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Random Variables and Probability Distributions

Probabilities, Sample Space amd Ramdom
Variables

@ Outcomes: The mutually exclusive potential results of a
random process.

@ Probability: The proportion of the time that the
outcome occurs.

e Sample space: The set of all possible outcomes.
e Event: A subset of the sample space.

@ Random variables: A random variable is a numerical
summary of a random outcome.
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Random Variables and Probability Distributions

Discrete Random Variable
Continuous Random Variable

Probability distribution of a Discrete Random Variable
e Probability distribution.
e Probabilities of events.

e Cumulative probability distribution.

TABLE 2.1 Probability of Your Computer Crashing M Times

Outcome (number of crashes)

0 1 2 3 4
Probability distribution 0.80 0.10 0.06 0.03 0.01
Cumulative probability distribution (.80 0.90 0.96 0.99 1.00
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Random Variables and Probability Distributions

Discrete Random Variable
Continuous Random Variable

FIGURE 2.1 Probability Distribution of the Number of Computer Crashes

The height of each bar is the probability that the
computer crashes the indicated number of fimes.
The height of the first bar is 0.80, so the probabil-
ity of O computer crashes is 80%. The height of the
second bar is 0.1, so the probability of 1 com-
puter crash is 10%, and so forth for the other bars.
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Random Variables and Probability Distributions

Discrete Random Variable
Conti b

“ontinuous Random Variable

One Example: The Bernoulli distribution.

Let G be the gender of the next new person you meet,
where G = 0 indicates that the person is maleand G =1
indicates that she is female.

The outcomes of G and there probabilities are

G = 1 with probability p
= 0 with probability 1 — p



Random Variables and Probability Distributions

Discrete Random Variable
Continuous Random Variable

Probability distribution of a Continous Random Variable

@ Cumulative probability distribution.

FIGURE 2.2 Cumulative Distribution and Probability Density Functions of C ing Time

Probability
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(a) Cumulative distribution function of commuting time

Figure 2.2a shows the cumulative probability distribution (or c.d.f.) of commuting times. The probability that a commut-
ing time is less than 15 minutes is 0.20 (or 20%), and the probability it is less than 20 minutes is 0.78 (78%). Figure
2.2b shows the probability density function (or p.d.f.) of commuting times. Probabilities are given by areas under the
p.d.f. The probability that a commuting time is between 15 and 20 minutes is 0.58 (58%), and is given by the area
under the curve between 15 and 20 minutes.
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Random Variables and Probability Distributions

Discrete Random Variable
Continuous Random Variable

e Probability density function (p.d.f.).

FIGURE 2.2 C lative Distribution and Probability Density Functions of C; ing Time

Probability density
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(b) Probabilicy density function of commuting time

Figure 2.2a shows the cumulative probability distribution (or c.d.f.) of commuting times. The probability that a commut-
ing fime is less than 15 minutes is 0.20 (or 20%), and the probability it is less than 20 minutes is 0.78 (78%). Figure
2.2b shows the probability density function (or p.d.f.) of commuting times. Probabilities are given by areas under the
p.d.f. The probability that a commuting time is between 15 and 20 minutes is 0.58 (58%), and is given by the area
under the curve between 15 and 20 minutes.
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Expected Values, Mean, and Variance Expected Values
Variance, Standard Deviation, and Moments

Moments

Expected Value and the Me

Suppose the random variable Y takes on k possible values, y, . . ., y;, where y,
denotes the first value, y, denotes the second value, etc., and that the probabil-
ity that Y takes on y, is p;, the probability that Y takes on y, is p,, and so forth.
The expected value of Y, denoted E(Y), is
k
EY)=pnm+hit 1= 2 1ib 24
i=
where the notation 2 y;ip” means “the sum of y, p; for i running from 1 to k.”
The expected value of Yis also called the mean of Y or the expectation of
Y and is denoted .
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Expected Values, Mean, and Variance

Expected value of a Bernoulli random variable
EG)=1xp+0x (A —p)=p
Expected value of a continuous random variable

Let f(Y) is the p.d.f of random variable Y, then the
expected value of Y is

E(Y) = /Yf(Y)dY
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Expected Values, Mean, and Variance Expected Values
Variance, Standard Deviation, and Moments

Moments

-' ariance and Standard Deviation

. . . 0
The variance of the discrete random variable Y, denoted a5, is

3
Gewll)=HY-uf=Y 0-nly 29

i=1

The standard deviation of Yis 6, the square root of the variance. The units of
the standard deviation are the same as the units of Y.
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Expected Values, Mean, and Variance Expected Values
Variance, Standard Deviation, and Moments

Moments

Variance of a Bernoulli random variable
The mean of the Bernoulli random variable G is ug = p,
SO its variance is

Var(G) = oz =0—p)* x p+(0—p)* x(1—p)
= p(l—p)

The standard deviation is 6 = +/p(1 — p).
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Expected Values, Mean, and Variance Expected Values

Variance, Standard Deviation, and Moments
Moments

o The expected value of Y is called the 7' moments of
the random variable Y.
That is the 7' moment of Y is E(Y").

@ The mean of Y, E(Y), is also called the first moment of
Y.
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Expected Values, Mean, and Variance Expected Values

Variance, Standard Deviation, and Moments
Moments

Mean and Variance of a Linear Function of a Random
Variable

Suppose X is a random variable with mean wy and
variance 0y, and

Y=a+bX
Then the mean and variance of Y are

ny = a+bux
O’I% = bza;(

and the standard deviation of Y is oy = boy.
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Joint and Marginal Distributions
Two Random Variables Conditional Distributions

Cova ce and Correlation

The joint probability distribution of two discrete random
variables, say X and Y, is the probability that the random
variables simultaneously take on certain values, say x and
v . The joint probability distribution can be written as the
function Pr(X = x, Y = y).

TABLE 2.2 Joint Distribution of Weather Conditions and Commuting Times

Rain (X=0) No Rain (X=1) Total
Long Commute (Y = 0) 0.15 0.07 0.22
Short Commute (Y = 1) 0.15 0.63 0.78

Total (.30 0.70 1.00
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Joint and Marginal Distributions
Two Random Variables Conditional Distributions

Cova ce and Correlation

The marginal probability distribution of a random
variable Y is just another name for its probability
distribution.

l
Pr(Y =y) = » Pr(X=x.Y =)

i=1

TABLE 2.2 Joint Distribution of Weather Conditions and Commuting Times

Rain (X=0) No Rain (X=1) Total
Long Commute (Y = 0) 0.15 0.07 0.22
Short Commute (Y = 1) 0.15 0.63 0.78

Total 0.30 0.70 1.00

16/59



Joint and Marginal Distributions
Two Random Variables Conditional Distributions

Covariance and Correlation

Conditional distribution of ¥ given X = x is

Pr(X =x,Y =y)

Pr(Y =y|X =x) = PrX = 1)

Condtional expectation of Y given X = x is

k
EYIX=x) = ) yPr(Y =ylX =x)

i=1
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Joint and Marginal Distributions
Two Random Variables Condmonal Distributions

nce and Correlation

TABLE 2.3 Joint and Conditional Distributions of Computer Crashes (M)
and Computer Age (A)

A. Joint Distribution

M=0 M=1 M=2 M=3 M=4 Total
Old computer (4 = 0) 0.35 0.065 0.05 0.025 0.01 0.50
New computer (4 = 1) 0.45 0,035 0.01 0.005 (0,00 0.50
Total 0.8 0.1 0.06 0.03 0.01 1.00
B. Conditional Distributions of M given A

M=10 M=1 M=2 M=3 M=4 Total
Pl‘(.\]l.“] =0) 0.70 0.13 0.10 0.05 0.02 1.00
Pr(M|A = 1) 0.90 0.07 0.02 0.01 0.00 1.00
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Joint and Marginal Distributions
Two Random Variables Conditional Distributions

Covariance and Correlation

The mean of Y is the weighted average of the conditional
expectation of ¥ given X, weighted by the probability
distribution of X.

l
E(Y) = Y B(Y|X =x)Pr(X =x;)

i=1
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Two Random Variables

Stated differently, the expectation of Y is the expectation
of the conditional expectation of ¥ given X, that is,

E(Y) = E[E(Y|X)],

where the inner expectation is computed using the
conditional distribution of ¥ given X and the outer
expectation is computed using the marginal distribution
of X.

This is known as the law of iterated expectations.
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Joint and Marginal Distributions
Two Random Variables Conditional Distributions

Covariance and Correlation

Proof that E(Y) = Z E(Y|X = x;)Pr(X = x;)

i=1

E(Y) = ZV]Pr(Y—VJ)—ZV;ZPr(Y—V,, = x;)

i=1

= ZijPr(Y =yl X =x) Pr(X = x;)

j=1 =l

Ik
= Y yiP(Y = yj|X = x;) Pr(X = x;)

i=1 j=1
l

= Y E(Y|X =x)Pr(X =Xx;)
i=1
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Joint and Marginal Distributions
Two Random Variables Conditional Distributions

Covariance and Correlation

Conditional variance. The variance of Y conditional on

X is the variance of the conditional distribution of ¥ given
X.

k
Var(Y|X =x) = ) [yi —E(Y|X = 0)PPr(Y = yi|X = x)

i=1
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Joint and Marginal Distributions
Two Random Variables Conditional Distributions

Covariance and Correlation

Independence

e Two random variable X and Y are independently
distributed, or independent, if knowing the value of
one of the variables provides no information about the
other.

@ Thatis, X and Y are independent if for all values of x
and y,

Pr(Y =y|X =x) =Pr(Y = y)
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Two Random Variables

State dfferently, X and Y are independent if

Pr(X =x,Y =y)

Pr(X = x)
Pr( X =x,Y=y) = Pr(X =x)Pr(Y =)

Pr(Y = y)

That is, the joint distribution of two independent random
variables is the product of their marginal distributions.
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Joint and Marginal Distributions
Two Random Variables Conditional Distributions

Covariance and Correlation

Covariance.
One measure of the extent to which two random variables
move together is their covariance.

COV(X, Y) = Oxy

= E[(X — ux)(Y — uy)]
Ik

= Zz(xi —u) (Y — uy) Pr(X = x;, Y = y;)

i=1 j=1
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Joint and Marginal Distributions
Two Random Variables Conditional Distributions

Covariance and Correlation

Correlation.

The correlation is an alternative measure of dependence
between X and Y that solves the “unit” problem of
covariance.

COV(X, Y) . oxy
SVar(X)Var(Y)  oxoy

Corr(X,Y) =

The random variables X and Y are said to be
uncorrelated if Corr(X, Y) = 0. The correlation is always
between -1 and 1.
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Two Random Variables

The Mean and Variance of Sums of Random Variables

E(X) + E(Y) E(X) +E(Y) = ux + puy
Var(X +Y) = Var(X) + Var(Y) 4+ 2Cov(X, Y)

2 2
- Ox+0y+2UXY
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Joint and Marginal Distributions
Two Random Variables Conditional Distributions

Covariance and Correlation

Means, Variances, and Covari
of Sums of Random Vari

Let X, Y, and IV be random variables, let tiy and 6 be the mean and variance
of X, let oy be the covariance between X and Y (and so forth for the other
variables), and let a, b, and ¢ be constants. The following facts follow from the

definitions of the mean, variance, and covariance:

E(a+ bX + cY) = a + buy + uy, (2.29)

var(a + bY) = b’ (2.30)

var(@X + bY) = ?63 + 2aboy, + bo3, (211

E(Y) =0 + u, (2.32)

cov(a + bX + ¢} Y) = boxy + copy, and (2.33)

E(XY) = oyy + lixty. (2.34)

|corr(X,Y)| <1 and|oyy|< Vogo? (correlation inequality). (2.35)
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The Normal Distribution
The Chi-Squared and Fyy;, oo Distributions

The Normal, Chi-Squared, Fj;;, 00, and f Distributions The Student 7 Distribution

The probability density function of a normal distributed
random variable (the normal p.d.f.) is

Y — KUy
exp| ——|\——

1 1
oy 27 2 ( Oy

where exp(x) is the exponential function of x.

|
The factor p— ensures that

fr(y) =

Pr(—00 < ¥ < 00) = foo frndy =1
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The Normal Distribution
The Chi-Squared and Fyy;, oo Distributions

The Normal, Chi-Squared, Fj;;, 00, and f Distributions The Student 7 Distribution

The normal distribution with mean w and variance o2 is
expressed as N (i, o).

FIGURE 2.3 The Normal Probability Density

The normal probability density

function with mean ¢ and variance

o%is a bell-shaped curve, centered

at . The area under the normal

p.d.f. between it — 1.965 and

U+ 1.960is 0.95. The normal

distribution is denoted N(u, o?). 95%

U
u=1.960 u u+1.960 Y

30/59



The Normal Distribution
The Chi-Squared and Fyy;, oo Distributions

The Normal, Chi-Squared, Fj;;, 00, and f Distributions The Student 7 Distribution

@ The standard normal distribution is the normal
distribution with mean i = 0 and variance 0> = 1
and is denoted N (0, 1).

@ The standard normal distribution is often denoted by
Z and its cumulative distribution function is denoted
by ®. Accordingly, Pr(Z < ¢) = ®(c), wherecisa
constant.
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The Normal Distribution
The Chi-Squared and Fyy;, oo Distributions

The Normal, Chi-Squared, Fj;;, 00, and f Distributions The Student 7 Distribution

FIGURE 2.4 Calculating the Probability that Y < 2 When Y is Distributed N(1, 4)

To caleulate Pr(Y < 2), standardize Y, then

use the standard normal distribution table.

Yis standardized by subfracting its mean

{1t = 1) and dividing by its standard devia-

tion (oy = 2). The probability that Y < 2 is

shown in Figure 2.4a, and the correspond-

ing probability after standardizing Y is Pr<2)
shown in Figure 2.4b. Because the stan-

dardized random variable,

; Jisa N(1, 4) distribution
standard normal (Z) random variable,
Prtv<2)=p 51 <251 <priz<05) A

From Appendix Table 1, Pr(Z< 0.5)= 0.691.  (2) \(1, 4)

PrZ<05)

N(0, 1) distribution

U!ll ufs z
(b) N(O, 1)
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The Normal Distribution
The Chi-Squared and Fyy;, oo Distributions

The Normal, Chi-Squared, Fj;;, 00, and f Distributions The Student 7 Distribution

The bivariate normal distribution.
The bivariate normal p.d.f. for the two random variables
XandY is

gx,y(x,y)
1

2mox0y,/1 — pgﬂ,
1 x—pux\’ X—pux\ (Y — My
X exp 2 = 2pxy
—2(1 — ;Oxy) ox ox Oy
Y — MKy ?
()
Oy

where pyy is the correlation between X and Y.
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The Normal Distribution
The Chi-Squared and Fyy;, oo Distributions

The Normal, Chi-Squared, Fj;;, 00, and f Distributions The Student 7 Distribution

Important properties for normal distribution.

1. If X and Y have a bivariate normal distribution with
covariance Oy, and if a and b are two constants, then

aX +bY ~ N(aux + buy, azof( + bza,% + 2aboxy)

2. The marginal distribution of each of the two variables
is normal. This follows by settinga = 1,b = 01in 1.

3. Ifoxy = 0, then X and Y are independent.
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The Normal Distribution
The Chi-Squared and Fj;; oo Distributions

The Normal, Chi-Squared, Fj;;, 00, and f Distributions The Student 7 Distribution

@ The chi-squared distribution is the distribution of the
sum of m squared independent standard normal
random variables.

@ The distribution depends on m, which is called the
degrees of freedom of the chi-squared distribution.

@ A chi-squared distribution with m degrees of freedom
is denoted ..
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The Normal Distribution
The Chi-Squared and Fj;; oo Distributions

The Normal, Chi-Squared, Fj;;, 00, and f Distributions The Student 7 Distribution

@ The F),  distribution is the distribution of a random
variable with a chi-squared distribution with m degrees
of freedom, divided by m.

e Equivalently, the F},  distribution is the distribution
of the average of m squared standard normal random
variables.
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The Normal Distribution
The Chi-Squared and Fyy o Distributions

The Normal, Chi-Squared, Fj;;, 00, and f Distributions The Student 7 Distribution

The Student 7 distribution with m degrees of freedom is
defined to be the distribution of the ratio of a standard
normal random variable, divided by the square root of an
independently distributed chi-squared random variable with
m degrees of freedom divided by m.
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The Normal, Chi-Squared, Fj;;, 00, and f Distributions

That is, let Z be a standard normal random variable, let W
be a random variable with a chi-squared distribution with

m degrees of freedom, and let Z and W be independently

distributed. Then

Z

Nt'm
w
m

When m is 30 or more, the Student ¢ distribution is well
approximated by the standard normal distribution, and 7
distribution equals the standard normal distribution Z.
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Random Sampling

Sampling Distribution of the Sample Average

Random Sampling and the Distribution of the Sample Average

Simple random sampling is the simplest sampling scheme
in which 7n objects are selected at random from a
population and each member of the population is equally
likely to be included in the sample.

Since the members of the population included in the
sample are selected at random, the values of the
observations Y, - - - , Y, are themselves random.
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Random Sampling

Sampling Distribution of the Sample Average

Random Sampling and the Distribution of the Sample Average

i.i.d. draws.

Because Vi, - - - , ¥}, are randomly drawn from the same
population, the marginal distribution of Y; is the same for
eacni =1,---,n. Y, -+, Y, aresaid to be identically
distributed.

When Y, - - -, Y, are drawn from the same distribution

and are indepently distributed, they are said to be
independently and identically distributed, or i.i.d.

39/59



Random Sampling
Sampling Distribution of the Sample Average

Random Sampling and the Distribution of the Sample Average

The sample average of the n observations Y, - -+ , ¥, is

_ 1 1 —
1=
Because Vi, - - - , Y, are random, their average is random
and has a probability distribution.

The distribution of Y is called the sampling distribution
of Y.
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Random Sampling
Sampling Distribution of the Sample Average

Random Sampling and the Distribution of the Sample Average

Mean and Variance of Y
Suppose Yy, - -+, ¥, areii.d. and let y and U,% denote
the mean and variance of Y;. Then

BT) = — Y B0 =y

i=1

Var(Y) = Var(l Z Y)
n

i=1
1 n 1 n n
= ;Zwr(m + ;Z Y Cov(¥;. ¥))
i=1 i=1 j=1,j#i
2
Oy

n
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Law of ge Numbers
1 Limit Theorem

Large-Sample Approximations to Sampling Distributions

Two approaches to characterizing sample distributions.

e Exact distribution, or finite sample distribution when
the distribution of Y is known.

e Asymptotic distribution: large-sample approximation
to the sampling distribution.
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Law of Large Numbers
The Central Limit Theorem

Large-Sample Approximations to Sampling Distributions

The law of large numbers states that, under general
conditions, Y will be near wy with very high probability
when n is large.

The property that Y is near py with increasing
probability as n increases is called convergence in
probability, or consistency.

The law of large numbers states that, under certain
conditions, Y converges in probability to uy, or, Y is
consistent for (y.
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Law of Large Numbers
The Central Limit Theorem

Large-Sample Approximations to Sampling Distributions

The conditions for the law of large numbers are
@ Y;,i=1,---,n,areiid.

@ The variance of ¥;, G%, is finite.
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Law of Large Numbers

entral Limit Theorem

FIGURE 2.6 Sampling Distribution of the Sample Average of n Ili Rand iabl
Probability Probability
07 0.5
o6t
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o5 H=078 p =078

04l
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Value of sample average

@ »
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Value of sample average

() w

0.0

0.0 0.25 050 0.75 100
WValue of sample average

) n=5
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0,125

0.100 =078

0.50 0.75 1.00
Value of sample average

() » =100

The distributions are the sampling distributions of ¥, the sample average of n independent Bernoulli random vari-
ables with p = Pr{Y; = 1) = 0.78 (the probability of a fast commute is 78%). The variance of the sampling distribution
of ¥ decreases as n gets larger, so the sampling distribution becomes more tightly concentrated around its mean s =

0.78 os the sample size n increases.
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Law of Large Numbers
The Central Limit Theorem

Large-Sample Approximations to Sampling Distributions

Formal definitions of consistency and law of large numbers.
Consistency and convergency in probability.

Let S1, S5, - -+, Sy, - - - be asequence of random variables. For
example, S, could be the sample average Y of a sample of n
observations of the randome variable Y.

The sequence of randome variables {S,,} is said to converge in
probability to a limit, u, if the probability that S, is within 6 of ©

tends to one as n — 00, as long as the constant § is positive.
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Law of Large Numbers
The Central Limit Theorem

Large-Sample Approximations to Sampling Distributions

That is,

S, & pifand only if Pr[|S, — | > 8] — 0

asn — oo for every § > 0.

If S, S W, then S, is said to be a consistent estimator of
u.
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Law of Large Numbers
The Central Limit Theorem

Large-Sample Approximations to Sampling Distributions

The law of large numbers.
IfY,,---,Y,areiid., E(Y;) = uy and Var(Y;) < o0,
then
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Law of Large Numbers
The Central Limit Theorem

Large-Sample Approximations to Sampling Distributions

The central limit theorem says that, under general
conditions, the distribution of ¥ is well approximated by a
normal distribution when 7 is large.

Since the mean of Y is (uy and its variance if o

2
2 _ 9%
P =1

_ Y
when 7 is large the distribution of Y is approximately

N(MY,U)%)- i

Y—py
P

normal distribution N (0, 1).

Accordingly, is well approximated by the standard
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Law of Large Numbers

The Central Limit Theorem

Large-Sample Approximations to Sampling Dis

FIGURE 2.7 Distribution of the Standardized Sample Average of n Bernoulli Random
Variables with p=.78

Probability Probability
07

0.6
0.5
0.4

0.3

0.1

0.0 =2
=30 2.0

T I e S ]

T
-1.0 0.0 1.0 2.0 3.0 =30 =20 -10 0.0 Lo 2.0 3.0

Standardized value of Standardized value of
sample average sample average

(a) n=2 (byn=5

The sampling distribufion of Y in Figure 2.6 is plotied here after standardizing Y. This centers the distributions in Fig-
ure 2.6 and magnifies the scale on the horizontal axis by a factor of Vn. When the sample size is large, the sampling
distributions are increasingly well approximated by the normal distribution (the solid line), as predicted by the central
[imit theorem.
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Law of Large Numbers

The Central Limit Theorem

ample Approximations to Sampling Dis

FIGURE 2.7 Distribufion of the Standardized Sample Average of n Bernoulli Rand

Variables with p= .78
Probability Probability
0251 012
0.09+

0.06F

0.03F

0,00

=20 -10 00 K 2. X =30 =20 -10 00 Lo 20 30
Standardized value of Standardized value of
sample average sample average

(c)n (d) n=100

The sampling distribution of ¥ in Figure 2.6 is plotted here after stundo’rdizing Y. This centers the distributions in Fig-
ure 2.6 and magnifies the scale on the horizontal axis by a factor of Vn. When the sample size is large, the sampling
distributions are increasingly well approximated by the normal distribution (the solid line), as predicted by the central
limit theorem.

51/59



Law of Large Numbers
The Central Limit Theorem

Large-Sample Approximations to Sampling Distributions

Convergence in distribution.

Let Fy,---, F,, - - - be a sequence of cumulative
distribution functions corresponding to a sequence of
random variables, Sy, - - - , Sy, - - - . Then the sequence of
random variables §,, is said to converge in distribution to

S (denoted S, —d> S) if the distribution functions { F},}
converge to F'.
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Law of Large Numbers
The Central Limit Theorem

Large-Sample Approximations to Sampling Distributions

That is,

S, % Sifandonlyif lim F,(t) = F(r),

n—oo

where the limit holds at all points # at which the limiting
distribution F is continuous.

The distribution F is called the asymptotic distribution
of S,.



Law of Large Numbers
The Central Limit Theorem

Large-Sample Approximations to Sampling Distributions

The central limit theorem.
IfY,,---,Y,arei.i.d.and 0 < o% < 00, then

V(¥ = puy) 5 N(©, 03)

In other words, the asymptotic distribution of

Y —puy Y—py Y —puy
\/ﬁ - oy
N
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Law of Large Numbers
The Central Limit Theorem

Large-Sample Approximations to Sampling Distributions

Slutsky’s theorem combines consistency and convergence
in distribution. y

P .
Suppose that a, — a, where a is a constant, and §,, — S.
Then

a, + S, —d> a—+ S,

d
a,S, — als,

S,/a, > S/a, ifa #0
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Law of Large Numbers
The Central Limit Theorem

Large-Sample Approximations to Sampling Distributions

Continuous mapping theorem:
If g is a continuous function, then

o if S, > a,then g(S,) = g(a), and
o if S, % S, then g(S,) > g(S).
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Law of Large Numbers
The Central Limit Theorem

Large-Sample Approximations to Sampling Distributions

But, how large of 1 is “large enough?”
The answer is: it depends on the distribution of the
underlying Y; that make up the average.
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Law of Large Numbers
The Central Limit Theorem

Large-Sample Approximations to Sampling Distributions

But, how large of 1 is “large enough?”

The answer is: it depends on the distribution of the
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Large-Sample Approximations to Sampling Distributions

But, how large of 1 is “large enough?”

The answer is: it depends on the distribution of the
underlying Y; that make up the average.

At one extreme, if the ¥; are themselves normally
distributed, then Y is exactly normally distributed for all
n.

In contrast, when Y; is far from normally distributed, then
this approximation can require # = 30 or even more.
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Example: A skewed distribution.

FIGURE 2.8 Distribution of the Standardized Sample Average of n Draws from a Skewed Distribution

Probability Probability
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The figures show the 50mp|ing distribution of the standardized scmp|e average of n draws from the skewed (asym-
mefric) population distribution shown in Figure 2.8a. When n is small (n = 5), the sampling distribution, like the pop-
ulation distribution, is skewed. But when n is large (n = 100), the sampling distribution is well approximated by a

standard normal distribution (solid line), as predicted by the central limit theorem.
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The figures show the sampling distribution of the standardized sample average of n draws from the skewed (asym-
metric) population distribution shown in Figure 2.8a. When n is small (n = 5), the sampling distribution, like the pop-
ulation distribution, is skewed. But when n is large (n = 100), the sampling distribution is well approximated by a
standard normal distribution (solid line), as predicted by the central limit theorem.
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