Suggested Answers for Midterm Exam. I

Nov. 1, 2002

1a False. Unbiasedness of the estimators does not require a normally distributed population error term. It does require that the error term has an expected value of zero.

1b False. Since $\operatorname{Var}[\hat{\beta}_2] = \frac{\sigma^2}{\sum_{i=1}^n (X_i - \bar{X})^2}$, dropping the middle range of X_i in fact will make $\sum_{i=1}^n (X_i - \bar{X})^2$ smaller.

1c False. Statistical significance and practical significance are different. They don't imply each other.

1d False. A high p-value implies a small t-statistic which means that the coefficient is not significantly different from zero.

1e False. If we force $\hat{\beta}_2$ to be zero and estimate β_1 only, then the residual sum of squares will be greater, R^2 will be smaller. In fact, in this case $\hat{\beta}_1 = \bar{Y}$, $\hat{Y}_i = \bar{Y}$ and $R^2 = \frac{\sum_{i=1}^{n} (\hat{Y}_i - \bar{Y})^2}{\sum_{i=1}^{n} (Y_i - \bar{Y})^2} = 0.$

2a

$$\int_{0}^{2} kx(2-x) dx = k \left[x^{2} - \frac{x^{3}}{3} \right]_{0}^{2} = k(4 - \frac{8}{3}) = 1$$
$$k = \frac{3}{4}$$

2b

$$E[X] = \int_{0}^{2} xkx(2-x) dx = k \int_{0}^{2} 2x^{2} - x^{3} = k \left[\frac{2}{3}x^{3} - \frac{1}{4}x^{4}\right]_{0}^{2}$$

$$= k(\frac{16}{3} - 4) = 1$$

$$E[x^{2}] = \int_{0}^{2} x^{2}kx(2-x) dx = k \int_{0}^{2} 2x^{3} - x^{4} = k \left[\frac{2}{4}x^{4} - \frac{1}{5}x^{5}\right]_{0}^{2}$$

$$= k(8 - \frac{32}{5}) = \frac{3}{4} \cdot \frac{8}{5} = \frac{6}{5}$$

$$Var[X] = E[X^{2}] - E[X]^{2} = \frac{6}{5} - 1^{2} = \frac{1}{5}$$

3a f(x) > 0 and

$$\int_0^1 f(X) \, dX = \int_0^1 \theta X^{\theta - 1} \, dX = \left[X^{\theta} \right]_0^1 = 1$$

Therefore, f(x) is a proper density function.

$$L = \prod_{i=1}^{n} \theta X_i^{\theta - 1}$$

$$\ln L = \sum_{i=1}^{n} (\ln \theta + (\theta - 1) \ln X_i)$$

$$= n \ln \theta + (\theta - 1) \sum_{i=1}^{n} \ln X_i$$

3c Using the log-likelihood function derived above, the first order condition is

$$\frac{\partial \ln L}{\partial \theta} = \frac{n}{\theta} + \sum_{i=1}^{n} \ln X_i = 0$$

Therefore, the ML estimator of θ is

$$\hat{\theta} = -\frac{n}{\sum_{i=1}^{n} \ln X_i}.$$

4a $\tilde{\beta}_2$ is the average slope of the n-1 lines that connecting the *n* observations.

4b

$$\begin{split} \tilde{\beta_2} &= \frac{1}{n-1} \sum_{i=2}^n \frac{Y_i - Y_{i-1}}{X_i - X_{i-1}} \\ &= \frac{1}{n-1} \sum_{i=2}^n \frac{\beta_2 (X_i - X_{i-1}) + u_i - u_{i-1}}{X_i - X_{i-1}} \\ &= \beta_2 + \frac{1}{n-1} \sum_{i=2}^n \frac{u_i - u_{i-1}}{X_i - X_{i-1}} \\ \mathrm{E}[\tilde{\beta_2}] &= \beta_2 + \frac{1}{n-1} \sum_{i=2}^n \frac{\mathrm{E}[u_i] - \mathrm{E}[u_{i-1}]}{X_i - X_{i-1}} \\ &= \beta_2 \end{split}$$

3b

$$\operatorname{Var}[\tilde{\beta}_{2}] = \operatorname{E}[(\tilde{\beta}_{2} - \beta_{2})^{2}] = \operatorname{E}\left[\left(\frac{1}{n-1}\sum_{i=2}^{n}\frac{u_{i} - u_{i-1}}{X_{i} - X_{i-1}}\right)^{2}\right]$$
$$= \frac{1}{(n-1)^{2}}\sum_{i=2}^{n}\frac{\operatorname{E}[(u_{i} - u_{i-1})^{2}]}{(X_{i} - X_{i-1})^{2}}$$
$$= \frac{1}{(n-1)^{2}}\sum_{i=2}^{n}\frac{2\sigma^{2}}{(X_{i} - X_{i-1})^{2}} \to 0$$

Since $E[\tilde{\beta}_2] = 0$ and $\lim_{n \to \infty} Var[\tilde{\beta}_2] = 0$, $\tilde{\beta}_2$ is consistent.

4d No. Ideally, we have to compare the variances of the two estimator. However, since $\hat{\beta}_2$ is the OLS estimator, according to the Gauss-Markov theorem, $\hat{\beta}_2$ has the smallest variance in the class of linear unbiased estimators. $\tilde{\beta}_2$ can not be more efficient than $\hat{\beta}_2$.

5a
$$R^2 = \frac{\sum \hat{y}_i^2}{\sum y_i^2} = \frac{1.0188}{26.4888} = 0.0385.$$

5b
$$F = \frac{1.0188}{.2547} = 4.$$

5c The *t* statistic for $\hat{\beta}_2$ is $\sqrt{F} \doteq 2 > 1.96$. Therefore, it is significant different from zero at a 95% level of confidence.

5d Since $t = \frac{\hat{\beta}_2 - 0}{se(\hat{\beta}_2)}$, $\hat{\beta}_2 = 2 \cdot 0.1 = 0.2$, A 10% increase of the father's wage will increase the son's wage by 10 * 0.2 = 2%.

4c