \operatorname{Var}(\hat{\beta})
\end{aligned}
$$

3c $\operatorname{Var}\left(\hat{\beta}^{*}\right) \geq \operatorname{Var}(\hat{\beta})$. This is the Gauss-Markov theorem, the OLS estimator of $\beta-\hat{\beta}$ is the most efficient estimator among the class of the linear unbiased estimators.
$4 \mathbf{a}$

$$
\begin{array}{r}
\mathrm{E}\left(Y_{i} \mid D_{i}=1\right)=\beta_{1}+\beta_{2}+\beta_{3} X_{i}+\beta_{4} X_{i} \\
\mathrm{E}\left(Y_{i} \mid D_{i}=0\right)=\beta_{1}+\beta_{3} X_{i} \\
\mathrm{E}\left(Y_{i} \mid D_{1}=1\right)-\mathrm{E}\left(Y_{i} \mid D_{i}=0\right)=\beta_{2}+\beta_{4} X_{i}
\end{array}
$$

4b

$$
\begin{aligned}
\mathrm{E}\left(Y_{i} \mid D_{i}=-1, X_{i}=10\right) & =\beta_{1}-\beta_{2}+\beta_{3} * 10-\beta_{4} * 10 \\
\mathrm{E}\left(Y_{i} \mid D_{i}=1, X_{i}=10\right) & =\beta_{1}+\beta_{2}+\beta_{3} * 10+\beta_{4} * 10 \\
\mathrm{E}\left(Y_{i} \mid D_{1}=-1, X_{i}=10\right)-\mathrm{E}\left(Y_{i} \mid D_{i}\right. & \left.=1, X_{i}=10\right)=-2 \beta_{2}-20 \beta_{4}
\end{aligned}
$$

5a generate $c=1$ if schyr $>=16$
replace $c=0$ if schyr==.
5b regress c sex
5c male: $26.2-3.5=22.7 \%$, female: 26.2%.
5d $t=\frac{-0.0345699}{0.0099553}=-3.47$. Man is significantly less likely to have a college education.

5e | | son | daughter |
| :---: | :---: | :---: |
| | intercept | -0.083 |
| slope | 0.035 | 0.039 |

5f

Since the coefficient of sex $* f s c h y r$ is not significant, the effect of father schooling on c is not significant different for son and daughter.

