Suggested Answers for Problem Set 6

Jan. 11, 2002

1a All the regression results can be found in the \log file, ps6q1.log. The OLS regression, the result is

$$
\begin{aligned}
Y & =1906.16+0.241 X, \quad R^{2}=0.463 \\
\text { s.e. } & =(920.66)(0.098) \\
t & =2.07
\end{aligned}
$$

1b The coefficient of $\ln X$ is -2.477 with standard error 4.14 and t-value 0.60 . The result indicate that there is no heteroscedasticity according to the Park test.

1c The results are

$$
\begin{array}{rll}
\left|\hat{u}_{i}\right| & =383.36-0.018 X_{i} \\
\text { s.e. } & =(629.85) & (0.067) \\
t & =0.61-0.27 \\
\left|\hat{u}_{i}\right| & =530.67-3.31 \sqrt{X_{i}} \\
\text { s.e. } & =(1277.4) & (13.24) \\
t & =0.42-0.25
\end{array}
$$

Both are insignificant, there is no hoteroscedasticity according to the specifications of Glejser test.

1 d The Spearman's rank correlation coefficient is -0.4 and the t statistic is -1.155 which is insignificant with $d f=7$. Therefore, we can not reject the null hypothesis that the model is homoscedastic.

2a All the regression results can be found in the \log file, ps6q2.log.
The OLS regression is

$$
\begin{aligned}
Y & =193.06+0.032 X \\
\text { s.e. } & =(990.97)(0.008) \\
t & =0.193 .83
\end{aligned}
$$

2b The explained sum of squares of regressing p_{i} on X_{i} is 17.82 . Therefore, the χ^{2} statistic is $\frac{1}{2} 17.82=8.91$ with degree of freedom 1 . It is significant at a 95% level of confidence. The null hypothesis that the error term is homoscedastic can be rejected.

2c The White $n \cdot R^{2}=18 \cdot 0.2896=5.213$ with d.f. $=2$. Therefore, at the 95 do not reject the null that the model is homoscedastic. However, at the 90% level, one would reject the null that the model is homoscedastic.

2d The White's heteroscedasticity-consistent standard error is 0.010 , which is greater than the standard error in (a).

3a

$$
\begin{aligned}
\operatorname{Var}\left(u_{t}\right) & =\rho^{2} \operatorname{Var}\left(u_{t-1}\right)+\operatorname{Var}\left(\epsilon_{t}\right)=\rho^{2} \operatorname{Var}\left(u_{t}\right)+\operatorname{Var}\left(\epsilon_{t}\right) \\
\left(1-\rho^{2}\right) \operatorname{Var}\left(u_{t}\right) & =\sigma^{2} \\
\operatorname{Var}\left(u_{t}\right) & =\frac{\sigma^{2}}{1-\rho^{2}}
\end{aligned}
$$

3b

$$
\begin{aligned}
\operatorname{Cov}\left(u_{t}, u_{t-1}\right) & =\mathrm{E}\left[\left(\rho u_{t-1}+\epsilon_{t}\right) u_{t-1}\right]=\rho \operatorname{Var}\left(u_{t-1}\right)=\rho \frac{\sigma^{2}}{1-\rho^{2}} \\
\operatorname{Cov}\left(u_{t}, u_{t-2}\right) & =\mathrm{E}\left[\left(\rho u_{t-1}+\epsilon_{t}\right) u_{t-2}\right]=\mathrm{E}\left[\left(\rho^{2} u_{t-2}+\rho \epsilon_{t-1}+\epsilon_{t}\right) u_{t-2}\right] \\
& =\rho^{2} \operatorname{Var}\left(u_{t-2}\right)=\rho^{2} \frac{\sigma^{2}}{1-\rho^{2}}
\end{aligned}
$$

In general, the covariance between u_{t} and u_{t-s} is $\rho^{s} \operatorname{Var}\left(u_{t-s}\right)=\rho^{s} \frac{\sigma^{2}}{1-\rho^{2}}$.

3 c

$$
\begin{aligned}
\operatorname{Var}(u) & =\mathrm{E}\left(u u^{\prime}\right)=\left[\begin{array}{cccc}
\operatorname{Var}\left(u_{1}\right) & \operatorname{Cov}\left(u_{1}, u_{2}\right) & \cdots & \operatorname{Cov}\left(u_{1}, u_{T}\right) \\
\operatorname{Cov}\left(u_{2}, u_{1}\right) & \operatorname{Var}\left(u_{2}\right) & \cdots & \operatorname{Cov}\left(u_{2}, u_{T}\right) \\
\vdots & \vdots & \cdots & \vdots \\
\operatorname{Cov}\left(u_{1}, u_{T}\right) & \operatorname{Cov}\left(u_{2}, u_{T}\right) & \cdots & \operatorname{Var}\left(u_{T}\right)
\end{array}\right] \\
& =\left[\begin{array}{cccc}
\frac{\sigma^{2}}{1-\rho^{2}} & \rho \frac{\sigma^{2}}{1-\rho^{2}} & \cdots & \rho^{T-1} \frac{\sigma^{2}}{1-\rho^{2}} \\
\rho \frac{\sigma^{2}}{1-\rho^{2}} & \frac{\sigma^{2}}{1-\rho^{2}} & \cdots & \rho^{T-2} \frac{\sigma^{2}}{1-\rho^{2}} \\
\vdots & \vdots & \cdots & \vdots \\
\rho^{T-1} \frac{\sigma^{2}}{1-\rho^{2}} & \rho^{T-2} \frac{\sigma^{2}}{1-\rho^{2}} & \cdots & \frac{\sigma^{2}}{1-\rho^{2}}
\end{array}\right] \\
& =\frac{\sigma^{2}}{1-\rho^{2}}\left[\begin{array}{cccc}
1 & \rho & \cdots & \rho^{T-1} \\
\rho & 1 & \cdots & \rho^{T-2} \\
\vdots & \vdots & \cdots & \vdots \\
\rho^{T-1} & \rho^{t-2} & \cdots & 1
\end{array}\right]
\end{aligned}
$$

4 For $n=50$ and $k=4$,

$$
\begin{array}{ll}
d_{L}=1.378 & 4-d_{L}=2.622 \\
d_{U}=1.721 & 4-d_{U}=2.279
\end{array}
$$

1. $d<d_{L}$, positive autocorrelation.
2. $d_{L}<d<d_{U}$, inconclusive.
3. $4-d_{U}<d<4-d_{L}$, inconclusive.
4. $d>4-d_{L}$, negative autocorrelation.
