Econometrics I
Midterm Exam. I
Oct. 25, 2002

1. (25%) State with brief reasons whether the following statements are true, false, or uncertain.
(a) (5%) If the disturbance term in the CLRM is not normally distributed, then the OLS estimators are biased.
(b) (5%) In the simple regression model, since the variance of the regression coefficient $\hat{\beta}_{2}$ varies inversally with the variance of X, we should drop all the observations in the middle range of X and use only the extreme observations on X in the calculation of $\hat{\beta}_{2}$.
(c) (5%) If $\hat{\beta}_{2}$ is statistically significant at a 99% level of confidence, then it must also be practically significant.
(d) (5%) A high p-value means that the coefficient is significantly different from zero.
(e) (5%) For a simple regression model, $Y_{i}=\beta_{1}+\beta_{2} X_{i}+u_{i}$. Instead of estimating β_{1} and β_{2} by OLS, if we force β_{2} to be zero and estimate β_{1} only, the resulting R^{2} will be greater.
2. (15\%) The density function of a continuous random variable X is given by

$$
f(x)=\left\{\begin{array}{cl}
k x(2-x) & \text { for } 0 \leq x \leq 2 \\
0 & \text { otherwise }
\end{array}\right.
$$

(a) (5\%) Find the value of k.
(b) (10\%) What is $\mathrm{E}[X]$ and $\operatorname{Var}[X]$?
3. (15%) A random variable X that has the following probability density function:

$$
\begin{aligned}
f(X) & =\theta X^{\theta-1}, 0<X<1 \\
& =0 \text { elsewhere }
\end{aligned}
$$

where $\theta>0$ is the parameter of the distribution.
(a) (5\%) Show that $f(X)$ is a proper probability density function.
(b) (5\%) Write down the log-likelihood function for a sample of n observations.
(c) (5\%) Derive the Maximum-Likelihood estimator of θ.
4. (25\%) Consider the following classical linear regression model:

$$
Y_{i}=\beta_{1}+\beta_{2} X_{i}+u_{i}
$$

We have two estimators of β_{2},

$$
\begin{aligned}
\tilde{\beta}_{2} & =\frac{1}{n-1} \sum_{i=2}^{n} \frac{Y_{i}-Y_{i-1}}{X_{i}-X_{i-1}} \\
\hat{\beta}_{2} & =\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}
\end{aligned}
$$

(a) (5%) Give a geometric interpretation of $\tilde{\beta}_{2}$.
(b) (5%) Is $\tilde{\beta}_{2}$ unbiased?
(c) (7%) Is $\tilde{\beta}_{2}$ consistent?
(d) (8%) Is $\tilde{\beta}_{2}$ more efficient than $\hat{\beta}_{2}$?
5. (20\%) Suppose we have observations of monthly wage for 102 pairs of father and son, and run a classical normal linear regression model,

$$
\ln Y_{i}=\beta_{1}+\beta_{2} \ln X_{i}+u_{i}
$$

Where Y_{i} is son's monthly wage while X_{i} is father's monthly wage. The resulting ANOVA table and coefficients are as follows.

Source	SS	df	MSS
Model	1.0188	1	1.0188
Residual	25.47	100	0.2547
Total	26.4888	101	0.2622

(a) (5%) What is the R^{2} of the regression?
(b) (5\%) What is the F statistic for testing $H_{0}: \beta_{2}=0$?
(c) (5%) Is β_{2} significantly different from zero at a 95% level of confidence? $t_{0.025} \doteq$ 1.96)
(d) (5\%) Suppose the standard error of $\hat{\beta}_{2}$ is 0.1 , how will the son's wage change if the father's wage has a 10% increase?

