Suggested Answers for Midterm Exam. I

Nov. 1, 2002
1a False. Unbiasedness of the estimators does not require a normally distributed population error term. It does require that the error term has an expected value of zero.

1b False. Since $\operatorname{Var}\left[\hat{\beta}_{2}\right]=\frac{\sigma^{2}}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}$, dropping the middle range of X_{i} in fact will make $\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}$ smaller.

1c False. Statistical significance and practical significance are different. They don't imply each other.

1d False. A high p-value implies a small t -statistic which means that the coefficient is not significantly different from zero.

1e False. If we force $\hat{\beta}_{2}$ to be zero and estimate β_{1} only, then the residual sum of squares will be greater, R^{2} will be smaller. In fact, in this case $\hat{\beta}_{1}=\bar{Y}, \hat{Y}_{i}=\bar{Y}$ and $R^{2}=\frac{\sum_{i=1}^{n}\left(\hat{Y}_{i}-\bar{Y}\right)^{2}}{\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}}=0$.
2a

$$
\begin{aligned}
\int_{0}^{2} k x(2-x) d x & =k\left[x^{2}-\frac{x^{3}}{3}\right]_{0}^{2}=k\left(4-\frac{8}{3}\right)=1 \\
k & =\frac{3}{4}
\end{aligned}
$$

2b

$$
\begin{aligned}
\mathrm{E}[X] & =\int_{0}^{2} x k x(2-x) d x=k \int_{0}^{2} 2 x^{2}-x^{3}=k\left[\frac{2}{3} x^{3}-\frac{1}{4} x^{4}\right]_{0}^{2} \\
& =k\left(\frac{16}{3}-4\right)=1 \\
\mathrm{E}\left[x^{2}\right] & =\int_{0}^{2} x^{2} k x(2-x) d x=k \int_{0}^{2} 2 x^{3}-x^{4}=k\left[\frac{2}{4} x^{4}-\frac{1}{5} x^{5}\right]_{0}^{2} \\
& =k\left(8-\frac{32}{5}\right)=\frac{3}{4} \cdot \frac{8}{5}=\frac{6}{5} \\
\operatorname{Var}[X] & =\mathrm{E}\left[X^{2}\right]-\mathrm{E}[X]^{2}=\frac{6}{5}-1^{2}=\frac{1}{5}
\end{aligned}
$$

3a $f(x)>0$ and

$$
\int_{0}^{1} f(X) d X=\int_{0}^{1} \theta X^{\theta-1} d X=\left[X^{\theta}\right]_{0}^{1}=1
$$

Therefore, $f(x)$ is a proper density function.

3b

$$
\begin{aligned}
L & =\prod_{i=1}^{n} \theta X_{i}^{\theta-1} \\
\ln L & =\sum_{i=1}^{n}\left(\ln \theta+(\theta-1) \ln X_{i}\right) \\
& =n \ln \theta+(\theta-1) \sum_{i=1}^{n} \ln X_{i}
\end{aligned}
$$

3c Using the log-likelihood function derived above, the first order condition is

$$
\frac{\partial \ln L}{\partial \theta}=\frac{n}{\theta}+\sum_{i=1}^{n} \ln X_{i}=0
$$

Therefore, the ML estimator of θ is

$$
\hat{\theta}=-\frac{n}{\sum_{i=1}^{n} \ln X_{i}} .
$$

4a $\tilde{\beta}_{2}$ is the average slope of the $n-1$ lines that connecting the n observations.
4b

$$
\begin{aligned}
\tilde{\beta}_{2} & =\frac{1}{n-1} \sum_{i=2}^{n} \frac{Y_{i}-Y_{i-1}}{X_{i}-X_{i-1}} \\
& =\frac{1}{n-1} \sum_{i=2}^{n} \frac{\beta_{2}\left(X_{i}-X_{i-1}\right)+u_{i}-u_{i-1}}{X_{i}-X_{i-1}} \\
& =\beta_{2}+\frac{1}{n-1} \sum_{i=2}^{n} \frac{u_{i}-u_{i-1}}{X_{i}-X_{i-1}} \\
\mathrm{E}\left[\tilde{\beta}_{2}\right] & =\beta_{2}+\frac{1}{n-1} \sum_{i=2}^{n} \frac{\mathrm{E}\left[u_{i}\right]-\mathrm{E}\left[u_{i-1}\right]}{X_{i}-X_{i-1}} \\
& =\beta_{2}
\end{aligned}
$$

$4 c$

$$
\begin{aligned}
\operatorname{Var}\left[\tilde{\beta}_{2}\right] & =\mathrm{E}\left[\left(\tilde{\beta}_{2}-\beta_{2}\right)^{2}\right]=\mathrm{E}\left[\left(\frac{1}{n-1} \sum_{i=2}^{n} \frac{u_{i}-u_{i-1}}{X_{i}-X_{i-1}}\right)^{2}\right] \\
& =\frac{1}{(n-1)^{2}} \sum_{i=2}^{n} \frac{\mathrm{E}\left[\left(u_{i}-u_{i-1}\right)^{2}\right]}{\left(X_{i}-X_{i-1}\right)^{2}} \\
& =\frac{1}{(n-1)^{2}} \sum_{i=2}^{n} \frac{2 \sigma^{2}}{\left(X_{i}-X_{i-1}\right)^{2}} \rightarrow 0
\end{aligned}
$$

Since $\mathrm{E}\left[\tilde{\beta}_{2}\right]=0$ and $\lim _{n \rightarrow \infty} \operatorname{Var}\left[\tilde{\beta}_{2}\right]=0, \tilde{\beta}_{2}$ is consistent.
4d No. Ideally, we have to compare the variances of the two estimator. However, since $\hat{\beta}_{2}$ is the OLS estimator, according to the Gauss-Markov theorem, $\hat{\beta}_{2}$ has the smallest variance in the class of linear unbiased estimators. $\tilde{\beta}_{2}$ can not be more efficient than $\hat{\beta}_{2}$.

5a $R^{2}=\frac{\sum \hat{y}_{i}^{2}}{\sum y_{i}^{2}}=\frac{1.0188}{26.4888}=0.0385$.
5b $F=\frac{1.0188}{.2547}=4$.
5c The t statistic for $\hat{\beta}_{2}$ is $\sqrt{F} \doteq 2>1.96$. Therefore, it is significant different from zero at a 95% level of confidence.

5d Since $t=\frac{\hat{\beta}_{2}-0}{\operatorname{se}\left(\hat{\beta}_{2}\right)}, \hat{\beta}_{2}=2 \cdot 0.1=0.2$, A 10% increase of the father's wage will increase the son's wage by $10 * 0.2=2 \%$.

