Econometrics I Midterm Exam. I Oct. 25, 2002

- 1. (25%) State with brief reasons whether the following statements are true, false, or uncertain.
 - (a) (5%) If the disturbance term in the CLRM is not normally distributed, then the OLS estimators are biased.
 - (b) (5%) In the simple regression model, since the variance of the regression coefficient $\hat{\beta}_2$ varies inversally with the variance of X, we should drop all the observations in the middle range of X and use only the extreme observations on X in the calculation of $\hat{\beta}_2$.
 - (c) (5%) If $\hat{\beta}_2$ is statistically significant at a 99% level of confidence, then it must also be practically significant.
 - (d) (5%) A high p-value means that the coefficient is significantly different from zero.
 - (e) (5%) For a simple regression model, $Y_i = \beta_1 + \beta_2 X_i + u_i$. Instead of estimating β_1 and β_2 by OLS, if we force $\hat{\beta}_2$ to be zero and estimate β_1 only, the resulting R^2 will be greater.
- 2. (15%) The density function of a continuous random variable X is given by

$$f(x) = \begin{cases} kx(2-x) & \text{for } 0 \le x \le 2\\ 0 & \text{otherwise} \end{cases}$$

- (a) (5%) Find the value of k.
- (b) (10%) What is E[X] and Var[X]?
- 3. (15%) A random variable X that has the following probability density function:

$$f(X) = \theta X^{\theta - 1}, 0 < X < 1$$

= 0 elsewhere

where $\theta > 0$ is the parameter of the distribution.

- (a) (5%) Show that f(X) is a proper probability density function.
- (b) (5%) Write down the log-likelihood function for a sample of n observations.
- (c) (5%) Derive the Maximum-Likelihood estimator of θ .

4. (25%) Consider the following classical linear regression model:

$$Y_i = \beta_1 + \beta_2 X_i + u_i$$

We have two estimators of β_2 ,

$$\tilde{\beta}_{2} = \frac{1}{n-1} \sum_{i=2}^{n} \frac{Y_{i} - Y_{i-1}}{X_{i} - X_{i-1}}$$
$$\hat{\beta}_{2} = \frac{\sum_{i=1}^{n} (X_{i} - \bar{X})(Y_{i} - \bar{Y})}{\sum_{i=1}^{n} (X_{i} - \bar{X})^{2}}$$

- (a) (5%) Give a geometric interpretation of $\tilde{\beta}_2$.
- (b) (5%) Is $\tilde{\beta}_2$ unbiased?
- (c) (7%) Is $\tilde{\beta}_2$ consistent?
- (d) (8%) Is $\tilde{\beta}_2$ more efficient than $\hat{\beta}_2$?
- 5. (20%) Suppose we have observations of monthly wage for 102 pairs of father and son, and run a classical normal linear regression model,

$$\ln Y_i = \beta_1 + \beta_2 \ln X_i + u_i$$

Where Y_i is son's monthly wage while X_i is father's monthly wage. The resulting ANOVA table and coefficients are as follows.

Source	SS	df	MSS
Model	1.0188	1	1.0188
Residual	25.47	100	0.2547
Total	26.4888	101	0.2622

- (a) (5%) What is the R^2 of the regression?
- (b) (5%) What is the F statistic for testing $H_0: \beta_2 = 0$?
- (c) (5%) Is β_2 significantly different from zero at a 95% level of confidence?($t_{0.025} \doteq 1.96$)
- (d) (5%) Suppose the standard error of $\hat{\beta}_2$ is 0.1, how will the son's wage change if the father's wage has a 10% increase?