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One natural way to estimate the population mean, µY ,
is simply to compute the sample average Ȳ from a
sample of n i.i.d. observations. This can also be
motivated by law of large numbers.
But, Ȳ is not the only way to estimate µY . For example,
Y1 can be another estimator of µY .
In general, we want an estimator that gets as close as
possible to the unknown true value, at least in some
average sense. In other words, we want the sampling
distribution of an estimator to be as tightly centered
around the unknown value as possible.
This leads to three specific desirable characteristics of
an estimator.
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Three desirable characteristics of an estimator. Let µ̂Y

denote some estimator of µY ,

Unbiasedness: E(µ̂Y ) = µY .

Consistency: µ̂Y
p

→ µY .

Efficiency. Let µ̃Y be another estimator of µY , and
suppose both µ̂Y and µ̃Y are unbiased. Then µ̂Y is said
to be more efficient than µ̃Y if Var(µ̂Y ) < Var(µ̃Y ).
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Properties of Ȳ
It can be shown that E(Ȳ ) = µY and Ȳ

p
→ µY (from law

of large numbers), Ȳ is both unbiased and consistent.
But, is Ȳ efficient?
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Examples of alternative estimators.
Example 1: The first observation Y1?
Since E(Y1) = µY , Y1 is an unbiased estimator of µY . But,

Var(Y1) = σ 2
Y ≥ Var(Ȳ ) =

σ 2
Y

n
,

if n ≥ 2, Ȳ is more efficient than Y1.

6 / 36



Outline
Estimation of the Populaiton Mean

Hypothesis Testing
Confidence Intervals

Comapring Means from Different Populations
Scatterplots and Sample Correlation

Example 2:

Ỹ =
1

n

(
1

2
Y1 +

3

2
Y2 + · · · +

1

2
Yn−1 +

3

2
Yn

)
,

where n is assumed to be an even number. The mean of Ỹ
is µY and its variance is

Var(Ỹ ) =
1.25σ 2

Y

n
> Var(Ȳ )

Thus Ỹ is unbiased and, because Var(Ỹ ) → 0 as n → ∞,
Ỹ is consistent.
However, Ȳ is more efficient than Ỹ .
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In fact, Ȳ is the most efficient estimator of µY among all
unbiased estimators that are weighted averages of
Y1, · · · , Yn. (Weighted average implies that the estimators
are all unbiased.)
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Hypothesis Testing

The hypothesis testing problem (for the mean): make a
provisional decision, based on the evidence at hand,
whether a null hypothesis is true, or instead that some
alternative hypothesis is true. That is, test

H0 : E(Y ) = µY,0 vs.H1 : E(Y ) > µY,0 (1 − sided, >)

H0 : E(Y ) = µY,0 vs.H1 : E(Y ) < µY,0 (1 − sided, <)

H0 : E(Y ) = µY,0 vs.H1 : E(Y ) 6= µY,0 (2 − sided)
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p-value = probability of drawing a statistic (e.g.Ȳ ) at
least as adverse to the null as the value actually
computed with your data, assuming that the null
hypothesis is true.

The significance level of a test is a pre-specified
probability of incorrectly rejecting the null, when the
null is true.
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Calculating the p-value based on Ȳ :

p − value = Pr
H0

[|Ȳ − µY,0| > |Ȳ act
− µY,0|],

where Ȳ act is the value of Ȳ actually observed.

To compute the p-value, you need to know the
distribution of Ȳ .

If n is large, we can use the large-n normal
approximation.
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p − value = Pr
H0

[|Ȳ − µY,0| > |Ȳ act
− µY,0|]

= Pr
H0

[|
Ȳ − µY,0

σY /
√

n
| > |

Ȳ act
− µY,0

σY /
√

n
|]

= Pr
H0

[|
Ȳ − µY,0

σȲ
| > |

Ȳ act
− µY,0

σȲ
|]

∼= probability under left + right N (0, 1) tails

where σȲ denotes the std. dev. of the distribution of Ȳ .
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In practice, σȲ is unknown - it too must be estimated.
Estimator of the variance of Y:

s2
Y =

1

n − 1

n∑
i=1

(Yi − Ȳ )2

Fact: If (Y1, · · · , Yn) are i.i.d. and E(Y 4) < ∞, then

s2
Y

p
→ σ 2

Y

Why does the law of large numbers apply? Because s2
Y

is a sample average.

Technical note: we assume E(Y 4) < ∞ because here
the average is not of Yi , but of its square.
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Computing the p-value with σ 2
Y estimated:

p − value = Pr
H0

[|Ȳ − µY,0| > |Ȳ act
− µY,0|]

= Pr
H0

[|
Ȳ − µY,0

σY /
√

n
| > |

Ȳ act
− µY,0

σY /
√

n
|]

∼= Pr
H0

[|
Ȳ − µY,0

sY /
√

n
| > |

Ȳ act
− µY,0

sY /
√

n
|]( large n)

= Pr
H0

[|t | > |tact
|]

∼= probability under normal tails ( large n)

where t =
Ȳ−µY,0

sY /
√

n .
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The p-value and the significance level
With a prespecified significance level (e.g. 5%):

reject if |t | > 1.96

equivalently: reject if p ≤ 0.05.

The p-value is sometimes called the marginal
significance level.
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Digression: The Student t-distribution
If Y is distributed N (µY , σ 2

Y ), then the t-statistic has the
Student t-distribution (tabulated in back of all stats books)
Some comments:

For n > 30, the t-distribution and N (0, 1) are very
close.
The assumption that Y is distributed N (µY , σ 2

Y ) is
rarely plausible in practice (income? number of
children?)
The t-distribution is an historical artifact from days
when sample sizes were very small.
In this class, we won’t use the t distribution - we rely
solely on the large-n approximation given by the CLT.
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Confidence Intervals

A 95% confidence interval for µY is an interval that
contains the true value of Y in 95% of repeated samples.
Digression: What is random here? the confidence interval
- it will differ from one sample to the next; the population
parameter, µY , is not random, we just don’t know it.
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A 95% confidence interval can always be constructed as
the set of values of µY not rejected by a hypothesis test
with a 5% significance level.

{µY :|
Ȳ − µY

sy/
√

n
|≤ 1.96}

= {µY : −1.96 ≤
Ȳ − µY

sy/
√

n
≤ 1.96}

= {µY : −1.96
sY
√

n
≤ Ȳ − µY ≤ 1.96

sY
√

n
}

= {µY ∈ (Ȳ − 1.96
sY
√

n
, Ȳ + 1.96

sY
√

n
)}
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This confidence interval relies on the large-n results that Ȳ
is approximately normally distributed and s2

Y
p

→ σ 2
Y .
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Summary:
From the assumptions of:

(1) simple random sampling of a population, that is,
{Yi , i = 1, · · · , n} are i.i.d.

(2) 0 < E(Y 4) < ∞.

we developed, for large samples (large n):

Theory of estimation (sampling distribution of Ȳ )

Theory of hypothesis testing (large-n distribution of
t-statistic and computation of the p-value).

Theory of confidence intervals (constructed by
inverting test statistic).

Are assumptions (1) & (2) plausible in practice? Yes
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Tests for Difference between Two Means

Let µw be the mean hourly earning in the population of
women recently graduated from college and let µm be
population mean for recently graduated men. Consider
the null hypothesis that earnings for these two populations
differ by certain amount d , then

H0 : µm − µw = d vs H1 : µm − µw 6= d.

Since Ȳm ∼ N (µm,
σ 2

m
nm

) and Ȳw ∼ N (µw,
σ 2

w

nw
), then

Ȳm − Ȳw ∼ N (µm − µw,
σ 2

m

nm
+

σ 2
w

nw

)
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Replace population variances by sample variances, we have
the standard error

SE(Ȳm − Ȳw) =

√
s2

m

nm
+

s2
w

nw

and the t-statistic is

t =
Ȳm − Ȳw − d
SE(Ȳm − Ȳw)

If both nm and nw are large, the t-statistic has a standard
normal distribution.
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s2
Y

p
→ σ2

YsXY
p

→ σXY

Summarize the relationship between variables
Scatterplots:
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s2
Y

p
→ σ2

YsXY
p

→ σXY

The population covariance and correlation can be
estimated by the sample covariance and sample
correlation.
The sample covariance is

sXY =
1

n − 1

n∑
i=1

(X i − X̄)(Yi − Ȳ )

The sample correlation is

rXY =
sXY

sX sY
, |rXY | ≤ 1
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s2
Y

p
→ σ2

YsXY
p

→ σXY

It can be shown that under the assumptions that (X i , Yi)

are i.i.d. and that X i and Yi have finite fourth moments,

s2
Y

p
→ σ 2

Y

sXY
p

→ σXY

rXY
p

→ Corr(X i , Yi)
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s2
Y

p
→ σ2

YsXY
p

→ σXY

Prove that s2
Y

p
→ σ 2

Y .

s2
Y =

1

n − 1

n∑
i=1

(Yi − Ȳ )2

(Yi − Ȳ )2
= [(Yi − µY ) − (Ȳ − µY )]2

= (Yi − µY )2
− 2(Yi − µY )(Ȳ − µY )

+(Ȳ − µY )2
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s2
Y

p
→ σ2

YsXY
p

→ σXY

Substituting (Yi − Ȳ )2, collect terms and the fact that∑n
i=1(Yi − µY ) = n(Ȳ − µY ), we have

s2
Y =

1

n − 1

n∑
i=1

(Yi − µY )2
−

2

n − 1

n∑
i=1

(Yi − µY )(Ȳ − µY )

+
1

n − 1

n∑
i=1

(Ȳ − µY )2

=
n

n − 1

1

n

n∑
i=1

(Yi − µY )2
−

n
n − 1

(Ȳ − µY )2
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s2
Y

p
→ σ2

YsXY
p

→ σXY

From law of large numbers

1

n

n∑
i=1

(Yi − µY )2 p
→ E(Yi − µY )2

= σ 2
Y ,

Ȳ
p

→ µY and thus (Ȳ − µY )2 p
→ 0,

and finally n
n−1 → 1 as n → ∞, therefore

s2
Y

p
→ σ 2

Y
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s2
Y

p
→ σ2

YsXY
p

→ σXY

Prove that sXY
p

→ σXY .

sXY

=
1

n − 1

n∑
i=1

(X i − X̄)(Yi − Ȳ )

=
1

n − 1

n∑
i=1

[(X i − µX ) − (X̄ − µX )][(Yi − µY ) − (Ȳ − µY )]

=
1

n − 1

n∑
i=1

(X i − µX )(Yi − µY ) −
1

n − 1

n∑
i=1

(X̄ − µX )(Yi − µY )

−
1

n − 1

n∑
i=1

(X i − µX )(Ȳ − µY ) +
1

n − 1

n∑
i=1

(X̄ − µX )(Ȳ − µY )
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s2
Y

p
→ σ2

YsXY
p

→ σXY

Use the fact that
∑n

i=1(Yi − µY ) = n(Ȳ − µY ),∑n
i=1(X i −µX) = n(X̄ −µX) and collect terms, we have

sXY =

(
n

n − 1

)
1

n

n∑
i=1

(X i − µX )(Yi − µY )

−

(
n

n − 1

)
(X̄ − µX )(Ȳ − µY )

It is easy to see that the second term converges in

probability to zero because X̄
p

→ µX and Ȳ
p

→ µY so

(X̄ − µX)(Ȳ − µY )
p

→ 0 by Slutsky’s theorem.
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s2
Y

p
→ σ2

YsXY
p

→ σXY

By the definition of covariance, we have
E[(X i − µX)(Yi − µY )] = σXY . To apply the law of large
numbers on the first term, we need to have

Var[(X i − µX)(Yi − µY )] < ∞

which is satisfied since

Var[(X i − µX )(Yi − µY )] = E[(X i − µX )2(Yi − µY )2
]

≤

√
E(X i − µX )4E(Yi − µY )4

< ∞

The second inequality follows by applying the
Cauchy-Schwartz inequality, and the last inequality
follows because of the finite fourth moments for (X i , Yi).
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s2
Y

p
→ σ2

YsXY
p

→ σXY

The Cauchy-Schwartz inequality is

|E(XY )| ≤

√
E(X 2)E(Y 2)

Applying the las of large numbers, we have

1

n

n∑
i=1

(X i − µX )(Yi − µY )
p

→ E[(X i − µX )(Yi − µY )] = σXY

Also, n
n−1 → 1, therefore

sXY
p

→ σXY
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