Econometrics I Final Exam. 2002.1.18

- 1. (25%) State with brief reasons whether the following statements are true, false, or uncertain.
 - (a) (5%) In multiple regression, a high correlation in the sample among the regressors (multicollinearity) implies that the least squares estimators of the coefficients are biased.
 - (b) (5%) Heteroscedasticity in the errors leads to biased estimates of the regression coefficients and their standard errors.
 - (c) (5%) When autocorrelation is present, OLS estimators are biased as well as inefficient.
 - (d) (5%) The first-difference transformation to eliminate autocorrelation assumes that the coefficient of autocorrelation ρ is -1.
 - (e) (5%) When there is perfect collinearity among explanatory variables, the inverse of X'X does not exist.
- 2. (30%) In the model

$$Y_i = \beta_2 X_i + u_i$$

Note that there is no intercept in the model. You are told that $Var(u_i) = \sigma^2 X_i^2$. To obtain the efficient estimator of β_2 , we transform the variables by dividing both sides by X_i ,

$$\frac{Y_i}{X_i} = \beta_2 + \frac{u_i}{X_i} \equiv \beta_2 + u_i^*$$

- (a) (5%) Show that u_i^* is homoscedastic.
- (b) (5%) Let $Z_i = \frac{Y_i}{X_i}$, what is the GLS estimator of β_2 , $\hat{\beta}_2^{GLS}$?
- (c) (5%) What is the mean of $\hat{\beta}_2^{GLS}$?
- (d) (5%) What is the variance of $\hat{\beta}_2^{GLS}$?
- (e) (10%) Let $\hat{\beta}_2$ be the OLS estimator of the original model, show that

$$\operatorname{Var}(\hat{\beta}_2) = \frac{\sigma^2 \sum X_i^4}{(\sum X_i^2)^2}$$

3. (20%) In a study of 27 industrial establishments of varying size, Y = the number of supervisors and X = the number of supervised workers. The OLS results obtained were as follows.

$$Y_i = 14.448 + 0.115X_i$$
 (1)
s.e. = (9.562) (0.011), $n = 27, R^2 = 0.776$

After the estimation of the equation and plotting the residuals against X, it was found that the variance of the residuals increased with X. Plotting the residuals against $\frac{1}{X}$ showed that there was no such relationship. Hence the assumption made was

$$\operatorname{Var}(u_i) = \sigma^2 X_i^2$$

The estimated equation was

$$\frac{Y_i}{X_i} = 0.121 + 3.803 \left(\frac{1}{X_i}\right)$$
(2)
s.e. = (0.009) (4.570)

- (a) (5%) In terms of the original equation, what are the corresponding coefficients and standard errors of $\hat{\beta}_1$ and $\hat{\beta}_2$?($\hat{\beta}_1$ denotes the coefficient of the constant term while $\hat{\beta}_2$ denotes the coefficient of X.)
- (b) (5%) It can be calculated that R^2 of the regression after variables are transformed is 0.7587, a drop from 0.776 in (1), can we conclude that equation (1) is better?
- (c) (5%) How would the equation be estimated if $Var(u_i) = \sigma^2 X_i$, instead of $\sigma^2 X_i^2$?
- (d) (5%) To choose between the two specifications, $Var(u_i) = \sigma^2 X_i^2$ and $Var(u_i) = \sigma^2 X_i$, obtain the OLS residuals in (1), \hat{u}_i . Regress \hat{u}_i^2 on X_i^2 and X_i separately, then choose the specification that gives a *higher* or *lower* R^2 ?
- 4. (25%) Suppose we have the following model,

$$Y_t = \beta_1 + \beta_2 X_t + u_t$$

where Y_t is the log of help-wanted index, and X_t is the log of unemployment rate. OLS regressin results are

$$Y_t = 7.3084 - 1.5375 X_t$$

$$t = (65.825) (-21.612), N = 24, R^2 = 0.9550, d = 0.9108$$

where *d* is the Durbin-Watson statistic. For 24 observations and 1 explanatory variable the 5% Durbin-Watson table shows that $d_L = 1.27$ and $d_U = 1.45$.

- (a) (5%) Is there authcorrelation in u_t ?
- (b) (5%) Estimate ρ based on the Durbin-Watson d statistic?
- (c) (5%) To obtain the feasible GLS estimates of β_1 and β_2 , how would you transform the first observation by $\hat{\rho}$ from (b)?
- (d) (5%) How would you transform all the other observations?
- (e) (5%) The results of running OLS regression on the transformed variables are

$$Y_t^* = 3.1361 - 1.4800 X_t^*$$

 $t = (38.583) (-12.351), N = 24, R^2 = 0.9685, d = 1.83$

Is there still autocorrelation after the feasible GLS estimation?