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Characteristic Roots and Vectors

ant of a Matrix
s of a Matrix

Characteristic Roots and Vectors

Also called Eigenvalues and Eigenvectors.
The solution to a set of equations

Ac = Ac

where A is the eigenvalue and c is the eigenvector of a
square matrix A.

If ¢ is a solution, then kc is also a solution for any k.
Therefore, it is usually normalized so that ¢’c = 1.
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Characteristic Roots and Vectors

Powers of a Matrix

To solve for the solution, the above system implies
Ac = Alkc. Therefore,

(A=Xl)c=0

This has non-zero solution if and only if the matrix

(A — AI) is singular or has a zero determinant, or

|A — AI| = 0. The polynomial in A is the characteristic
equation of A.
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Characteristic Roots and Vectors

For example, if A =

5—A 1
24—
= G-XMNG—-1—-2
A —9L+18=0
A = 6,3.

|A — Al
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Spectral Decomposition of a Matrix

Characteristic Roots and Vectors

Powers of a

5—A 1 Cq . 0
24— | |0
- 1
—1 1 0 7
PEo o gl :[0 ! il =+ 0
i - 2 2 NG
e
)\:3’ 2 1 Ci _ 0 ’ Ci — 4 \/52
_2 1 Cy 0 Cy _ﬁ
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Characteristic Roots and Vectors

Powers of a Matrix

The general results of eigenvalues and eigenvectors of a
symmetric matrix A.

@ A K X K symmetric matrix has K distinct
eigenvectors, ¢y, Cp, ** + , CK.-

@ The corresponding eigenvalues A, A,, - -+ , Ag are
real, but need not to be distinctive.

e Eigenvectors of a symmetric matrix are orthogonal,
ie,cic; =0, i # j.
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Characteristic Roots and Vectors

Powers of a Matrix

We can collect the K eigenvectors in the matrix
C = [Cla Coyy v 7CK]3

and the K eigenvalues in the same order in a diagonal
matrix,

A O -+ 0
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Characteristic Roots and Vectors

Powers of a Matrix

From Ac; = A;c;, we have AC = CA. Since eigenvectors
are orthogonal and c/c = 1,

ciep cley -+ cick

/ / /

c,C C-Cy +++ CsC

241 202 2K
Cc'C =

cxCl Cxecy -+ Cxeck

This implies C’ = C~'and CC' = CC~' = 1.
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Diagonalization and Spectral Decomposition

Since AC = C A, pre-multiply both sides by C’, we have

A O - 0
/ . o 0 A -+ 0
CAC=CCA=A= .. . .

0 0 --- Xig
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Characteristic Roots and Vectors

Powers of a Matrix

On the other hand, if we post-multiply both sides by
C~' = C’, we have

A O - 0 -

_ . 0 Ay -+ 0 ‘1

A = CAC—[C17'°°7CK] . :
. C/

0 O - Ak K

K
/
= E AiCiC;

i=1

This is called the spectral decomposition of matrix A.
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Rank of a Matrix

Rank of a Product. For any matrix A and nonsingular
matrices B and C, then rank of BAC is equal to the rank
of A.

pf: It is known that if A isn X K and B is a square matrix
of rank K, then rank(A B)=rank(A), and
rank(A)=rank(A’).

Since C is nonsingular,
rank(BAC)=rank((BA)C)=rank(BA). Also we have
rank(BA)=rank((BA)’)=rank(A’B’). It follows that
rank(A’B")=rank(A’) since B’ is nonsingular if B is
nonsingular.

Therefore, rank(B AC)=rank(A’)=rank(A).
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Characteristic Roots and Vectors

Using the result of diagonalization that C'AC = A and
C’ and C are nonsingular (|A| = |C||A]|C’| # 0), we
have,

rank(C’'AC) = rank(A) = rank(A)

This leads to the following theorem.

Theorem
Rank of a Symmetric Matrix. The rank of a symmetric
matrix is the number of nonzero eigenvalues it contains.
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Characteristic Roots and Vectors

Powers of a Matrix

It appears that the above Theorem applies to symmetric
matrix only. However, note the fact that
rank(A)=rank(A’A), A’ A will always be a symmetric
square matrix. Therefore,

Theorem
Rank of a Matrix. The rank of any matrix A is the number
of nonzero eigenvalues in A’ A.
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Characteristic Roots and Vectors

Trace of a Matrix

The trace of a square K X K matrix is the sum of its
diagonal elements, tr(A) = ZK a;;. Some results about

trace are as follows. -
o tr(cA) = ctr(A), c is a scalar.
o tr(A’) =tr(A).

o tr(A + B) = tr(A) + tr(B).

o tr(lg) =K
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Spectral Decomposition of a Matrix

Characteristic Roots and Vectors - 3
ace of a Matrix

De
Powers o

o tr(AB) = tr(BA).

proof:

LetA:n X K,B:K xn,C=ABand D = BA.
Since Cii = aibi = Z,le Clikbki, and

die = brax = Y7, briaik

n n K
tr(AB) = ZC” = Z Zaikbki

i=1 i=1 k=1
= ZZbk,alk = dek = tr(BA)
k=1 i=1
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Characteristic Roots and Vectors

a a Matrix
Trace of a Matrix

This permutation rule can be applied to any cyclic
permutation in a product:

tr(ABCD) = tr(BCDA) = tr((CDAB) = tr(DABC).

Along the diagonalization rule of matrix A, we can derive
a rule for the trace of a matrix.

tr(C'AC) = tr(ACC") = tr(Al)

K
= tr(A) =tr(A) = Y M

k=1

Theorem
Trace of a Matrix. The trace of a matrix equals the sum of
its eigenvalues.
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Characteristic Roots and Vectors

Determinant of a Matrix
One particular simple way of calculating the determinant
of a matrix is as follows. Since C’'AC = A,

IC’AC| = |A.

IC'AC| = |C'|-|A]-|C| =]|C'|- C1- 141 = C'C] - |A]
= |I]-1A] = |A| = |A| = ka

Theorem

Determinant of a Matrix. The determinant of a matrix
equals the product of its eigenvalues.
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Characteristic Roots and Vectors

Determinant of a Matrix

Powers of a Matrix

Powers of a Matrix
With the result that A = C AC’, we can show the
following theorem.

Theorem

Eigenvalues of a Matrix Power. For any nonsingular
symmetric matrix A = CAC', AKX = CAKC/,
K=..-,-2,-1,0,1,2,---.

In other word, eigenvalues of AX is 1X while eigenvectors
are the same. This is for all intergers.
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Characteristic Roots and Vectors

Determinant of a Matrix
Powers of a Matrix

For real number, we have

Theorem

Real Powers of a Positive Definite Matrix. For a positive
definite matrix A = CAC', A" = CA"C/, for any real
number, r.

A positive definite matrix is a matrix with all eigenvalues
being positive. A matrix is nonnegative definite if all the
eigenvalues are either positive or zero.
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Quadratic Forms and Definite Matrices

Quadratic Forms and Definite Matrices

Many optimization problems involve the quadratic form

n n
g =x"Ax = Z inxjaij
i=1 j=I
where A is a symmetric matrix, x is a column vector. For a
given A,
e Ifx’Ax > (<)O0 for all nonzero x, then A is positive
(negative) definite.
o Ifx’Ax > (<)O0 for all nonzero x, then A is
nonnegative definite or positive semi-definite
(nonpositive definite).
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Quadratic Forms and Definite Matrices

We can use results we have so far to check a matrix for
definiteness. Since A = CAC/,

n
x'Ax = xX'CAC'x =y'Ay = Zkiyiz

i=1
where y = C’x is another vector.

Theorem

Definite Matrices. Let A be a symmetric matrix. If all the
eigenvalues of A are positive (negative), then A is positive
(negative) definite. If some of them are zeros, then A is

nonnegative (nonpositve) if the remainder are positive
(negative).
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Quadratic Forms and Definite Matrices

Nonnegative definite of Matrices

e If A is nonnegative definite, then |A| > 0.
Since determinant is the product of eigenvalues, it is
nonnegative.

e If A is positive definite, so is AL
The eigenvalues of A™" are the reciprocals of
eigenvalues of A which are all positive. Therefore A™!
is also positive definite.

@ The identity matrix / is positive definite.
x'Ix =x'x >0ifx # 0.
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Quadratic Forms and Definite Matrices

e (Veryimportant) If A isn x K with full rank and
n > K, then A’A is positive definite and AA’ is
nonnegative definite.

By assumption that A is with full rank, Ax # 0. So

x'A'Ax =y'y = ny > 0.

For the latter case, since A have more rows than
columns, there is an x such that A’x = 0. We only
have y’'y > 0.
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Quadratic Forms and Definite Matrices

o If A is positive definite amd B is nonsingular, then
B’ A B is positive definite.
x'B’ABx = y’Ay > 0, where y = Bx. But y can not
be zero because B is nonsingular.

e For A to be negative definite, all A’s eigenvalues must
be negative. But te determinant of A is positive if A is
in even order and negative if it is in odd order.
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Calculus and Matrix Algebra

Calculus and Matrix Algebra

We have some definitions to begin with.

y=fx), x =

where y is a scalar and x is a column vector.
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Optimization

Calculus and Matrix Algebra

Then the first derivative or gradient is defined as

ax; h
dy

of | o fa

ox : :

nxl

By fn

[ Jx,;
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Calculus and Matrix Algebra

Optimization

And the second derivatives matrix or Hessian is,

0% f

dxox’
nxn

H

Py
8x18x1
9%y
3)623)61

82y
0X,0X1

%y
0x10x7
82y
3)(23)(2

82y
0X,0x7

%y
0x10x,
82y
3XQ3xn

82y
0X,0Xy,
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Optimization

Calculus and Matrix Algebra

In the case of a linear function

y=a'x =x'a=7__, ax;, where a and x are both
column vectors,

p— 8_y —
8x1 al
dy  9(a'x) o a
—y = — = aXZ = 2 =da
0x 0x :
nxl dy
9y a,
[ 0x,
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Optimization

Calculus and Matrix Algebra

In a set of linear functions,

Y1 X1
2 X2
y = A x,y=| . |.x=]| . [,
nxl nxnnxl : :
Yn Xn
1
ayp app - dip a
2
dz; Az - dyp a
A = = . :[al’a27 van]
n
an1 dp2 --- dpp a
n
i
yi = a,-1x1+a,-2x2+'~~+a,-nxnzg ajjxj =ax
Jj=1

30/38



Optimization

Calculus and Matrix Algebra

The derivatives are

ay; i 0y ;
= a , =
0x ox’
nxl I1xn
- oy T
d(AX) _ ay . a—ff, _
ax’ oox! : N
9Yn
[ ox/ _|
d(AX) _

ax
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Optimization

Calculus and Matrix Algebra

A quadratic form is written as

n n
/
y = xAx:E E XiXjaij

i=1 j=1
[~ 0y n n
A Y Xjaij + Yooy Xiai
y n . n .
9(x"Ax) FrS Zj:l Xjarj + Y Xidio
ax : :
nxl
n n
By D i Xjanj + Do Xiin
| Ox,
ayp dpp - dip X1
ay dxp --- dyp X2
| Qn1 dn2 -0 Gun Xn
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Optimization

Calculus and Matrix Algebra

ayp dzr - dp X1

ap dxp -+ dp2 X2
_|_

Aip Adp -+ Aun Xn

= Ax+Ax=(A+A)x

= 2Ax if A is symmetric .

The Hessian matrix is
9*(x'Ax)
axdx’

nxn

2A
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Optimization

Calculus and Matrix Algebra

Optimization

In a single variable case, y = f(x). The first order
(necessary) condition for an optimum is - 4 — 0. And the

2
second order (sufficient) condition is dy ~ O for a

d2
. d? ..
maximum and ﬁ > ( for a mimimum.
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Optimization

Calculus and Matrix Algebra

For the optimization of a function with several variable
y = f(x) where x is a vector. The first order condition is

And the second order condition is that the Hessian matrix

P
dxox’

must be positive definite for a minimum and negative
definite for a maximum.
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Optimization

Calculus and Matrix Algebra

One example, we want to find x to maximize
R =a'x —x’Ax,where x anda aren x 1, A is
symmetric n X n. The first order condition is

oR 1,
— =a—-2Ax=0,x=—-A"a.
0x 2

nxl

And the Hessian Matrix is
0°R

dxox’
nxn

—2A.

If A is in quadratic form and is positive definite, then
—2A is negative definite. This ensures a maximum.
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Optimization

Calculus and Matrix Algebra

An Example: OLS Regression

vi = x; B +u i=1,2,---,n
I1x1 IxK Kx1 1x1
y = x B+ u.
nxl1 nxK Kxl1 nxl1

The OLS estimator mininizes the sum of squared residuals
noooo oy
Y o, u; = u'u. In other words,

min S(B) = (y —xB)'(y — xpB)
B
= yy—B'x'y —y'xB+ B'x'xpB
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Optimization

Calculus and Matrix Algebra

The first order condition is

d5(B)
p

K x1
Bors = 'x)7'x'y = (x'x) % (xB + u),
= B+ (x'x)"'x'u

—2x'y+2x'xB=0

And the Hessian matrix is

I*S(B)
App’

KxK

2x'x

The Hessian matrix is positive definite. This ensures a
minimum.
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