Suggested Answers for Problem Set 5

Dec. 28, 2001
1a If there is perfect collinearity, the $X^{\prime} X$ matrix can not be inverted because the determinant of $X^{\prime} X$ is zero. The vector of coefficients is unidentified.

1b A test would be to examine the determinant of $X^{\prime} X$, if it is zero, perfect collinearity exists.

2a If there is perfect multicollinearity, the $X^{\prime} X$ matrix can not be inverted because the determinant of $X^{\prime} X$ is zero. The covariance matrix is undefined.

2b If the collinearity is high, the covariance matrix is defined, but the variances will tend to be very large as the determinant of $X^{\prime} X$ approaches zero as the collinearity gets stronger.

3a Given the relatively high $R^{2}, 0.97$, the significant F, and the improperly signed, insignificant coefficient on $\ln K$, it appears there may be multicollinearity in the model.

3b One would expect the sign on $\ln K$ to be positive. It is not, probably due to the collinearity.

4 Since there is no intercept, the OLS estimate of β_{2} is

$$
\begin{aligned}
\hat{\beta}_{2} & =\frac{X_{i} Y_{i}}{\sum X_{i}^{2}}=\frac{\sum X_{i}\left(\beta_{2} X_{i}+u_{i}\right)}{\sum X_{i}^{2}}=\beta_{2}+\frac{\sum X_{i} u_{i}}{\sum X_{i}^{2}} \\
\operatorname{Var}\left(\hat{\beta}_{2}\right) & =\mathrm{E}\left[\left(\hat{\beta}_{2}-\beta_{2}\right)^{2}\right]=\mathrm{E}\left[\left(\frac{\sum X_{i} u_{i}}{\sum X_{i}^{2}}\right)^{2}\right]=\frac{\sum X_{i}^{2} \mathrm{E}\left(u_{i}^{2}\right)}{\left(\sum X_{i}^{2}\right)^{2}} \\
& =\frac{\sum X_{i}^{2} \sigma^{2} X_{i}^{2}}{\left(\sum X_{i}^{2}\right)^{2}}=\frac{\sigma^{2} \sum X_{i}^{4}}{\left(\sum X_{i}^{2}\right)^{2}}
\end{aligned}
$$

