Econometrics I Midterm Exam. II Dec. 13, 2002

- 1. (20%) State with brief reasons whether the following statements are true, false, or uncertain.
 - (a) (5%) With the fact that $(A^{-1})' = (A')^{-1}$, if A is symmetric, then A^{-1} is also symmetric.
 - (b) (5%) If we drop an explanatory variable from a regression model, both R^2 and \bar{R}^2 (adjusted R^2) will decrease.
 - (c) (5%) For a simple regression model without constant term, $Y_i = \beta X_i + u_i$, the OLS estimator of β is $\frac{\bar{Y}}{\bar{X}}$, where \bar{Y} and \bar{X} are the average of Y_i and X_i respectively.
 - (d) (5%) If A and B are two $m \times m$ matrices, therefore both AB and BA exist. Then AB=BA.
- 2. (15%) The following regression is estimated as a production function:

$$\ln Q = 1.37 + 0.632 \ln K + 0.452 \ln L, \quad R^2 = 0.38$$

where $\operatorname{Var}(\hat{\beta}_K) = 0.160$, $\operatorname{Var}(\hat{\beta}_L) = 0.045$, $\operatorname{Cov}(\beta_K, \beta_L) = 0.0225$. The sample size is 100. Test the following hypotheses at the 5% level of significance.

- (a) (7%) $\beta_K = \beta_L$.
- (b) (8%) There are constant returns to scale.
- 3. (25%) Let the multiple regression model be written as

$$y = X \quad \beta + u$$
$$n \times 1 \quad n \times K \quad K \times 1 \quad n \times 1$$

where y is the column vector of the dependent variable, X is the matrix of explanatory variables, β is the column vector of the K coefficients and u is the column vector of the error terms. Assume that E(u) = 0 and the covariance matrix of u is $E(uu') = \sigma^2 I$. It is known that the OLS estimator of β is $\hat{\beta} = (X'X)^{-1}X'Y$. Let $\hat{\beta}^* = \hat{\beta} + Cy$ be another linear estimator of β , where C is a $K \times n$ matrix.

- (a) (5%) For $\hat{\beta}^*$ to be unbiased, what restriction do we need to impose on *C*?
- (b) (10%) Derive the covariance matrix of $\hat{\beta}^*$, Var($\hat{\beta}^*$)?
- (c) (10%) Compare Var($\hat{\beta}^*$) with Var($\hat{\beta}$). What theorem can we have from the result of comparing the covariance matrix of the two estimators.
- 4. (10%) Suppose we have the following model,

 $Y_{i} = \beta_{1} + \beta_{2}D_{i} + \beta_{3}X_{i} + \beta_{4}(D_{i} * X_{i}) + u_{i}$

where Y_i is the annual salary of a worker, X_i is the years of working experience, and D_i is dummy variable with

$$D_i = 1$$
 if male
= 0 if female

- (a) (5%) What is the difference of male and female average salaries in terms of the regression coefficient and other variables?
- (b) (5%) Suppose the dummy variable is defined as $D_i = 1$ if female and $D_i = -1$ if male, then what is the difference of male and female average salaries with 10 years of working experience.
- 5. (30%) You are given a data set consists of the following 3 variables (1) *schyr*: one's years of schooling (2) *sex*: 1 for male and 0 for female (3) *fschyr*: father's years of schooling.
 - (a) (5%) Write down the necessary Stata commands to create a new dummy variable c which indicates that an individual has at least 16 years of schooling (college education).
 - (b) (5%) When you regress *c* on *sex* and the constant term, what is the Stata command for doing this?
 - (c) (5%) you have the following result from (b),

$$c = .2622419 - .0345699 sex$$
$$(.0073647)(.0099553)$$

with standard errors in the parentheses. What is the proportion of male who has a college education? What is the proportion of female who has a college education?

(d) (5%) Is man more or less likely than woman to have a college education? Is it significant at 5% level of significance?

Now you add fschyr and the interaction between sex and fschyr as the explanatory variables and have the following results.

						i (unit)	01 01 000	_	/ 100
Source		SS	df	MS		F(3, 7	484)	=	260.52
Model	130.3	360821	3	43.4530	6071	Prob>	F	=	0.0000
Residual	1248	.30531	7484	.166796	6541	R-squa	ired	=	0.0946
Total	1378	.66613	7487	.184141	1329	Adj R-	squared	=	0.0942
						Root N	ЛSE	=	.40841
	С	Coef	•	Std. Err.	t	P > t	[95%	o Con	f. Interval]
	sex	.0030	215	.0256093	0.12	0.906	047	1799	.053223
fschyr		.0387	226	.001979	19.57	0.000	.0348	3432	.042602
sex * fschyr		0020	757	0000001	1 4 4	0 150	0000	1200	0012802
sex * fs	cnyr	0038	253	.0026601	-1.44	0.150	0090	1398	.0013693

Number of obs =

7488

- (e) (5%) Draw the regression lines of c on fschyr for male and female separately.
- (f) (5%) Is the effect of father's schooling on *c* significantly different for son and daughter?

Suggested Answers for Midterm Exam. II Dec. 20, 2002

1a True. Since A is symmetric, then A' = A. $(A^{-1})' = (A')^{-1} = A^{-1}$, so A^{-1} is also symmetric.

1b False. R^2 will definitely decrease but \bar{R}^2 will not necessarily decrease since $\bar{R}^2 = 1 - (1 - R^2) \frac{n-1}{n-K}, \frac{\partial \bar{R}^2}{\partial K} = \frac{n-1}{n-K} \frac{\partial R^2}{\partial K} - (1 - R^2) \frac{n-1}{(n-K)^2} \ge 0$

1c True. To minimize $\sum_{i=1}^{n} \hat{u}_i^2 = \sum_{i=1}^{n} (Y_i - \hat{\beta} X_i)^2$, the first order condition is $\sum_{i=1}^{n} (-2)(Y_i - \hat{\beta} X_i)X_i = 0$. Therefore, the OLS estimator of β is $\hat{\beta} = \frac{\sum_{i=1}^{n} X_i Y_i}{\sum_{i=1}^{n} X_i^2}$.

1d False. In general $AB \neq BA$.

2a $\operatorname{Var}(\beta_K - \beta_L) = \operatorname{Var}(\hat{\beta}_K) + \operatorname{Var}(\hat{\beta}_L) - 2\operatorname{Cov}(\beta_K, \beta_L) = 0.16 + 0.045 - 2*0.0225 = 0.16.$ $t = \frac{0.632 - 0.452}{\sqrt{0.16}} = \frac{0.18}{0.4} = 0.45$, insignificant.

2b $\operatorname{Var}(\beta_K + \beta_L) = \operatorname{Var}(\hat{\beta}_K) + \operatorname{Var}(\hat{\beta}_L) + 2\operatorname{Cov}(\beta_K, \beta_L) = 0.16 + 0.045 + 2 * 0.0225 = 0.25. t = \frac{0.632 + 0.452 - 1}{\sqrt{0.25}} = \frac{0.084}{0.5} = 0.168$, insignificant.

3a $E[\hat{\beta}^*] = E[\hat{\beta} + CX\beta + u] = \beta + CX\beta$. For $\hat{\beta}^*$ to be unbiased, we need CX = 0.

3b

$$\begin{aligned} \hat{\beta}^* &= \beta + (X'X)^{-1}X'u + Cu \\ \operatorname{Var}(\hat{\beta}^*) &= \operatorname{E}[(\hat{\beta}^* - \beta)(\hat{\beta}^* - \beta)'] \\ &= \operatorname{E}\{[(X'X)^{-1}X'u + Cu][(X'X)^{-1}X'u + Cu]'\} \\ &= \operatorname{E}\{[(X'X)^{-1}X'u + Cu][u'XX'X)^{-1} + u'C']\} \\ &= \operatorname{E}[(X'X)^{-1}X'uu'XX'X)^{-1} + Cuu'XX'X)^{-1} + (X'X)^{-1}X'uu'C' + Cuu'C'] \\ &= \sigma^2(X'X)^{-1} + 0 + 0 + \sigma^2CC' > \operatorname{Var}(\hat{\beta}) \end{aligned}$$

3c $\operatorname{Var}(\hat{\beta}^*) \geq \operatorname{Var}(\hat{\beta})$. This is the Gauss-Markov theorem, the OLS estimator of $\beta - \hat{\beta}$ is the most efficient estimator among the class of the linear unbiased estimators.

4a

$$E(Y_i | D_i = 1) = \beta_1 + \beta_2 + \beta_3 X_i + \beta_4 X_i$$
$$E(Y_i | D_i = 0) = \beta_1 + \beta_3 X_i$$
$$E(Y_i | D_1 = 1) - E(Y_i | D_i = 0) = \beta_2 + \beta_4 X_i$$

4b

$$E(Y_i | D_i = -1, X_i = 10) = \beta_1 - \beta_2 + \beta_3 * 10 - \beta_4 * 10$$
$$E(Y_i | D_i = 1, X_i = 10) = \beta_1 + \beta_2 + \beta_3 * 10 + \beta_4 * 10$$
$$E(Y_i | D_1 = -1, X_i = 10) - E(Y_i | D_i = 1, X_i = 10) = -2\beta_2 - 20\beta_4$$

5a generate c=1 if schyr>= 16 replace c=0 if schyr==.

5b regress c sex

5c male: 26.2-3.5=22.7%, female: 26.2%.

5d $t = \frac{-0.0345699}{0.0099553} = -3.47$. Man is significantly less likely to have a college education.

		son	daughter
5e	intercept	-0.083	-0.086
	slope	0.035	0.039

5f

Since the coefficient of sex * fschyr is not significant, the effect of father schooling on c is not significant different for son and daughter.