Econometrics I Midterm Exam. I Oct. 26, 2001

- 1. (20%) State with brief reasons whether the following statements are true, false, or uncertain.
 - (a) (5%) If $\hat{\beta}_2$ is statistically significant at a 99% level of confidence, then it must be also practically significant.
 - (b) (5%) Gauss-Markov theorem states that given the assumptions of the classical linear regression model, the least-squares estimators are unbiased.
 - (c) (5%) OLS estimates of the slope are more precisely estimated if the X-values are closer to their sample mean.
 - (d) (5%) When an intercept is included in a classical linear regression model, the sum of residuals equals to zero, $\sum \hat{u}_i = 0$.
- 2. (15%) In deriving the least-squares estimator for σ^2 , we have

$$\sum \hat{u}_i^2 = (\hat{\beta}_2 - \beta_2)^2 \sum x_i^2 + \sum (u_i - \bar{u})^2 - 2(\hat{\beta}_2 - \beta_2) \sum x_i (u_i - \bar{u})$$

= $A + B + C$

where *A*, *B*, *C* correspond to the three terms of $\sum \hat{u}_i^2$. Calculate E(*A*), E(*B*) and E(*C*) respectively. Therefore, we can show that $E(\sum \hat{u}_i^2) = (n-2)\sigma^2$. (Note that $\hat{\beta}_2$ can be written as $\hat{\beta}_2 = \beta_2 + \sum k_i u_i$, where $k_i = \frac{x_i}{\sum x_i^2}$, $\sum k_i = 0$ and $\sum k_i x_i = \sum k_i X_i = 1$.)

3. (15%) A random variable *X* follows the exponential distribution and has the following probability density function:

$$f(X) = \frac{1}{\theta}e^{-\frac{X}{\theta}} \text{ for } X > 0$$

= 0 elsewhere

where $\theta > 0$ is the parameter of the distribution. Derive the Maximum-Likelihood estimator of θ .

4. (20%) Consider a classical linear regression model of consumption function, $Y_i = \beta_1 + \beta_2 X_i + u_i$, where Y_i is monthly consumption and X_i is monthly income, both are measured in dollars. Suppose the OLS estimators are $\hat{\beta}_1$ and $\hat{\beta}_2$, and variance for $\hat{\beta}_2$ is $\operatorname{Var}(\hat{\beta}_2) = \frac{\hat{\sigma}^2}{\sum x_i^2} = \frac{\sum \hat{u}_i^2/(n-2)}{\sum x_i^2}$.

- (a) (10%) If we change the unit of income to 1,000 dollars and leave the unit of consumption unchanged, what are the estimators of β₁, β₂ and the variance of the estimator of β₂, compare to β̂₁, β̂₂ and Var(β̂₂)?
- (b) (10%) If we change the unit of both income and consumption to 1,000 dollars, what are the estimators of β₁, β₂ and the variance of the estimator of β₂, compare to β̂₁, β̂₂ and Var(β̂₂)?
- 5. (20%) Suppose we have observations of monthly wage for 346 pairs of father and son, and run a classical normal linear regression model,

$$\ln Y_i = \beta_1 + \beta_2 \ln X_i + u_i$$

Where Y_i is son's monthly wage while X_i is father's monthly wage. The resulting ANOVA table and coefficients are as follows.

Source	SS	df	MS
Model	1.5297859	1	1.5297859
Residual	26.5958015	344	.077313376
Total	28.1255874	345	.081523442

ln Y	Coef.	Std. Err.	t	P > t	[95% Con	f. Interval]
$\ln X$.1558127	.035028	4.45	0.000	.0869167	.2247086
cons	8.775105	.3671243	23.90	0.000	8.053014	9.497196

- (a) (5%) What is the R^2 , coefficient of determination, of the regression?
- (b) (5%) Is β_2 significant at a 99% level of confidence?
- (c) (5%) What is the F statistic for testing $H_0: \beta_2 = 0$?
- (d) (5%) From the regression results, how will the son's wage change if the father's wage has a 10% increase?
- 6. (10%) This question is an exercise for data collection. Your answers will not affect the score you get as long as you answer the questions truthfully.
 - (a) How many hours do you usually spend on studying for this class every week?
 - (b) How many hours do you spend for preparing this midterm examination?
 - (c) What is the average score of the two-semester Statistics classes you took?
 - (d) Where do you live? At home with your family, in school's dormitory or rent a room from your landlord?
 - (e) Do you have any suggestions about this class such as teaching style, materials to be covered or whatever you want to say to the teacher?