Matrix Algebra, part 2

Ming-Ching Luoh

2005.9.12

Characteristic Roots and Vectors

Diagonalization and Spectral Decomposition of a Matrix
Rank of a Matrix
Trace of a Matrix
Determinant of a Matrix
Powers of a Matrix

Quadratic Forms and Definite Matrices

Calculus and Matrix Algebra
Optimization

Characteristic Roots and Vectors

Also called Eigenvalues and Eigenvectors. The solution to a set of equations

$$
A c=\lambda c
$$

where λ is the eigenvalue and c is the eigenvector of a square matrix A.
If c is a solution, then $k c$ is also a solution for any k. Therefore, it is usually normalized so that $c^{\prime} c=1$.

To solve for the solution, the above system implies $A c=\lambda I_{K} c$. Therefore,

$$
(A-\lambda I) c=0
$$

This has non-zero solution if and only if the matrix ($A-\lambda I$) is singular or has a zero determinant, or $|A-\lambda I|=0$. The polynomial in λ is the characteristic equation of A.

For example, if $A=\left[\begin{array}{ll}5 & 1 \\ 2 & 4\end{array}\right]$, then

$$
\begin{aligned}
|A-\lambda I| & =\left|\begin{array}{cc}
5-\lambda & 1 \\
2 & 4-\lambda
\end{array}\right| \\
& =(5-\lambda)(5-\lambda)-2 \\
& =\lambda^{2}-9 \lambda+18=0 \\
\lambda & =6,3 .
\end{aligned}
$$

For the eigenvectors,

$$
\begin{aligned}
& {\left[\begin{array}{cc}
5-\lambda & 1 \\
2 & 4-\lambda
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]} \\
& \lambda=6,\left[\begin{array}{cc}
-1 & 1 \\
2 & -2
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right],\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]= \pm\left[\begin{array}{l}
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right] \\
& \lambda=3,\left[\begin{array}{ll}
2 & 1 \\
2 & 1
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right],\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]= \pm\left[\begin{array}{c}
\frac{1}{\sqrt{5}} \\
-\frac{2}{\sqrt{5}}
\end{array}\right]
\end{aligned}
$$

The general results of eigenvalues and eigenvectors of a symmetric matrix A.

- A $K \times K$ symmetric matrix has K distinct eigenvectors, $c_{1}, c_{2}, \cdots, c_{K}$.
- The corresponding eigenvalues $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{K}$ are real, but need not to be distinctive.
- Eigenvectors of a symmetric matrix are orthogonal, i.e., $c_{i}^{\prime} c_{j}=0, i \neq j$.

We can collect the K eigenvectors in the matrix

$$
C=\left[c_{1}, c_{2}, \cdots, c_{K}\right]
$$

and the K eigenvalues in the same order in a diagonal matrix,

$$
\Lambda=\left[\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots \\
0 & 0 & \cdots & \lambda_{K}
\end{array}\right]
$$

From $A c_{i}=\lambda_{i} c_{i}$, we have $A C=C \Lambda$. Since eigenvectors are orthogonal and $c_{i}^{\prime} c=1$,

$$
C^{\prime} C=\left[\begin{array}{cccc}
c_{1}^{\prime} c_{1} & c_{1}^{\prime} c_{2} & \cdots & c_{1}^{\prime} c_{K} \\
c_{2}^{\prime} c_{1} & c_{2}^{\prime} c_{2} & \cdots & c_{2}^{\prime} c_{K} \\
\vdots & \vdots & \vdots & \vdots \\
c_{K}^{\prime} c_{1} & c_{K}^{\prime} c_{2} & \cdots & c_{K}^{\prime} c_{K}
\end{array}\right]=I
$$

This implies $C^{\prime}=C^{-1}$ and $C C^{\prime}=C C^{-1}=I$.

Diagonalization and Spectral Decomposition

Since $A C=C \Lambda$, pre-multiply both sides by C^{\prime}, we have

$$
C^{\prime} A C=C^{\prime} C \Lambda=\Lambda=\left[\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots \\
0 & 0 & \cdots & \lambda_{K}
\end{array}\right]
$$

On the other hand, if we post-multiply both sides by

$$
C^{-1}=C^{\prime} \text {, we have }
$$

$$
A=C \Lambda C^{\prime}=\left[c_{1}, \cdots, c_{K}\right]\left[\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots \\
0 & 0 & \cdots & \lambda_{K}
\end{array}\right]\left[\begin{array}{c}
c_{1}^{\prime} \\
\vdots \\
c_{K}^{\prime}
\end{array}\right]
$$

$$
=\sum_{i=1}^{K} \lambda_{i} c_{i} c_{i}^{\prime}
$$

This is called the spectral decomposition of matrix A.

Rank of a Matrix

Rank of a Product. For any matrix A and nonsingular matrices B and C, then rank of $B A C$ is equal to the rank of A.
pf: It is known that if A is $n \times K$ and B is a square matrix of $\operatorname{rank} K$, then $\operatorname{rank}(A B)=\operatorname{rank}(A)$, and
$\operatorname{rank}(A)=\operatorname{rank}\left(A^{\prime}\right)$.
Since C is nonsingular, $\operatorname{rank}(B A C)=\operatorname{rank}((B A) C)=\operatorname{rank}(B A)$. Also we have $\operatorname{rank}(B A)=\operatorname{rank}\left((B A)^{\prime}\right)=\operatorname{rank}\left(A^{\prime} B^{\prime}\right)$. It follows that $\operatorname{rank}\left(A^{\prime} B^{\prime}\right)=\operatorname{rank}\left(A^{\prime}\right)$ since B^{\prime} is nonsingular if B is nonsingular.
Therefore, $\operatorname{rank}(B A C)=\operatorname{rank}\left(A^{\prime}\right)=\operatorname{rank}(A)$.

Using the result of diagonalization that $C^{\prime} A C=\Lambda$ and C^{\prime} and C are nonsingular $\left(|\lambda|=|C||A|\left|C^{\prime}\right| \neq 0\right)$, we have,

$$
\operatorname{rank}\left(C^{\prime} A C\right)=\operatorname{rank}(A)=\operatorname{rank}(\Lambda)
$$

This leads to the following theorem.
Theorem
Rank of a Symmetric Matrix. The rank of a symmetric matrix is the number of nonzero eigenvalues it contains.

It appears that the above Theorem applies to symmetric matrix only. However, note the fact that $\operatorname{rank}(A)=\operatorname{rank}\left(A^{\prime} A\right), A^{\prime} A$ will always be a symmetric square matrix. Therefore,
Theorem
Rank of a Matrix. The rank of any matrix A is the number of nonzero eigenvalues in $A^{\prime} A$.

Trace of a Matrix

The trace of a square $K \times K$ matrix is the sum of its diagonal elements, $\operatorname{tr}(A)=\sum_{i=1}^{K} a_{i i}$. Some results about trace are as follows.

- $\operatorname{tr}(c A)=c \operatorname{tr}(A), c$ is a scalar.
- $\operatorname{tr}\left(A^{\prime}\right)=\operatorname{tr}(A)$.
- $\operatorname{tr}(A+B)=\operatorname{tr}(A)+\operatorname{tr}(B)$.
- $\operatorname{tr}\left(I_{K}\right)=K$
- $\operatorname{tr}(A B)=\operatorname{tr}(B A)$.
proof:
Let $A: n \times K, B: K \times n, C=A B$ and $D=B A$.
Since $c_{i i}=a^{i} b_{i}=\sum_{k=1}^{K} a_{i k} b_{k i}$, and $d_{k k}=b^{k} a_{k}=\sum_{i=1}^{n} b_{k i} a_{i k}$,

$$
\begin{aligned}
\operatorname{tr}(A B) & =\sum_{i=1}^{n} c_{i i}=\sum_{i=1}^{n} \sum_{k=1}^{K} a_{i k} b_{k i} \\
& =\sum_{k=1}^{K} \sum_{i=1}^{n} b_{k i} a_{i k}=\sum_{k=1}^{K} d_{k k}=\operatorname{tr}(B A)
\end{aligned}
$$

This permutation rule can be applied to any cyclic permutation in a product:

$$
\operatorname{tr}(A B C D)=\operatorname{tr}(B C D A)=\operatorname{tr}(C D A B)=\operatorname{tr}(D A B C)
$$

Along the diagonalization rule of matrix A, we can derive a rule for the trace of a matrix.

$$
\begin{aligned}
\operatorname{tr}\left(C^{\prime} A C\right) & =\operatorname{tr}\left(A C C^{\prime}\right)=\operatorname{tr}(A I) \\
& =\operatorname{tr}(A)=\operatorname{tr}(\Lambda)=\sum_{k=1}^{K} \lambda_{k}
\end{aligned}
$$

Theorem
Trace of a Matrix. The trace of a matrix equals the sum of its eigenvalues.

Determinant of a Matrix

One particular simple way of calculating the determinant of a matrix is as follows. Since $C^{\prime} A C=\Lambda$,

$$
\left|C^{\prime} A C\right|=|\Lambda| .
$$

$$
\left|C^{\prime} A C\right|=\left|C^{\prime}\right| \cdot|A| \cdot|C|=\left|C^{\prime}\right| \cdot|C| \cdot|A|=\left|C^{\prime} C\right| \cdot|A|
$$

$$
=|I| \cdot|A|=|A|=|\Lambda|=\prod_{k=1}^{K} \lambda_{k}
$$

Theorem
Determinant of a Matrix. The determinant of a matrix equals the product of its eigenvalues.

Powers of a Matrix

With the result that $A=C \Lambda C^{\prime}$, we can show the following theorem.
Theorem
Eigenvalues of a Matrix Power. For any nonsingular symmetric matrix $A=C \Lambda C^{\prime}, A^{K}=C \Lambda^{K} C^{\prime}$, $K=\cdots,-2,-1,0,1,2, \cdots$.
In other word, eigenvalues of A^{K} is λ_{i}^{K} while eigenvectors are the same. This is for all intergers.

For real number, we have
Theorem
Real Powers of a Positive Definite Matrix. For a positive definite matrix $A=C \Lambda C^{\prime}, A^{r}=C \Lambda^{r} C^{\prime}$, for any real number, r.

A positive definite matrix is a matrix with all eigenvalues being positive. A matrix is nonnegative definite if all the eigenvalues are either positive or zero.

Quadratic Forms and Definite Matrices

Many optimization problems involve the quadratic form

$$
q=x^{\prime} A x=\sum_{i=1}^{n} \sum_{j=1}^{n} x_{i} x_{j} a_{i j}
$$

where A is a symmetric matrix, x is a column vector. For a given A,

- If $x^{\prime} A x>(<) 0$ for all nonzero x, then A is positive (negative) definite.
- If $x^{\prime} A x \geq(\leq) 0$ for all nonzero x, then A is nonnegative definite or positive semi-definite (nonpositive definite).

We can use results we have so far to check a matrix for definiteness. Since $A=C \Lambda C^{\prime}$,

$$
x^{\prime} A x=x^{\prime} C \Lambda C^{\prime} x=y^{\prime} \Lambda y=\sum_{i=1}^{n} \lambda_{i} y_{i}^{2}
$$

where $y=C^{\prime} x$ is another vector.
Theorem
Definite Matrices. Let A be a symmetric matrix. If all the eigenvalues of A are positive (negative), then A is positive (negative) definite. If some of them are zeros, then A is nonnegative (nonpositve) if the remainder are positive (negative).

Nonnegative definite of Matrices

- If A is nonnegative definite, then $|A| \geq 0$. Since determinant is the product of eigenvalues, it is nonnegative.
- If A is positive definite, so is A^{-1}. The eigenvalues of A^{-1} are the reciprocals of eigenvalues of A which are all positive. Therefore A^{-1} is also positive definite.
- The identity matrix I is positive definite. $x^{\prime} I x=x^{\prime} x>0$ if $x \neq 0$.
- (Very important) If A is $n \times K$ with full rank and $n>K$, then $A^{\prime} A$ is positive definite and $A A^{\prime}$ is nonnegative definite. By assumption that A is with full rank, $A x \neq 0$. So

$$
x^{\prime} A^{\prime} A x=y^{\prime} y=\sum_{i} y_{i}^{2}>0
$$

For the latter case, since A have more rows than columns, there is an x such that $A^{\prime} x=0$. We only have $y^{\prime} y \geq 0$.

- If A is positive definite amd B is nonsingular, then $B^{\prime} A B$ is positive definite. $x^{\prime} B^{\prime} A B x=y^{\prime} A y>0$, where $y=B x$. But y can not be zero because B is nonsingular.
- For A to be negative definite, all A 's eigenvalues must be negative. But te determinant of A is positive if A is in even order and negative if it is in odd order.

Calculus and Matrix Algebra

We have some definitions to begin with.

$$
y=f(x), x=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]
$$

where y is a scalar and x is a column vector.

Then the first derivative or gradient is defined as

$$
\frac{\partial f}{\partial x}=\left[\begin{array}{c}
\frac{\partial y}{\partial x_{1}} \\
\frac{\partial y}{\partial x_{2}} \\
\vdots \\
\frac{\partial y}{\partial x_{n}}
\end{array}\right]=\left[\begin{array}{c}
f_{1} \\
f_{2} \\
\vdots \\
f_{n}
\end{array}\right]
$$

And the second derivatives matrix or Hessian is,

$$
H=\frac{\partial^{2} f}{\partial x_{n \times n} \partial x^{\prime}}=\left[\begin{array}{cccc}
\frac{\partial^{2} y}{\partial x_{\partial} \partial x_{1}} & \frac{\partial^{2} y}{\partial x_{1} \partial x_{2}} & \cdots & \frac{\partial^{2} y}{\partial x_{1} \partial x_{n}} \\
\frac{\partial^{2} y}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} y}{\partial x_{2} \partial x_{2}} & \cdots & \frac{\partial^{2} y}{\partial x_{2} \partial x_{n}} \\
\vdots & \vdots & \vdots & \vdots \\
\frac{\partial^{2} y}{\partial x_{n} \partial x_{1}} & \frac{\partial^{2} y}{\partial x_{n} \partial x_{2}} & \cdots & \frac{\partial^{2} y}{\partial x_{n} \partial x_{n}}
\end{array}\right]
$$

In the case of a linear function

$y=a^{\prime} x=x^{\prime} a=\sum_{i=1}^{n} a_{i} x_{i}$, where a and x are both column vectors,

$$
\frac{\partial y}{\partial x}=\frac{\partial\left(a^{\prime} x\right)}{\partial x}=\left[\begin{array}{c}
\frac{\partial y}{\partial x_{1}} \\
\frac{\partial y}{\partial x_{2}} \\
\vdots \\
\frac{\partial y}{\partial x_{n}}
\end{array}\right]=\left[\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right]=a .
$$

In a set of linear functions,

$$
\begin{aligned}
& \begin{array}{c}
y \times 1 \\
y
\end{array}=\underset{n \times n n \times 1}{A} \quad x, y=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right], x=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right], \\
& A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \vdots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right]=\left[\begin{array}{c}
a^{1} \\
a^{2} \\
\vdots \\
a^{n}
\end{array}\right]=\left[a_{1}, a_{2}, \cdots, a_{n}\right] \\
& y_{i}=a_{i 1} x_{1}+a_{i 2} x_{2}+\cdots+a_{i n} x_{n}=\sum_{j=1}^{n} a_{i j} x_{j}=a^{i} x
\end{aligned}
$$

The derivatives are

$$
\begin{aligned}
& \frac{\partial y_{i}}{\partial x}=a^{i^{\prime}}, \frac{\partial y_{i}}{\partial x^{\prime}}=a^{i} \\
& n \times 1 \\
& \frac{\partial(A X)}{\partial x^{\prime}}=\frac{\partial y}{\partial x^{\prime}}=\left[\begin{array}{c}
\frac{\partial y_{1}}{\partial x^{\prime}} \\
\frac{\partial y_{2}}{\partial x^{\prime}} \\
\vdots \\
\frac{\partial y_{n}}{\partial x^{\prime}}
\end{array}\right]=\left[\begin{array}{c}
a^{1} \\
a^{2} \\
\vdots \\
a^{n}
\end{array}\right]=A \\
& \frac{\partial(A X)}{\partial x}=A^{\prime}
\end{aligned}
$$

A quadratic form is written as

$$
\begin{aligned}
y & =x^{\prime} A x=\sum_{i=1}^{n} \sum_{j=1}^{n} x_{i} x_{j} a_{i j} \\
\frac{\partial\left(x^{\prime} A x\right)}{\partial x} & =\left[\begin{array}{c}
\frac{\partial y}{\partial x_{1}} \\
\frac{\partial y}{\partial x_{2}} \\
\vdots \\
\frac{\partial y}{\partial x_{n}}
\end{array}\right]=\left[\begin{array}{c}
\sum_{j=1}^{n} x_{j} a_{1 j}+\sum_{i=1}^{n} x_{i} a_{i 1} \\
\sum_{j=1}^{n} x_{j} a_{2 j}+\sum_{i=1}^{n} x_{i} a_{i 2} \\
\vdots \\
\sum_{j=1}^{n} x_{j} a_{n j}+\sum_{i=1}^{n} x_{i} a_{i n}
\end{array}\right] \\
& =\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \vdots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& +\left[\begin{array}{cccc}
a_{11} & a_{21} & \cdots & a_{n 1} \\
a_{12} & a_{22} & \cdots & a_{n 2} \\
\vdots & \vdots & \vdots & \vdots \\
a_{1 n} & a_{2 n} & \cdots & a_{n n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right] \\
& =A x+A^{\prime} x=\left(A+A^{\prime}\right) x \\
& = \\
& \\
& =2 A x \text { if } A \text { is symmetric } .
\end{aligned}
$$

The Hessian matrix is

$$
\frac{\partial^{2}\left(x^{\prime} A x\right)}{\partial \underset{n \times n}{x \partial x^{\prime}}}=2 A
$$

Optimization

In a single variable case, $y=f(x)$. The first order (necessary) condition for an optimum is $\frac{d y}{d x}=0$. And the second order (sufficient) condition is $\frac{d^{2} y}{d^{2} x}<0$ for a maximum and $\frac{d^{2} y}{d^{2} x}>0$ for a mimimum.

For the optimization of a function with several variable $y=f(x)$ where x is a vector. The first order condition is

$$
\frac{\partial f(x)}{\partial x}=0
$$

And the second order condition is that the Hessian matrix

$$
H=\frac{\partial^{2} f(x)}{\partial x \partial x^{\prime}}
$$

must be positive definite for a minimum and negative definite for a maximum.

One example, we want to find x to maximize $R=a^{\prime} x-x^{\prime} A x$, where x and a are $n \times 1, A$ is symmetric $n \times n$. The first order condition is

$$
\frac{\partial R}{\underset{n \times 1}{\partial x}}=a-2 A x=0, x=-\frac{1}{2} A^{-1} a .
$$

And the Hessian Matrix is

$$
\frac{\partial^{2} R}{\partial \underset{n \times n}{ } \partial x^{\prime}}=-2 A
$$

If A is in quadratic form and is positive definite, then
$-2 A$ is negative definite. This ensures a maximum.

An Example: OLS Regression

$$
\begin{array}{rl}
y_{i} & =x_{i} \quad \beta+u_{i} i=1,2, \cdots, n \\
1 \times 1 & 1 \times K K \times 1 \quad 1 \times 1 \\
y & =\underset{n \times 1}{x} \quad \underset{n \times K}{ } \quad \underset{ }{n \times 1} \quad \underset{n \times 1}{u} .
\end{array}
$$

The OLS estimator mininizes the sum of squared residuals $\sum_{i=1}^{n} u_{i}^{2}=u^{\prime} u$. In other words,

$$
\begin{aligned}
\min _{\beta} S(\beta) & =(y-x \beta)^{\prime}(y-x \beta) \\
& =y^{\prime} y-\beta^{\prime} x^{\prime} y-y^{\prime} x \beta+\beta^{\prime} x^{\prime} x \beta
\end{aligned}
$$

The first order condition is

$$
\begin{aligned}
& \frac{\partial S(\beta)}{\partial \beta}=-2 x^{\prime} y+2 x^{\prime} x \beta=0 \\
& K \times 1 \\
& \hat{\beta}_{O L S}=\left(x^{\prime} x\right)^{-1} x^{\prime} y=\left(x^{\prime} x\right)^{-1} x^{\prime}(x \beta+u) \\
&=\beta+\left(x^{\prime} x\right)^{-1} x^{\prime} u
\end{aligned}
$$

And the Hessian matrix is

$$
\frac{\partial^{2} S(\beta)}{\underset{K \times K}{\partial \beta \beta^{\prime}}}=2 x^{\prime} x
$$

The Hessian matrix is positive definite. This ensures a minimum.

