Introduction to Quantatative Methods
Final Exam.
September 10, 2001

1. (15%) Suppose A is a symmetric and idempotent matrix with full rank K, then
(a) What is the trace of A ?
(b) What is the determinant of A ?
(c) What is the difference between A and the identity matrix I ?
2. (15\%) Determine those valuse of λ for which the following set of equations may posses a nonzero solution:

$$
\begin{array}{r}
3 x_{1}+x_{2}-\lambda x_{3}=0 \\
4 x_{1}-2 x_{2}-3 x_{3}=0 \\
2 \lambda x_{1}+4 x_{2}+\lambda x_{3}=0
\end{array}
$$

For each permissible value of λ, determine the solution such that $x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=$ 1.
3. (15%) Find the vector x that minimize

$$
y=x^{\prime} A x+a^{\prime} x-10
$$

where A is a $K \times K$ symmetric matrix, a and x are both $K \times 1$ vectors.
(a) Write the first order condtion for minimization and derive the solution of x.
(b) Suppose matrix A is $\left[\begin{array}{cc}25 & 7 \\ 7 & 13\end{array}\right]$ and $a=\left[\begin{array}{l}2 \\ 3\end{array}\right]$, calculate the optimal x.
(c) Check the second order condition for the minimization of y.
4. (15\%) Let $x_{1}, x_{2}, \cdots, x_{n}$ be a sample of size n from a normal distribution $N\left(\mu, \sigma^{2}\right)$. Consider the following point estimator of μ :

$$
\begin{aligned}
& \hat{\mu}_{1}=\bar{x}, \text { the sample mean } \\
& \hat{\mu}_{2}=x_{1} \\
& \hat{\mu}_{3}=\frac{x_{1}}{2}+\frac{1}{2(n-1)}\left(x_{2}+x_{3}+\cdots+x_{n}\right)
\end{aligned}
$$

(a) Which of these estimators are unbiased?
(b) Which of these is the most efficient?
(c) Which of these are consistent.
5. (20\%) We can write a regression model in the matrix form

$$
\underset{n \times 1}{y}=\underset{n \times K}{\quad} \quad \underset{n \times 1}{ }+\underset{n \times 1}{\epsilon}
$$

Suppose ϵ is normally distribution with zero mean and covariance matrix Σ. It can be shown that the least square estimator of β is $\hat{\beta}=\left(X^{\prime} X\right)^{-1} X^{\prime} y$.
(a) Show that $\hat{\beta}$ is unbiased.
(b) Let $\hat{\epsilon} \equiv y-X \hat{\beta}=M y$, where $M=I-X\left(X^{\prime} X\right)^{-1} X^{\prime}$. Show that M is both symmetric and idempotent.
(c) Show that $\hat{\epsilon}^{\prime} X=0$. In other words, $\hat{\epsilon}$ and X are orthogonal.
(d) Derive the distribution of $\hat{\beta}$?
6. (20%) Briefly answer or prove the following questions.
(a) (5\%) Suppose A is a 3×3 symmetric matrix, A^{\prime} s eigenvalues are $1,2,3$ and A^{\prime} s eigenvectors are c_{1}, c_{2} and c_{3}. What are the eigenvalues and eigenvectors of A^{3}.
(b) (5%) Using the fact that $\left(A^{-1}\right)^{\prime}=\left(A^{\prime}\right)^{-1}$ to show that, if A is symmetric, then A^{-1} is also symmtric.
(c) (10\%) Let A be a $n \times K$ matrix and B be a $K \times n$ matrix, prove that $\operatorname{trace}(A B)=\operatorname{trace}(B A)$.

