an international journal
1.SEVIE Mathematical Biosciences 151 (1998) 99122 S = =

The effect of changing sexual activity on HIV
prevalence

Michael Kremer ., Charles Morcom |

Department of Economics, Massachusetts Institute of Technology, Cambridge, MA 01239, USA

Received 5 June 1996; received in revised form 19 March 1998

Abstract

In a one-sex preferred mixing model, reductions in the rate of partner change by
those with low sexual activity increase the average probability of HIV infection in the
remaining pool of available partners. This increases prevalence among people with high
activity, and since high activity people disproportionately influence the spread of HIV,
may increase long-run prevalence in the population as a whole. Calculations using the
model and survey data on sexual activity indicate that in low prevalence populations,
many people have low enough activity that reductions in their activity might increase
the endemic steady-state prevalence. If these results prove robust in more realistic mod-
els, they would support the case for targeting public health messages urging reduced sex-
ual activity to high activity people. © 1998 Elsevier Science Inc. All rights reserved.

1. Introduction

This paper shows that, in a simple single-sex preferred mixing model, in-
creases in the frequency of partner change by low-activity people may reduce
long-run HIV prevalence. To se¢ the intuition, suppose that 9 partners per year
were required for HIV to be endemic in a homogeneous population. Consider a
population in which a small minority had 10 partners a year, and the majority
had no partners at all. In this population, the disease would persist among the
active minority. Suppose that the inactive majority decided to have | partner
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each over their lifetimes, that the groups mixed randomly, and that the propor-
tions of the two groups were such that on average the high-activity people
might have 5 partnerships a year with the low-activity people and 5 a year with
other high-activity people. In this case, the disease would die out, because half
the new infections would occur among low-activity people who would not in-
fect others.

To see the intuition slightly more mathematically, recall that, under a simple
random mixing model, the disease dies out or is endemic according to whether
the threshold function, Ry, is greater or less than 1, where

3 2
R(,:[:(,u+g~):
0 U

p and o are the mean and standard deviation of the rate of partner change, and
f and ¢ are the birth and death rates [1].
This can be rewritten as
R, = PE%
0 Zoiiy

where there are N groups in the population classified by the number of partners
per year, i, and each group represents a portion g of the population. Differ-
entiating with respect to i; shows that small increases in activity by individuals
with activity less than § (u + ¢?/u) will reduce R,. Consider a population on a
knife-edge between endemic HIV and the disease dying out, so that Ry=1. If
members of the population with activity less than § (x + ¢*/p) increase activity,
Ry will decrease, and the disease will die out. In fact, a uniform small increase
in activity by the entire population will reduce Ry if ¢ > u [2].

It turns out that these effects on the stability of the endemic steady-state are
far too sensitive to the assumption of homogeneous mixing among sexual part-
ners to be of empirical importance. As we show in this paper, however, similar
effects may apply to the level of steady-state prevalence, even if the disease re-
mains endemic: namely, an increase in activity by low-activity members of the
population may decrease prevalence in the long run. These effects on preva-
lence are robust enough with respect to preferred mixing among sexual part-
ners that they may be of some practical significance.

In particular, crude calibration of a simple single-sex model using survey da-
ta on sexual activity suggests that these counter-intuitive effects may be more
than just a theoretical curiosity. We develop expressions for a cut-off level of
sexual activity such that increases in activity in the groups below this level will
reduce steady-state prevalence. More than 80% of the population in a compre-
hensive study of sexual activity in the UK had low enough activity that reduc-
tions in activity would increase steady-state prevalence in a standard single-sex
susceptible-infected (SI) epidemiological model with preferred mixing. Simula-
tions using this simple model suggest that if everybody who had 1 partner every
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5 years reduced their frequency of partner change by 5%, steady-state preva-
lence would increase by 7% under random mixing. However, the simulations
also indicate that for reasonable parameter values, increases in activity would
not lead to the eradication of the disease.

There are several important caveats. First, reductions in activity by low-ac-
tivity people could only increase steady-state prevalence in populations that
have low steady-state prevalence given current activity levels and transmission
probabilities. The counterintuitive effects discussed in this paper thus may be
relevant for heterosexuals in developed countries, but not for homosexuals,
heterosexuals in the highest-prevalence areas of Africa, or IV drug users. Sec-
ond, increases in activity by low-activity people will increase prevalence tempo-
rarily. Third, we consider the effects of changes in activity by one group while
keeping the activity levels of all other groups constant. The conclusions in this
paper may be weakened if reductions in activity by low-activity people make it
harder for high-activity people to find partners, and they consequently reduce
their own activity. More generally, since the model abstracts from important
features of the epidemic (for example, our model does not allow concurrent
partnerships or different sexes), the results should be considered provisional.

To the extent that the results of this paper prove robust in more realistic
models, though, they reinforce arguments for targeting public health messages
urging reductions in the frequency of partner change to high-activity people.
Because anyone increasing activity will. at least in the short term, increase
his or her risk, we would absolutely never recommend public health messages
designed to increase activity by lower activity groups: people have a reasonable
right to expect that public health policy will not act directly to increase their
individual risk, even for the sake of a long-term reduction in prevalence in
the population as a whole.

A large literature examines the dynamics of sexually transmitted diseases un-
der a variety of mixing patterns, and considers the effect of changes in activity
{1.3-10]. Both the present study and that of Kremer [2,11] follow independent
work by Whitaker and Rentin [12]. They show that in a two group example
with random mixing, an increase in activity by the low-activity group may re-
duce steady state prevalence. They, however, explicitly disclaim empirical rele-
vance of its model for AIDS. Our analysis differs from Whitaker and Rentin
[12] in that it extends the results to a preferred mixing model with an arbitrary
distribution of activity, and uses empirical data to show that these effects may
be important in low-prevalence populations. but not in high-prevalence popu-
lations.

Kremer [11] analyzes the externalities from sexual activity using the econom-
ic concept of asymmetric information. This paper presents the results in purely
epidemiological terms. It also further develops the theory and mathematical
methods of Ref. [11] using a different approach to determine the cut-off levels
of activity, and extending the theory to models with preferred mixing. Kremer
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[2] considers how the argument in this paper is modified if high-activity people
change their activity in response to changes in activity by low-activity people.

The paper is organized as follows: In Section 2, we define the model we use,
and cite some results concerning its stability and the endemic steady state. In
Section 3, we solve for the cut-off levels of activity below which increasing ac-
tivity reduces steady-state prevalence among other members of the population,
or prevalence in the population as a whole. In Section 4, we examine the special
case of random mixing. In Section 5, we calculate the cut-off values of activity
under a preferred mixing model using data on the frequency of partner change
among heterosexuals in the UK. Section 6 discusses the time-path of preva-
lence in response to reductions in the rate of partner change. In Section 7,
we discuss directions for future research and possible policy implications.

2. The SI model with preferred mixing

We use a simplified version of the preferred mixing SI model as presented by
Jacquez et al. [13]. In this model, people are born and die according to a Pois-
son process with parameter J, independent of whether or not they are infected.
There are N groups of people, classiﬁed by the number of sexual partners they
have per year, i, where £ € {0.... N — 1}, and each group represents a pro-
porllon :x/‘ of the total populdllon The mean sexual dctmly per year 1s
=57 ais, and the variance of sexual activity is o2 = S0 w(ix — p)°.
The prevalence of HIV in each group is y;. The overall, or average. prevalence,
¥, and the activity weighted prevalence, or pool-risk, 4, are defined by

vl
v=Y i i= 3w m
Je=t) k
where wy = o4 /1.

The pool-risk, », is the probability that a random partnership will be with
someone who is infected if partners are picked randomly from the pool, with
the chance of picking someone proportional to their number of partnerships
per year.

Under the preferred mixing model, people select partners randomly with
probability 1 — 7., and select partners within their own group with probability
7. When 3= 0. the model reduces to random mixing. If 7 = 1, there is restricted
mixing (people select partners only from their own activity group).

Those born are uninfected, and enter activity groups pro rata to existing
group size. This ensures that the relative sizes of the groups, {% }. are constant,
which simplifies the analysis. If an infected person mixes with an uninfected
person. the probability of transmission is f.

Consider the dynamics of the number infected in group k& during a short
time interval Ar. Infected people die at rate dy;. The uninfected proportion
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1 — v have i, Ar partners. They pick from within group & with probability ;.
These partners Rave prodadiiity y; or deing inrecred, and’ 1tave provaoiiivy j
per contact of infccting the uninfected partner. Uninfected individudls thus be-
Tie roréction rate a‘uc 10 mlxmg wm‘i e general' populdtion at radom is,
analogously, (1 — )iz A(1 — ). The dynamics of HIV infection in group k
a5, this, d.e%.c';\bad; by

)

P = —0w 4 B (1 — we) + (1 =) Bic(1 = x) (
= 8[—w + 0i (1 — vi) (v + (1 = )2,

where & = }}/ 1s the expected number of infections tnat woald pe causea dur-
ing the tife of singte wlected person who has t uninfected partner per vear.

The dynamics and stability of such models are relatively well understood.
There 1s either a stable endemic steady state, or the disease dies out, depending
on the system parameters. Jacquez et al. {13] shows in Appendix A that a
threshold function G can be defined as

Gl 0.4} o) = 01 — )(!t+l)+()7'mfx{ik}e 3)

where 1 and o* are the mean and variance of the activity levels {i}. If G < 1.
the disease dies out, and zero prevalence for all activity groups is the unique
globally asymptotically stable steady state. If G > 1, then there is a unique lo-
cally asymptotically stable steady state in which the activity group prevalences
are Y;. ¥; are easily found by solving Eq. (2) with ¥; = 0, since we are in steady
state

Yo = 0ix(1 = Y) (Y + (1 = A (4)

where A is the pool-risk at the steady state. This defines ¥, implicitly as a func-
tion of A, i, 7. and 0. Solving, we find that

e

2 >, 172 .
{[l + 00 (A1 = 3) = 7)1 + 420731 — ;,')A} =0 (AL =) =) =1
204,
if 0<y<l. (5)

Y, =

and

()lA/‘»A
1+ 0 A

We use capital letters to refer to all quantities at the endemic steady state.
Thus Y = (¥p..... Yax ) are the group prevalences, Y is the average prevalence,
and A is the pool-risk in steady state. Note that prevalence in any group in en-
demic steady state is only directly a function of the group’s own activity, and
the pool-risk. A, given y and 0.

if 3 = 0. 6)

P =
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Note that, although we will examine how changes in the activity levels {i;}
affect the endemic steady state in the rest of the paper, it is theoretically possible
that changes in activity levels could wipe out the disease entirely in steady state.
We consider this possibility numerically in more detail in Section 5, but it turns
out that, for anything other than cases with almost perfectly random mixing (y
very close to 0), increases in activity cannot wipe out the disease. Since real
populations are likely to mix far from randomly, we do not consider this pos-
sibility in any more detail.

3. The effects of changing activity on prevalence

In this section, we consider the effects on steady-state pool-risk, A, and prev-
alence, Y, of changing the activity level of one of the groups. To this end, we
shall always assume that 0 <7y < 1, so there is at least some cross-group mix-
ing. 2 For now, we restrict attention to the case in which G > 1, so that the en-
demic steady state exists and is stable.

If people from groups with group prevalence less than A increase their activ-
ity then, in the short run, 4 will fall as the chance of meeting someone from a
low activity group, who is less likely to be infected, increases. Under certain
conditions, this effect persists in the steady state, as well, and 4 and ¥ may fall.
In this section, we examine such effects in the model of Section 2. There will be
two quantities of interest.

First, we define j. to be the number of partners below which an increase in
activity causes a reduction in steady-state pool-risk, A. This definition is equiv-
alent to saying that, for iy < je.dA/diy < 0. In the language of economics, peo-
ple with activity below j. create a positive externality by increasing their
activity, because doing so reduces the chance that orher people will be infected.
Economists normally assume that people can weigh the costs and benefits of
their actions for themselves, but that they will not adequately consider the ef-
fects of their actions on others. Thus under an extreme laissez faire view of the
world, there would be a case for encouraging reductions in activity only for
those with activity higher than j. (we do not endorse this view). As we show
below, /. is always positive, so that groups with low enough activity could al-
ways reduce steady-state pool-risk by increasing activity a bit.

Second, we define j; to be the cut-off level of activity below which an increase
in activity by a small group leads to a reduction in the long-term prevalence, Y.
This definition is equivalent to saying that, for iy < j, dY/diy < 0. We derive
necessary and sufficient conditions for j; to be positive, and we show that it

- If »= 1. a person who increases activity will increase his/her own chance of infection. and will
not affect anyone else’s chance of infection outside his or her own group.
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is always the case that j, < je, since if increasing activity reduces Y, it must also
reduce A.

First, we prove a technical Lemma, giving expressions for some derivatives
of expressions which will prove useful for the results of the rest of the section.
Partial derivatives in this and later sections are partial derivatives of the expres-
sion (4) with respect to the variables A and i;. Total derivatives take account of
the fact that changing activity will also change A.

Lemma 1. Considering Y; as a function of iy and A, the following are true for
A Yy > 0 and for all k:

o _(L-pl—¥)¥% Y (7)
oA (I=A+y7 A

0<Zw (1--81—‘). (8)

an (=Y =) A+7Y) Y

L T gy a2 9)
% _ (L= Y)(1 =) A+ 1) /
dip v (1 —)A 4372 ' (10)

Proof. From Eq. (4), at the steady state, ¥; = 0it(1 — ¥;)(yY; + (1 — v)A). For
Eq. (7), differentiate this identity with respect to A, treating ¥; as an implicit
function of A and i;:

oY, Y, oY Yy | = - Y

oA 1-Y, 04 {6A ( ')},Y;—l—(1~;‘)A
Rearranging yields the equality in Eq. (7). For the inequality, note that
1-Y <1, and (I —3)A+7Y2 > (1 —7)A, and the result follows. For
Eq. (8), The inequality from Eq (7) gives > wy (81, /24) < (1/A) S w Y =1,
by definition of A. For Eq. (9), differentiate Eq. (4) with respect to i, multiply
by iy, and rearrange. For Eq. (10), note that i, = ¥, /[0(1 — Y))(y¥; + (1 — ) A4)].
and substitute for i; in Eq. (9). ]

Without loss of generality, we shall consider the effects of changing the ac-
tivity of the zero group. The cut-off level j. below which increases in activity
reduce steady-state pool-risk, A4, must be such that dA/diy = 0 when the zero
group has activity .

Propeosition 2.

%ZE{YOMAH%} (11)
dip 1 S w( *%] ‘
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P

o (A=) = 2(1 = y)AYy + (1 —7)A%)

- — - L (12)
o (1= A+ XS we(1 - E)

Proof. The definition of pool-risk (1) applies just as well to A, steady-state
pool-risk:

AN-]

A= w0 A).

k==1)
Differentiating this with respect to i,

DR fon, L (2 2an)]

diy & | Tia dig iy 0A

From the definitions of wy and u (Eq. (1)),

0wy O /o TR %
== = | =00 — — Wk
Ciy iy \ H H
where dy, 1s | when k =0, and zero otherwise. Then

da 2 ( Yo da (R ay,
—— =2y A Lo
i, 1 0+ o 3, ) + din Zm a1

N k)

Rearranging vields Eq. (11). Substituting for i,0¥,/0i, from Lemma 1, Eq. (9)
gives Eq. (12). [

The intuition behind Eq. (11) is as follows: the first two terms in the paren-
theses in the numerator are the net short-term effect of the change in ij on the
pool-risk, A: if the zero group has lower prevalence than A, increasing activity
will cause 4 to fall (in the short run, ¥ will not change). The third term is the
long-run effect on A of the increase in the zero group’s prevalence from its own
increased activity. The denominator shows how the effect is magnified by the
change in prevalence caused in the rest of the population by the change in zero
group behavior. j. is the activity level for which dA/diy = 0, when &, = j..

Consider Eq. (12). The denominator is always positive, by Lemma 1, so the
sign is determined by the numerator, which is a quadratic in Y,. We may prove
the following:

Proposition 3. dA/diy is strictly negative for ¥y € [0.Y.), zero at Yy = Y, and
strictly positive for Yy € (Yo, 1], where 0 < Y, < A, and

—
A= -4 ;
Vo= {1 \/"7} (13)
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Proof. Consider the numerator of Eq. (12):
= YR (A=) 4 201 =) AYy — (1 =) A%

Its value at ¥, =01is —(1 — 7)A°, which is strictly negative. Its value at ¥, = A
is (1 — A)A*, which is strictly positive. There are, therefore, an odd number of
roots of odd multiplicity between 0 and A. Since the numerator of Eq. (12) has
order at most two, there must be exactly one root in [0, A]. Solving for this root
yields Eq. (13). Moreover, at Y, =1, the value of the numerator is positive:
(1 — A)[A(1 —7) + 7], which implies that there is no other root on the segment
(Y..1] and dA/diy > 0 by continuity.  []

Now. in steady state. Eq. (4) implies that
. ¥y
i = -,
PO =Y (1 =AY

which is increasing in ¥, for fixed A. This means that the root of dA/di,, Y.,
corresponds to an activity level, j.. so that

. Y.

P T =T = A+
Substituting the value of ¥, from Proposition 3 and re-expressing 0 as /6 gives
the following.

Theorem 4. If a group has an activity of less than j. partners per year, then u
small increase in activity by that group will reduce steady-state pool-risk, A,
where

d 1 — »
Jem——t e (L= A+ A= (L= A)y) ). (14)
P+ (1 =AY ( \/1 - A ‘ ' )> '
and
0< st 15
O T (15)
Proof. As discussed above. The bounds on j. come from 0 < ¥, < A. [l

We now turn our attention to how average prevalence, Y, in the population
as a whole is affected by changes in the activity of one group. It will be helpful,
first, to define

H = *I——Z i L;)-;- )
1O (1 =3 wy )

Note that, by inequality Eq. (8) in Lemma 1, H > 0.

(16)
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Proposition 5.

[

. oY, ;
v fon ] % (o + 52— 4) (17)
dip "\ diy  n Sewe(1—54)

(1= Y011 = A+ X" = H[(A = )13 = 2(1 = y)A¥y + (1 = ) A°]
(= NA+% '

= ()O(()

Proof.

d - dy, oY, dA  CY,
e Y fonnd f —— == | —— —_— ],
diy &M di zk:“‘ ( A diy By )
and substitute for (dA/diy) from Eq. (11) and Eq. (12). This gives the first
equation of the proposition.
The second comes from substituting for the partial derivatives of Y, from
Lemma | and rearranging. [J

In this case, we cannot find a root exactly as we could for ¥.. We can, how-
ever, prove the following:

Theorem 6. If, and only if, H > 1 — 1y, then there exists ¥, € (0,Y.) such that a
group with group prevalence below Y. will decrease steady-state average
prevalence, Y, by increasing group activity.

Proof. Consider the numerator of Eq. (17):

(1= WP (A =) +300)° = H(FF(A =) = 2(1 =) 4%y + (1 = )47
(18)

Y, exists if and only if this expression is negative for Y, < Y, and zero at Y. It
is continuous in Yo. Its value at zero is A%(1 — 72 — HA*(1 — y). This is strictly
negative if and only if H > 1 — 7.

Now, consider its value at Y. Y. is a root of the coefficient of H, so the value
of the whole expression at ¥, is (I — Y2 (A(1 = 9) + vY.)%, which is always
strictly positive.

If H > 1 — 7. by the intermediate value property, Eq. (18) must have at least
one root of odd order in (0, ¥.). Define Y, to be the smallest of these. Then, for
0< Yy < Ye.dY/diy is negative, and the theorem follows. [J

Note that although H is a function of all s, it is a characteristic function of
the system, so that we are allowed to examine the roots of Eq. (18) for a given
fixed H.
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The activity level j; corresponding to Y, is the threshold below which in-
creases in activity reduce steady-state prevalence. It seems clear that once Yy
is above Y, increases in activity would lead to increases in overall steady-state
prevalence, but we have not been able to prove that the expression (18) has no
more roots between Y, and Y., so it is conceivable that there could be an inter-
val above Y, = Y, where dY /dij is negative. We have not been able to find any
cases where this happens. and we would not expect to. The stronger statement,
that the sign of dY /diy is increasing in Yy on [0,4] is true in the case of random
mixing (see Section 4). This is sufficient to prove that dY/di, has a maximum
of one root in [0,4]. That this is true for 7 =0 implies, by continuity, that it is
true for 7 small but positive.

Quartic equations are soluble in closed form. We could, therefore, obtain an
exact closed-form solution for Y,, where it exists, in terms of H, A, and ;. Since
Jj. is related to Y, by a quadratic in Y., we could then find j; explicitly. In gen-
eral, though, d¥/diy has no rational roots, and so any such expression would
be too complicated to be useful. In the case where = 0, we are able to factorize
expression {18) relatively easily.

4. The special case of random mixing

We now specialize to the case of random mixing, in which y = 0. In this case,
we obtain stronger results about the existence and uniqueness of ji, the activity
level below which long-run average prevalence is reduced by increases in activ-
ity. We also obtain a simple closed form expression for j; in terms of the activ-
ity weighted prevalence, A, and the system parameters.

It is well known that if ;= 0, the endemic steady state will exist and be lo-
cally asymptotically stable if and only if g+ ¢°/u > 1 [1]. Substituting 7 =0
into the expressions in Section 3 yields the expression in Kremer [11]:

Yo=1-V1I-A  and (19)

S I ]> 5
=il =

The expression for d¥ /diy factorizes when y =0, so that we can solve for Y,
and hence j; in closed form. We can also prove that Y| is the unique point at
which dY/diy = 0, if any such point exists.

Proposition 7. If there is random mixing, so that 7 =0, and if 0 < A < 1. then
dy
diy

If H> 1. then 3Y, such that 0 <Y, <Y, < A <1, and such that dY /dig is
strictly negative for Yo < 0.Y,), zero at Yo=Y, and strictly positie on

Yo € (V1. 1]. where

:~a0(){(Y(,~1)3(H~A)~H(l-/1)}. (21
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[H{1 - 4)
V=
If H < 1, then dY /diy is strictly positive on [0,1].

Y, = 1 (22)

Proof. Substitute 7==0 in the expression of Proposition 5 and simplify for
Eq. (21).

(Yo — D2is decreasing in Y, for 0 < ¥ < I and H > A, so that Eq. (21) is
increasing in Yy, At Yy =0, it has value —x0A(H — 1), which is negative if and
only if H > 1.

When 37=0.Y.=1—-+v1~A so that, at Y = Ye.dY/diy has value
OogA(1 — A), which 1s strictly positive, since 0 < A < 1.

dY/dij has. therefore, exactly one root between 0 and Y. This is ¥,. Solving
the quadratic yields Eq. (22). Note that, if H > 1, it must also be true that
H> A.

If H < 1, dY/diy, is still monotone on Y, € [0,1]. As above, the value at
Yo =0 is positive. At Y, =1, the value is %0H (1 — A), which 1s also positive.
dY/diy must be strictly positive on [0.1]. [

If H > 1, then we may use Eq. (4) to find the value of activity, j;, which cor-
responds to Y. This gives a level of activity, j, such that increases in activity by

individuals with activity less than j reduce steady-state endemic prevalence, Y,
where:

Theorem 8. If and only if H > 1, there exists a positive activity level, j, € (0, j.).
below which increases in activity lead to a fall in steady-state average prevalence,
Y. where

s | H-1 ‘
= — | (= | |. 23
Ay (\/ H(l - A) ) (23)

Proof. From Proposition 7, iy = Y)/[0(1 — ¥y) A]. Substitute Y; for ¥, and the
result follows.

In the case where ;= 0, we may find an expression for H in terms of the ac-
tivity levels, the group prevalences, and their moments. First:

X . ) =2 . .
Lemma 9. [f we define 03 = 3w Y7 — ¥~ to be the variance in prevalence among
the groups, then the endemic steady-state group prevalences satisfy
Y = uhA(1 — A), (24)

woA* = o+ 7o AU/‘ZWI‘ YZ. (25)
7
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Proof. Since ¥ = A0, /(1 + AVi). Y, + 0i YA = i A. Multiplying by % and
summing gives Eq. (24). Multiplying by % ¥; and summing gives Eq. (25). 1

Lemma 10.

g AT o) -

WA =63 — 7
H > 1. and so ji > 0, if and only if

. A° .
n;>Y[ﬁ_~ﬂ3Y} (27)

Proof. When »=0. ¢},/04=(1-Y)%/A. from Lemma 1. Then
}:JAOQ/GA::(I/A)(f~‘)”m_g§)§:\u(]—vaH/CA)::E:m%Yf/A. Substi-
tute these into the definition for H, and

AT-7 - )

T
Using the second equation of Lemma 9, the expression for H results.

The bound on (73‘ comes [rom using the first equation of Lemma 9 to replace
p0A with Y/ (1 — A). [

Substituting this expression for # in the formula for j of Eq. (23), we get the
following theorem.

Theorem 11. I/ and only if

oo ;
oy > Y- — - Y. (28)
(I—=A)
then ji is positive, and is given by
) S T Y} o
./'1 = ﬂ( 3 ) { ) (—‘ _,), N 15 (29)
Voo lVa -0 v -v) - o)

Note that because this theorem holds for ;' = 0, j, must also exist and be pos-
itive for y in some neighborhood of 7 =0 by continuity, as mentioned in Sec-
tion 3.

Theorem 11 implies that for any ¥ < (3 — v/5)/2. it is possible to construct a
population with steady-state prevalence of ¥ such that ji > 0, so at least some
groups would increase steady-state prevalence by reducing activity.

To see this. consider a homogenous population with prevalence Y. In this
case, 07 = 0and A = V. 50 Eq. (28) reduces to ¥~ — 3¥ + 1 > 0. The only root

of this equation € [0. 1" is (3 — /5)/2.
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In this case

e ——ee

o Ju=na-am - -7y ]
Jt =1 p— = - 0
‘ Y(1-7)

where i is the rate of partner change associated with prevalence Y, as shown by
Kremer [2]. (It may seem strange to refer to j; in a homogenous population, but
note that by continuity (28) will also be satisfied if the population is not entirely
homogenous, but instead a sufficiently small group has lower activity, and the
remainder of the population has activity sufficient for prevalence in the popu-
lation as a whole to be Y).

Theorem 11 can also be used to derive conditions under which such counter-
intuitive cases do not arise, and instead increases in activity increase preva-
lence.

Proposition 12.

1. If Y > 1/2, then increases in activity ahvays increase steady-state prevalence.

2. For any Y < 1. there exists a population with steady-state prevalence Y in
which increases in activity by people of any activity level increase overall prev-
alence.

Proof °.
1. Since ¥; is in [0,1], the variance in prevalence among groups is less than 1/4.
Y is always less than A. Thus, by Lemma 10,

Hel « 47— _7)s1 (30)
(1 —A) "

Since Y < A, this condition will hold if

4—}7<———)—:—_——;v—)7> > .
a7y

This last inequality holds if ¥ > 1/2, and H < | implies that increases in ac-
tivity increase steady-state prevalence by Theorem 8.

. By the first part of this proposition, we can restrict attention to the case
Y < 1/2. Take a two-group population with prevalence Y. One group has
activity 0, and comprises a proportion (1 — ¢) of the population. The other
group has activity i, and comprises proportion ¢ of the population. Assume
random mixing (y = 0). Prevalence in the zero group must be 0. Prevalence
in the active group will be ¥, =1 — (1/0i). Overall prevalence must be
Y = ¢Y,. Thus. to ensure that the population prevalence is Y, it must be that

9]

¥ With thanks to Ed Drozd and Andrei Sarychev.
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(e(0i —1)/0i) =Y. 0i > 1 for the disease to be endemic. We express / as
¢/[0(¢ - Y)]. We wish to show that, for i sufficiently high, H < 1 so that
Ju is zero, by Theorem 8. For this population, A=Y, p=¢, and
0% = (1 — ¢)eY,. Using the expression for H from Lemma 10 and noting that
H >0 and 0 <Y, < 1 implies that the denominator of the expression for
H>0,

eY (1Y)
(OI—I)Y - (1 —¢)
Substituting for 7 and Y,. this is equivalent to

<le=mel (1 =VY)<(Bi-e)Y, —(1—¢).

75 4NN G Z Vet >0, (31)
(6-7)

Substitute ® and Y for ¢, and so long as @ > 0 this is equivalent to

P(d-1)+7 >0.
For y > 0, we can always find @ > 0 such that this is true and such that
=Y+ ® <1. Set i* =¢/0(c" —Y) to complete the proof by observ-
ing that 07 < 1. the endemic steady state is stable, and H < 1. as re-
quired. [

5. Simulations calibrated to data from UK heterosexuals

In this section, we apply the model to data on rates of partner change taken
from The National Survey of Sexual Attitudes and Lifestyles (NATSSAL), a
comprehensive survey of sexual behavior in the UK encompassing some
18 000 people. It found that the mean number of heterosexual partners in
the last five years was 1.98 and the variance was 19.03 [14]. We use data from
the heterosexual population, because the sample was too small to make reliable
inferences about the homosexual population. Our model, though, is a single-
sex model. The results in this section cannot, therefore, strictly apply to a het-
erosexual population. This section is designed to illustrate the point that the
cut-off values j. and j; may be above the activity levels of a significant propor-
tion of the population in which endemic steady-state prevalence is low. Since
the properties of the single-sex model giving rise to the effects we discuss in this
paper would be qualitatively similar to those of a two-sex model we believe that
the qualitative results of this section should at least be indicative of what one
would be likely to find using a two-sex model. A full theoretical and simulated
analysis of a two-sex preferred-mixing model is, though, beyond the scope of
this paper. (To see that the same basic intuition would apply in a two-sex mod-
el, note that Anderson and May [l ] show that m a two-sex randomly mixing
population, the disease will survive if (Bef'¢’)"/?/6 > 1, where 8 and f are
the male-to-female and female-to-male transmission probabilities, respectively,
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Table 1
Numbers of partners per year over the last five years

Ptrs/yr  Percentage Ptrs/yr  Percentage Ptrs/yr  Percentage Ptrs/yr Percentage

0 8.95 22 0.218 4.4 0.033 8 0.061
0.2 62.56 2.4 0.261 4.6 0.010 9 0.010
0.4 10.56 2.6 0.069 48 0.023 10 0.037
0.6 6.39 2.8 0.033 3 0.061 12 0.026
0.8 3.44 3 0.347 5.2 0.008 13 0.003
1 208 3.2 0.026 5.4 0.008 14 0.018
1.2 .64 34 0.063 6 0.149 15 0.015
1.4 0.90 36 0.031 6.4 0.005 16 0.003
1.6 0.70 38 0.027 7 0.027 18 0.003
1.8 0.24 4 0.263 7.6 0.005 20 0.006
N 0.83 4.2 0.003 7.8 0.005 100 (1002

d is the death rate, which is assumed to be the same for both men and women,
¢ = u+ (6%/1), where p is the mean rate of partner change for men, ¢ is its
standard deviation, and ¢’ is defined analogously for women. Given this condi-
tion. straightforward differentiation indicates that increases in activity by men
with activity less than (g + (o2/4)) /2 will reduce ¢, and that increases in activ-
ity by women with activity less than (3 = (¢*/1)) /2 will reduce ')

Table 1 shows the distribution of numbers or heterosexual partners in the
last five years. * In the simulations below, we assume that the annual rate of
partner change is one-fifth the number of heterosexual partners over the last
5 years. > We aggregate the responses from men and women in NATSSAL into
a single population.

For the simulations, the data from Table | were aggregated into 18 activity
groups © in order to simplify the calculations. Taking the NATSSAL partner
change rates as given, we then calculate {¥;}, ¥, and A as functions of /3
and 7 by numerically solving the equations for the steady states of Eq. (2). Inv-

* The data in the NATSSAL study were weighted before anaysis to correct for differing responses
in different geographical regions, and for differential probability of selection of individuals living in
households of different sizes. Details of this may be found in Ref. [14]. p. 54 & 55,

* There is no unproblematic way of moving from the theoretical concept of the rate of partner
change to empirical observations of the number of partners per period. since people may have
several partners simultaneously, and may re-establish old partnerships [16]. We assume that those
people who have one partner over a 5 year period have an average of 0.2 partners per year. [f the
people listed as having one partner every S years actually changed partners less frequently. as seems
plausible, the variance of sexual activity would be even larger. This would exacerbate some of the
counterintuitive effects discussed in this paper.

® Groups as for Table | up to 1.6 partners per year. then groups: 1.8 2.2 ptrs. per year, 2.4-3.8. 4
54,6647 7.8 89, 10-13. 1415, 16-20, and above 20. The group activities of these groups were
taken to be the mean activities of the aggregated groups.
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erting these numerically derived functions allows us to express Y;, fi/d, and A as
functions of ¥ and y, the overall prevalence and the degree of preferential part-
ner mixing, respectively. We then calculate j. and j; using the methods of Sec-
tion 3 and relate them to the NATSSAL distribution to get an idea of what
percentage of the population is likely to increase prevalence or pool-risk by re-
ducing activity under various assumptions about long-run endemic prevalence
and mixing patterns.

The results are summarized in Table 2 and Fig. 1. The first entry in each cell
of Table 2 shows j., the number of partners below which reductions in the
number of partners will cause an increase in steady-state pool-risk, A, for par-
ticular values of ¥, steady-state prevalence, and 7, the degree of assortativeness
in mixing. The second entry in each cell of Table 2 shows j;, the cut-off number
of partners below which reductions in the number of partners will increase stea-
dy-state prevalence in the population as a whole. The figures in parentheses
show the proportion of the population with less than the cut-off frequency
of partner change in the NATSSAL sample. Thus, for example, if the distribu-
tion of rates of partner change were as given in the NATSSAL sample, - were
0.5. and the transmission rate were such that steady-state prevalence was 0.5%,
then the 97% of the population with less than 1.8 partners per year would in-
crease prevalence among others by reducing their rate of partner change. The
88% of the population with less than 0.67 partners per year would increase

Table 2
je and j, by steady-state prevalence and assortativeness in mixing

Y (") =0 e ()25 w= 0.5 v ()75 v =095 Lim, .,

’ '

0.5 0.91* (92%) * 143 (96"4) .80 (97%)  2.08 (98%)  2.28 (98%)  2.57 (99%)
0.79" (8870) ¢ 0.78 (§88%)  0.68 (88%)  0.59 (82%)  0.67 (88™) -

| 0.83 (92%) 1.16 (94%0) 1.38 (96%0) 1.54 (96"4) 1.61 (97%) 1.75 (97%)
0.68 (88%) 0.61 (88%) 051 (82%) 043 (82%)  0.45(82%) -

2 0.74 (88%4) 0.93 (92%) 1.05 (947%) 111 (949%0) 1.12 (94%) 117 (94%)
0.54 (82%) 044 (82%) 034 (72%) 028 (72%)  0.37 (72%) -
5 0.59 (82%) 0.66 (§8%) .70 (88%) 071 (88%4)  0.67 (88%1)  0.67 (88%:
0.33 (72%) 0.22(72%) 015 (9%) 0.11 (9% 0.13 (9%) -
] 0.47 (82%0) 0.50 (827 (.50 (82%4) 048 (82%) 043 (82%)  0.39 (72%)
0.13 (9%%) 0.05 (9% 0.007(9%%) 0.0019%0) 0.04 (9% -
20 0.35 (72%) 0.35 (7200 034 (72%) 031 (728, 0.26 (72%)  0.20 (970)
0 (0% 0 (0% 0 (0%0) 0 (0%%) 0 (0%%) -
30 0.28 (72%) B28 (72%)  0.26(72%)  0.24 (72%)  0.20 (9%) 0.17 (9%
0 (0%) (0 (0"%) 0 (0 0 (0"%) 0 (0%) -
50 0.20 (97%) 0.19 (9%) 0.17 (9% (.16 (9%%) 0.14 (9%) 0.11 (9%)
0 (07 0 (0%) 0 (0%0) 0 (0%%) 0 (0%) -

4 j. 1s first entry.
b ji is second entry.
¢ Percentage of population below cut-off value in parentheses.
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Y=0.5%

0.6

Y=1%

Y=2%

0.2
Y=5%

Y=10%

J» level of activity below which increases in activity decrease endemic prevalence

0.2 0.4 0.6 0.8 Y
Degree of Preferred Mixing, y

Fig. 1. j, as a function of 3.

steady-state prevalence by reducing their rate of partner change. Thus, even as-
suming a steady-state prevalence among UK heterosexuals of 1% (which is
likely to be a high estimate), more than 80% of the population have low enough
sexual activity that they would reduce the overall prevalence in the long run by
increasing activity. More than 90% would increase steady-state prevalence
among others by decreasing their activity.

Preferred mixing does not necessarily mitigate the counterintuitive effects
discussed in this paper, and in some cases can even exacerbate them. In low-
prevalence populations, the proportion of the population that increases stea-
dy-state pool-risk, A, by reducing sexual activity actually increases with 7,
the degree of preferred mixing. The proportion of the population that increases
total steady-state prevalence by reducing sexual activity does not change
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monotonically with y, the proportion of sexual activity which is within groups
(see Fig. 1). For all values of y in the table, though, j is greater than the num-
ber of partners of 80% of the population, assuming steady-state prevalence is
less than 1%. ’

To understand the intuition for why j. and j, may increase with 7, note that
as y rises, prevalence falls among low-activity people. Thus when low-activity
people pick partners from the general pool they cause greater reductions in
pool-risk. Moreover, as 7 rises, prevalence rises less steeply in the number of
partners for those with few partners. Thus low-activity people will increase
their own probability of infection by a smaller amount if they increase their ac-
tivity. These effects may cause increases in 7 to increase j. and j. On the other
hand, as 7 rises, people are less and less likely to pick partners from the general
pool, and this effect will cause j; to fall with ;.

It is less likely that many people could reduce steady-state prevalence by in-
creasing activity in a higher prevalence population. Table 2 shows that if rates
of partner change are similar, but transmission risk and steady-state prevalence
are higher, j; and j. are smaller, and a much smaller percentage of the popula-
tion has activity less than j. or j.. Thus, in the highest risk areas of Africa,
where prevalence among adults is as high as one third, it seems certain that
low-activity people would reduce total steady-state prevalence by having fewer
partners. The situation is probably the same amongst homosexuals in large ur-
ban areas of developed countries. Similarly, prevalence among IV-drug users is
high enough that reductions in needle-sharing by infrequent users are unlikely
to increase total prevalence. ®

If low activity groups increase their activity, while the mean activity will in-
crease, the variance of activity will decrease, at least for moderate increases in
activity. A look at the threshold function, G, in Eq. (3) suggests that, under
some circumstances if 7 is small enough, the reduction in variance caused by
an increase in activity could actually be enough to eradicate completely the dis-
ease by causing G to fall below 1 and the endemic steady state to become un-
stable. Kremer [11] discusses this in detail for populations with random mixing.
If we consider that case in which everyone below a certain activity level increas-
es their activity to that level, for the NATSSAL distribution, G is minimized if
everyone with activity less than 0.76 partners per year raises their activity to
that level. With this new distribution of activity, the most /6 can be and have
G < 11is 0.65 if mixing is random (; = 0). This maximal value of f/) falls very

7 In these simulations, j, is higher for high or low 7 than for moderate 7. This is not true for a
general distribution of rates of partner change, however.

# A sample of IV drug users in Thailand showed that 43% were HIV positive [17]. In Argentina.
Brazil. and Uruguay, HIV prevalence among IV drug users is more than 50% in some communities
[18].
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rapidly in y to 0.01 when 7 approaches 1. With random mixing, /6 must be
about 0.56 to give 0.5% prevalence, and 0.62 to give 1% prevalence. This cal-
ibrated level of f3/5 falls more slowly with preferred mixing. This means that,
while f/9 is low enough that the disease would possibly be wiped out if mixing
were random, and people increased activity as discussed above, the result is ex-
tremely sensitive to 7. In fact, for the case where long run prevalence is 0.5%, 7
could be no more than 0.003 for an activity increase to wipe out the disease.
This suggests that increased activity would never wipe out the disease, as
any realistic model would have considerably less than perfectly random mixing.

6. Dynamics

This paper mostly focuses on comparing steady states. Even if increases in
rates of partner change cause decreases in long-run prevalence, they must, in
the short run, increase prevalence. It is, therefore, also useful to briefly examine
the time-path of prevalence in response to reductions in the {requency of part-
ner change.

The transition period required before prevalence increases in response to a
reduction in activity is fairly long under the simple SI model used in this paper.
but much shorter under more realistic models. Table 3 shows the dynamics of
prevalence in response to reduced activity under the simple SI model, a more
realistic model with AIDS-induced mortality, * and a still more realistic model
in which infectiousness is higher during the first few months of infection before
the immune system has responded. ' The dynamics are much faster in the
more realistic models because the people infected immediately after the change
in activity are not likely to continue to infect others for long. The simulations
examine the impact of a reduction in activity to 0.16 partners per year by all
people with 0.2 partner per year. In all three simulations, initial prevalence is

AIDS is 0.1, The model requires a higher transmission rate to match any given steady-state
prevalence. It also requires that a higher proportion of the population be born into highly active
groups in order to match the observed proportion of high-activity groups in the population. It does
not allow for the effect of AIDS-induced mortality on the birth rate, as would be appropriate in
studies of aggregate population dynamics in some high prevalence African countries.

' Jacquez et al. [19] find that transmission rates are high in the first few months after infection,
before the immune system has responded, and again in the final stage of the disease when AIDS has
developed and the immune system has been overwhelmed. Transition probabilities between stages
of the disease in the simulations reported here are taken from Ref. [19], and converted to Poisson
hazard rates. The hazard rates for progression into the next stage are 0.970 and 0.119 in the first
and second stage respectively. The death rate in the final stage of infection is 0.53. The transmission
probability is set at 0.01 in the final stage. and 0.001 in the second stage. In the first stage, it is
calibrated to match the desired prevalence. given .
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Table 3
Dynamics under different models

Model Basic SI  AIDS mortality Varying ff
Years until incidence = [nitial incidence 5.4 1.4 0.14
Increase in long run prevalence (o) 30.9 16.5 15.0
Years until prevalence is halfway to new steady state 185 30 s

Initial change in incidence ("4) -().81 -0.74 -).74

Note: In all three models prevalence is set at 0.005, and the group with 1 partner per 5 years reduces
its activity to (.8 partners per § years. The simulation with varying ff requires three times as many
state variables as groups. In order to keep the number of state variables manageable. the simula-
tions in this table therefore aggregated evervone with more than 8 partners per year into a single
group. The number of partners in this group was chosen not to be the average in the group, but to
keep jt ~ ¢° /g in the simulation equal to g+ o° /g in the original data.

one half of 1%. The first row of Table 3 shows that incidence returns to its orig-
inal level after 5.4 years in the basic model, after 1.4 vears in a model that in-
corporates the effect of the disease on mortality, and after only two months if
infectiousness depends on the stage of infection. ' The second row of Table 3
shows that steady-state prevalence increases in response to the reduction in ac-
tivity under all three models, but the effect is greatest under the basic model.
The third row shows the number of years required for prevalence to fall half-
way from its initial level to its new steady-state level. '* The last row shows the
initial percentage change in incidence in response to the reduction in activity.
Note that in all three models, the initial reduction in incidence is negligible
compared to the steady-state increase.

Although the dynamics are affected most strongly by AIDS-induced mortal-
ity and by varying infectiousness with the stage of the disease, Table 4 shows
the dynamics are slower the greater are v, the degree of assortativeness in mix-
ing. Y. the steady-state prevalence. and /. the number of partners in the group
changing its activity. Both j. and j, seem to be lower under models that allow
for mortality effects of the disease and for infectiousness to vary with the stage
of infection.

Note that everyone with activity less than j.. the cut-off for increasing stea-
dy-state prevalence among others in the long run by reducing activity, will also
increase prevalence among others in the short run by reducing activity. In ad-
dition, all those from groups with prevalence between ¥, and A will reduce 2 in
the short run. but not in the long run, by reducing activity.

" Prevalence takes approximately twice as long to return to its original level.

'*In the model in which infectiousness varies with the stage of infection, prevalence initially
declines in response to a reduction in activity and then overshoots its steady-state value, before
declining to a new steady-state value above its original level. The time until 50% of the steady-state
change is attained therefore underemphasizes the costs of reductions in activity.
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Table 4
Months until incidence rises to its original level in response to a reduction in activity
Y (%) Rl =05 =019
0.5 4.2 10.4 238
1.8 5.2 9.6
1 4.7 - -
22 6.6 12.7
2 7.3 - -
32 9.1 18.7
5 - - -
6.0) - -

Top entry in each cell assumes a reduction from 0.4 partners per year to (.3 partners per year.
Bottom entry in each cell assumes a reduction from 0.2 partners per year to 0.1 partners per year.
Dashes indicate that j, is less than the number of partners. Infectiousness is assumed to vary with
the stage of infection as in Ref. [19].

7. Directions for future research

This paper has shown that, in a preferred mixing, single-sex model, reduc-
tions in the frequency of partner change by low-activity people may increase
the long-run prevalence of HIV/AIDS in populations that would have low stea-
dy-state prevalence given current activity levels. Given the limitations of the
data, the simplifying assumptions of the model. and the fact that the model ex-
amines a homosexual population while the data are from heterosexuals, ex-
treme caution should be used before applying these results to the real world.
However, to the extent that these results are confirmed in future research, they
reinforce arguments that public health messages urging reduced activity should
be targeted to high-activily people, and should emphasize condom use, rather
than abstinence.

Public health messages can be targeted both through their content, and
through the choice of advertising media. For example, the ‘Get high, Get stu-
pid, Get AIDS’. campaign warning people about the links between substance
abuse, unprotected sex. and AIDS may have targeted high-activity people more
than the mass mailing of AIDS-prevention literature to all US households in
the early days of the epidemic.

We are not suggesting that public health officials encourage people to have
more partners. since anyone who followed such advice would face a higher
probability of infection, and people have an expectation that public health of-
ficials will inform them about how to protect themselves from health risks.

More research is needed to examine the robustness of the results. For exam-
ple, further work is necessary to see if these results are robust when differences
between the sexes. the age-structure of mixing, the process of partnership-for-
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mation and dissolution, more general mixing patterns, time-varying infectious-
ness, and mortality effects of the disease are explicitly modeled.

Most important, this paper has examined the consequences of changes in
the frequency of partner change by low-activity people, holding constant the
number of partners of others. In fact, since reductions in the number of part-
ners by low-activity people increase prevalence in the pool of available part-
ners, they may lead to further reductions in activity. Kremer [11] explores a
model in which people choose an activity level depending on prevalence in
the pool of available partners, and shows that similar results obtain, but that
there may be multiple equilibria, as in Akerlof’s model of the market for lem-
ons [15].

Reductions in activity by low-activity people could also directly cause high-
activity people to reduce their activity by making it harder for them to find
additional partners. The model in this paper would be applicable to an envi-
ronment in which people met sexual partners in a bar in which one could al-
ways find a partner. One could also imagine a ‘dating’ model, in which
people went on dates and decided whether or not to have sex, and there was
a limit of one date per day. If the low-activity people decided to have sex on
fewer dates, the high-activity people would automatically also have sex on few-
er dates. To the extent that this ‘dating model is correct, and reductions in ac-
tivity by low-activity people cause high-activity people to reduce activity rather
than to mix with each other, increases in activity by low-activity people will be
less likely to reduce steady-state prevalence. However, while the date model
may be a good model for low-activity people, it may not be a good model
for the tail of the distribution with extremely high activity, which dispropor-
tionately influences the spread of the disease. This group is not likely to contin-
ue dating without sex, but instead to seek other sexual partners.

If high-activity people respond to a potential partner’s abstinence by seeking
a new partner, but respond to a potential partner’s preference for condom use
by agreeing to use a condom, then public health messages directed to low-ac-
tivity people urging abstinence could actually increase prevalence, but messages
urging condom use could reduce prevalence.

Acknowledgements

We thank Roy Anderson, Marie Claude Boilly, Gary Becker, Peter Dia-
mond, Geoffrey Garnett, Sunetra Gupta, Anne Johnson, Ed Kaplan, Tomas
Philipson, Jane Wadsworth, and two anonymous referees for comments and
discussion; and Anne Johnson and Jane Wadsworth for generously providing
data. We are particularly grateful to Ed Drozd, Ted Miguel, Cesaltina Pires,
and Andrei Sarychev for excellent research assistance.



122 M. Kremer, C Morcom | Mathematical Biosciences 151 (1998 99122
References

[1] R.M. Anderson, R.M. May, Infectious Diseases of Humans: Dynamics and Control. Oxford
University, New York, 1991.

[2] M. Kremer, Integrating behavioural choice into epidemiological models of AIDS. Q. J.
Econom. 111 (2) (1996) 549.

[3] R.M. Anderson, R.M. May, M.C. Boilly. G.P. Garnett. J.T. Rowley. The spread of HIV-1 in
Africa: Sexual contact patterns and the predicted demographic impact of AIDS, Nature 352
(6336) (1991) 581.

{4] S. Gupta, R.M. Anderson. R.M. May. Networks of sexual contacts: Implications for the
pattern of spread of HIV, AIDS 3 (1989) 1.

[5] H.W. Hetheote. Modeling heterogeneous mixing in infectious disease dynamics. in: Models
for Infectious Human Diseases, V. Ishman, G.FF.H. Medley, Eds.. Cambridge University,
Cambridge, 1996. p. 215.

[6] HW. Hethcote. J.A. Yorke. Gonorrhea: Transmission dynamics and control, Springer
Lecture Notes in Biomath.. vol. 56, Springer, Berlin, 1984. p. 1.

[7} E.H. Kaplan. Modeling HIV infectivity: Must sex acts be counted?. J. Acquired Immune
Deficiency Syndromes 3 (1990) SS.

[8] E.H. Kaplan. P.C. Cramton. A.D. Paltiel. Nonrandom mixing models of HIV transmission,
in: C. Castillo-Chaverz (Ed.), Mathematical Statistical Approaches to AIDS Epidemiology,
Springer Lecture Notes in Biomath.. vol. 83. Springer. Berlin. 1990, p. 218.

9] R.M. May, R.M. Anderson, Transmission dynamics of HIV infection, Nature 326 (1987) 137.

[10] Mead Over. Peter Piot. HIV infection sexually transmitted diseases, in: D.T. Jamison, W.H.
Mosley (Eds.), Disease Control Priorities in Developing Countries, Oxford University, New
York. 1992,

{117 M. Kremer, AIDS and [mperfect Signals of Risk, unpublished notes.

[12] L. Whitaker, A.M. Rentin, A theoretical problem of interpreting the recently reported
increase of homosexual gonorrhea, Eur. J. Epidemiology & (2) (1992) 187,

[13} LA Jacquez. C. P Simon, J. Koopman, L. Sattenspiel, T. Perry, Modelling analysing HIV
transmission: The effect of contact patterns, Math. Biosci. 92 (1988) 119.

[14] A.M. Johnson. ). Wadsworth, K. Wellings. J. Field, Sexual Attitudes Lifestyles. Blackwell
Scientific, Oxford. 1993.

[15] G. Akerlof. The market for lemons: Qualitative uncertainty the market mechanism, Q. J.
Lconom. 84 (1970) 488,

[16] A. Johnson. Sources and use of empirical observations to characterize networks of sexual
behavior, University College London, unpublished mimeo.

[17] World Health Organization, AIDS: Images of the epidemic, World Health Organization,
Geneva (1994).

[18] Pan-American health organization, Annual Report of the director, Pan-American health
organization. Washington (1992).

[19] J.A. Jacquez, C.P. Simon. J. Koopman, 1. Longini, The role of the primary infection in the

epidemics of HIV infection in gay cohorts (mimeo). University of Michigan, 1994,



