Suggested Answers for Introduction to Quantatative Methods Final Exam.

September 10, 2001
1a The eigenvalues of an idempotent matrix are either 1 or 0 . Since A is of full rank, all the eigenvalues are 1 . Therefore, $\operatorname{trace}(A)=\sum_{i=1}^{K} \lambda_{i}=K$.
$\mathbf{1 b}|A|=\prod_{i=1}^{K} \lambda_{i}=1$.
1c Since $\Lambda=\operatorname{diag}(1,1, \cdots, 1)=I$, then $A=C \Lambda C^{\prime}=C C^{\prime}=I . A-I=0$.
2 This is a homogeneous system, to have a nonzero solution, we have

$$
\left|\begin{array}{ccc}
3 & 1 & -\lambda \\
4 & -2 & -3 \\
2 \lambda & 4 & \lambda
\end{array}\right|=0
$$

This gives $\lambda^{2}+8 \lambda-9=0$, or $\lambda=1$ or $\lambda=-9$. For $\lambda=1$, the solution is $\left(x_{1}, x_{2}, x_{3}\right)= \pm \frac{1}{\sqrt{6}}(1,1,2)$. For $\lambda=-9$, the solution is $\left(x_{1}, x_{2}, x_{3}\right)= \pm \frac{1}{\sqrt{94}}(3,9,-2)$.

3a The first order condition is $2 A x+a=0$, and $x=-\frac{1}{2} A^{-1} a$.
$\mathbf{3 b} x=-\frac{1}{2}\left[\begin{array}{cc}25 & 7 \\ 7 & 13\end{array}\right]^{-1}\left[\begin{array}{l}2 \\ 3\end{array}\right]=-\frac{1}{552}\left[\begin{array}{cc}13 & -7 \\ -7 & 25\end{array}\right]\left[\begin{array}{l}2 \\ 3\end{array}\right]=\left[\begin{array}{c}-\frac{5}{552} \\ -\frac{61}{552}\end{array}\right]$.
3c The Hessian matrix is $2 A$. We need to show that A is a positive definite matrix. One way of checking this is to find the eigenvlues of A.

$$
\left|\begin{array}{cc}
25-\lambda & 7 \\
7 & 13-\lambda
\end{array}\right|=\lambda^{2}-38 \lambda+276=001 \begin{array}{r}
\\
\\
\lambda_{1}+\lambda_{2}=38, \lambda_{1} \lambda_{2}=276
\end{array}
$$

Therefore, $\lambda_{1}, \lambda_{2}>0$. A is positive definite.
4a All of these estimators are unbiased.
4b $\operatorname{Var}\left[\hat{\mu}_{1}\right]=\frac{\sigma^{2}}{n}, \operatorname{Var}\left[\hat{\mu}_{2}\right]=\sigma^{2}, \operatorname{Var}\left[\hat{\mu}_{3}\right]=\frac{n \sigma^{2}}{4(n-1)}$. Therefore, $\hat{\mu}_{1}$ is the most efficient.

4c Only $\operatorname{Var}\left[\hat{\mu}_{1}\right]$ converges to 0 , it converges in mean square which implies plim $\hat{\mu}_{1}=$ μ. Therefore, $\hat{\mu}_{1}$ is consistent.

5a $\hat{\beta}=\left(X^{\prime} X\right)^{-1} X^{\prime}(X \beta+\epsilon)=\beta+\left(X^{\prime} X\right)^{-1} X^{\prime} \epsilon, \mathrm{E}[\hat{\beta}]=\beta+\left(X^{\prime} X\right)^{-1} X^{\prime} \mathrm{E}[\epsilon]=$ β. $\hat{\beta}$ is unbiased.

5b

$$
\begin{aligned}
M^{\prime} & =I-\left(X\left(X^{\prime} X\right)^{-1} X^{\prime}\right)^{\prime}=I-X\left(X^{\prime} X\right)^{-1} X^{\prime}=M, M \text { is symmetric. } \\
M M & =\left(I-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right)\left(I-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right) \\
& =I-X\left(X^{\prime} X\right)^{-1} X^{\prime}-X\left(X^{\prime} X\right)^{-1} X^{\prime}+X\left(X^{\prime} X\right)^{-1} X^{\prime} X\left(X^{\prime} X\right)^{-1} X^{\prime} \\
& =I-X\left(X^{\prime} X\right)^{-1} X^{\prime}=M, M \text { is idempotent. }
\end{aligned}
$$

5c

$$
\begin{aligned}
\hat{\epsilon}^{\prime} X & =(M y)^{\prime} X=y^{\prime} M X=y^{\prime}\left(I-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right) X \\
& =y^{\prime}\left(X-X\left(X^{\prime} X\right)^{-1} X^{\prime} X\right)=y^{\prime}(X-X)=0
\end{aligned}
$$

5d We have $\mathrm{E}[\hat{\beta}]=\beta$, and

$$
\begin{aligned}
\operatorname{Var}[\hat{\beta}] & =\mathrm{E}\left[(\hat{\beta}-\beta)(\hat{\beta}-\beta)^{\prime}\right] \\
& =\mathrm{E}\left[\left(\left(X^{\prime} X\right)^{-1} X^{\prime} \epsilon\right)\left(\left(X^{\prime} X\right)^{-1} X^{\prime} \epsilon\right)^{\prime}\right] \\
& =\left(X^{\prime} X\right)^{-1} X^{\prime} \mathrm{E}\left[\epsilon \epsilon^{\prime}\right] X\left(X^{-1} X\right)^{-1} \\
& =\left(X^{\prime} X\right)^{-1} X^{\prime} \Sigma X\left(X^{-1} X\right)^{-1}
\end{aligned}
$$

Therefore, the distribution of $\hat{\beta}$ is

$$
\hat{\beta} \sim N\left(\beta,\left(X^{\prime} X\right)^{-1} X^{\prime} \Sigma X\left(X^{-1} X\right)^{-1}\right)
$$

6a $1,8,27$ and c_{1}, c_{2} and c_{3}.
6b Since A is symmetric, then $A^{\prime}=A .\left(A^{-1}\right)^{\prime}=\left(A^{\prime}\right)^{-1}=A^{-1}$, so A^{-1} is also symmetric.

6c Let $A: n \times K, B: K \times n, C=A B$ and $D=B A$. Since $c_{i i}=a^{i} b_{i}=$ $\sum_{k=1}^{K} a_{i k} b_{k i}$, and $d_{k k}=b^{k} a_{k}=\sum_{i=1}^{n} b_{k i} a_{i k}$,

$$
\operatorname{tr}(A B)=\sum_{i=1}^{n} c_{i i}=\sum_{i=1}^{n} \sum_{k=1}^{K} a_{i k} b_{k i}=\sum_{k=1}^{K} \sum_{i=1}^{n} b_{k i} a_{i k}=\sum_{k=1}^{K} d_{k k}=\operatorname{tr}(B A)
$$

