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Characteristic Roots and Vectors

Also called Eigenvalues and Eigenvectors.
The solution to a set of equations

Ac = λc

where λ is the eigenvalue and c is the eigenvector of a
square matrix A.
If c is a solution, then kc is also a solution for any k.
Therefore, it is usually normalized so that c′c = 1.
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To solve for the solution, the above system implies
Ac = λIK c. Therefore,

(A − λI )c = 0

This has non-zero solution if and only if the matrix
(A − λI ) is singular or has a zero determinant, or
|A − λI | = 0. The polynomial in λ is the characteristic
equation of A.
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For example, if A =

[
5 1
2 4

]
, then

|A − λI | =

∣∣∣∣ 5 − λ 1
2 4 − λ

∣∣∣∣
= (5 − λ)(5 − λ) − 2

= λ2
− 9λ + 18 = 0

λ = 6, 3.
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For the eigenvectors,[
5 − λ 1

2 4 − λ

] [
c1

c2

]
=

[
0
0

]
λ = 6,

[
−1 1
2 −2

] [
c1

c2

]
=

[
0
0

]
,

[
c1

c2

]
= ±

[
1

√
2

1
√

2

]

λ = 3,

[
2 1
2 1

] [
c1

c2

]
=

[
0
0

]
,

[
c1

c2

]
= ±

[
1

√
5

−
2

√
5

]
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The general results of eigenvalues and eigenvectors of a
symmetric matrix A.

A K × K symmetric matrix has K distinct
eigenvectors, c1, c2, · · · , cK .

The corresponding eigenvalues λ1, λ2, · · · , λK are
real, but need not to be distinctive.

Eigenvectors of a symmetric matrix are orthogonal,
i.e., c′

ic j = 0, i 6= j .
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We can collect the K eigenvectors in the matrix

C = [c1, c2, · · · , cK ],

and the K eigenvalues in the same order in a diagonal
matrix,

3 =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
...

...

0 0 · · · λK
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From Aci = λici , we have AC = C3. Since eigenvectors
are orthogonal and c′

ic = 1,

C ′C =


c′

1c1 c′

1c2 · · · c′

1cK

c′

2c1 c′

2c2 · · · c′

2cK
...

...
...

...

c′

K c1 c′

K c2 · · · c′

K cK

 = I

This implies C ′
= C−1 and CC ′

= CC−1
= I .
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Diagonalization and Spectral Decomposition

Since AC = C3, pre-multiply both sides by C ′, we have

C ′ AC = C ′C3 = 3 =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
...

...

0 0 · · · λK
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On the other hand, if we post-multiply both sides by
C−1

= C ′, we have

A = C3C ′
= [c1, · · · , cK ]


λ1 0 · · · 0
0 λ2 · · · 0
...

...
...

...

0 0 · · · λK


 c′

1
...

c′

K


=

K∑
i=1

λicic′

i

This is called the spectral decomposition of matrix A.
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Rank of a Matrix
Rank of a Product. For any matrix A and nonsingular
matrices B and C , then rank of B AC is equal to the rank
of A.
pf: It is known that if A is n × K and B is a square matrix
of rank K , then rank(AB)=rank(A), and
rank(A)=rank(A′).
Since C is nonsingular,
rank(B AC)=rank((B A)C)=rank(B A). Also we have
rank(B A)=rank((B A)′)=rank(A′B ′). It follows that
rank(A′B ′)=rank(A′) since B ′ is nonsingular if B is
nonsingular.
Therefore, rank(B AC)=rank(A′)=rank(A).
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Using the result of diagonalization that C ′ AC = 3 and
C ′ and C are nonsingular (|λ| = |C ||A||C ′

| 6= 0), we
have,

rank(C ′ AC) = rank(A) = rank(3)

This leads to the following theorem.

Theorem
Rank of a Symmetric Matrix. The rank of a symmetric
matrix is the number of nonzero eigenvalues it contains.
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It appears that the above Theorem applies to symmetric
matrix only. However, note the fact that
rank(A)=rank(A′ A), A′ A will always be a symmetric
square matrix. Therefore,

Theorem
Rank of a Matrix. The rank of any matrix A is the number
of nonzero eigenvalues in A′ A.
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Trace of a Matrix

The trace of a square K × K matrix is the sum of its
diagonal elements, tr(A) =

∑K
i=1 ai i . Some results about

trace are as follows.

tr(cA) = ctr(A), c is a scalar.

tr(A′) = tr(A).

tr(A + B) = tr(A) + tr(B).

tr(IK ) = K
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tr(AB) = tr(B A).

proof:
Let A : n × K , B : K × n, C = AB and D = B A.
Since ci i = aibi =

∑K
k=1 aikbki , and

dkk = bkak =
∑n

i=1 bkiaik ,

tr(AB) =

n∑
i=1

ci i =

n∑
i=1

K∑
k=1

aikbki

=

K∑
k=1

n∑
i=1

bkiaik =

K∑
k=1

dkk = tr(B A)
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This permutation rule can be applied to any cyclic
permutation in a product:

tr(ABC D) = tr(BC D A) = tr(C D AB) = tr(D ABC).

Along the diagonalization rule of matrix A, we can derive
a rule for the trace of a matrix.

tr(C ′ AC) = tr(ACC ′) = tr(AI )

= tr(A) = tr(3) =

K∑
k=1

λk

Theorem
Trace of a Matrix. The trace of a matrix equals the sum of
its eigenvalues.
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Determinant of a Matrix
One particular simple way of calculating the determinant
of a matrix is as follows. Since C ′ AC = 3,
|C ′ AC | = |3|.

|C ′ AC | = |C ′
| · |A| · |C | = |C ′

| · |C | · |A| = |C ′C | · |A|

= |I | · |A| = |A| = |3| =

K∏
k=1

λk

Theorem
Determinant of a Matrix. The determinant of a matrix
equals the product of its eigenvalues.
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Powers of a Matrix
With the result that A = C3C ′, we can show the
following theorem.

Theorem
Eigenvalues of a Matrix Power. For any nonsingular
symmetric matrix A = C3C ′, AK

= C3K C ′,
K = · · · , −2, −1, 0, 1, 2, · · · .

In other word, eigenvalues of AK is λK
i while eigenvectors

are the same. This is for all intergers.
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For real number, we have

Theorem
Real Powers of a Positive Definite Matrix. For a positive
definite matrix A = C3C ′, Ar

= C3rC ′, for any real
number, r .

A positive definite matrix is a matrix with all eigenvalues
being positive. A matrix is nonnegative definite if all the
eigenvalues are either positive or zero.
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Many optimization problems involve the quadratic form

q = x ′ Ax =

n∑
i=1

n∑
j=1

xi x jai j

where A is a symmetric matrix, x is a column vector. For a
given A,

If x ′ Ax > (<)0 for all nonzero x , then A is positive
(negative) definite.
If x ′ Ax ≥ (≤)0 for all nonzero x , then A is
nonnegative definite or positive semi-definite
(nonpositive definite).
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We can use results we have so far to check a matrix for
definiteness. Since A = C3C ′,

x ′ Ax = x ′C3C ′x = y′3y =

n∑
i=1

λi y2
i

where y = C ′x is another vector.

Theorem
Definite Matrices. Let A be a symmetric matrix. If all the
eigenvalues of A are positive (negative), then A is positive
(negative) definite. If some of them are zeros, then A is
nonnegative (nonpositve) if the remainder are positive
(negative).
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Nonnegative definite of Matrices

If A is nonnegative definite, then |A| ≥ 0.
Since determinant is the product of eigenvalues, it is
nonnegative.

If A is positive definite, so is A−1.
The eigenvalues of A−1 are the reciprocals of
eigenvalues of A which are all positive. Therefore A−1

is also positive definite.

The identity matrix I is positive definite.
x ′ I x = x ′x > 0 if x 6= 0.
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(Very important) If A is n × K with full rank and
n > K , then A′ A is positive definite and AA′ is
nonnegative definite.
By assumption that A is with full rank, Ax 6= 0. So

x ′ A′ Ax = y′y =

∑
i

y2
i > 0.

For the latter case, since A have more rows than
columns, there is an x such that A′x = 0. We only
have y′y ≥ 0.
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If A is positive definite amd B is nonsingular, then
B ′ AB is positive definite.
x ′B ′ ABx = y′ Ay > 0, where y = Bx . But y can not
be zero because B is nonsingular.

For A to be negative definite, all A’s eigenvalues must
be negative. But te determinant of A is positive if A is
in even order and negative if it is in odd order.
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Optimization

Calculus and Matrix Algebra

We have some definitions to begin with.

y = f (x), x =


x1

x2
...

xn


where y is a scalar and x is a column vector.
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Then the first derivative or gradient is defined as

∂ f
∂x
n×1

=


∂y
∂x1
∂y
∂x2
...
∂y
∂xn

 =


f1

f2
...

fn
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And the second derivatives matrix or Hessian is,

H =
∂2 f

∂x∂x ′

n×n

=


∂2 y

∂x1∂x1

∂2 y
∂x1∂x2

· · ·
∂2 y

∂x1∂xn
∂2 y

∂x2∂x1

∂2 y
∂x2∂x2

· · ·
∂2 y

∂x2∂xn
...

...
...

...
∂2 y

∂xn∂x1

∂2 y
∂xn∂x2

· · ·
∂2 y

∂xn∂xn
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In the case of a linear function
y = a′x = x ′a =

∑n
i=1 ai xi , where a and x are both

column vectors,

∂y
∂x
n×1

=
∂(a′x)

∂x
=


∂y
∂x1
∂y
∂x2
...
∂y
∂xn

 =


a1

a2
...

an

 = a.
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In a set of linear functions,

y
n×1

= A
n×n

x
n×1

, y =


y1

y2
...

yn

 , x =


x1

x2
...

xn

 ,

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

...

an1 an2 · · · ann

 =


a1

a2

...

an

 = [a1, a2, · · · , an]

yi = ai1x1 + ai2x2 + · · · + ainxn =

n∑
j=1

ai j x j = ai x
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The derivatives are

∂yi

∂x
n×1

= ai ′,
∂yi

∂x ′

1×n

= ai

∂(AX)

∂x ′
=

∂y
∂x ′

=


∂y1
∂x ′

∂y2
∂x ′

...
∂yn
∂x ′

 =


a1

a2

...

an

 = A

∂(AX)

∂x
= A′
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A quadratic form is written as

y = x ′ Ax =

n∑
i=1

n∑
j=1

xi x j ai j

∂(x ′ Ax)

∂x
n×1

=


∂y
∂x1
∂y
∂x2
...

∂y
∂xn

 =


∑n

j=1 x j a1 j +
∑n

i=1 xi ai1∑n
j=1 x j a2 j +

∑n
i=1 xi ai2

...∑n
j=1 x j anj +

∑n
i=1 xi ain



=


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

...

an1 an2 · · · ann




x1

x2
...

xn
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+


a11 a21 · · · an1

a12 a22 · · · an2
...

...
...

...

a1n a2n · · · ann




x1

x2
...

xn


= Ax + A′x = (A + A′)x
= 2Ax if A is symmetric .

The Hessian matrix is

∂2(x ′ Ax)

∂x∂x ′

n×n

= 2A
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Optimization

In a single variable case, y = f (x). The first order
(necessary) condition for an optimum is dy

dx = 0. And the

second order (sufficient) condition is d2 y
d2x < 0 for a

maximum and d2 y
d2x > 0 for a mimimum.
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For the optimization of a function with several variable
y = f (x) where x is a vector. The first order condition is

∂ f (x)

∂x
= 0

And the second order condition is that the Hessian matrix

H =
∂2 f (x)

∂x∂x ′

must be positive definite for a minimum and negative
definite for a maximum.
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One example, we want to find x to maximize
R = a′x − x ′ Ax , where x and a are n × 1, A is
symmetric n × n. The first order condition is

∂ R
∂x
n×1

= a − 2Ax = 0, x = −
1

2
A−1a.

And the Hessian Matrix is

∂2 R
∂x∂x ′

n×n

= −2A.

If A is in quadratic form and is positive definite, then
−2A is negative definite. This ensures a maximum.
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An Example: OLS Regression

yi
1×1

= xi

1×K

β

K×1

+ ui
1×1

i = 1, 2, · · · , n

y
n×1

= x
n×K

β

K×1

+ u
n×1

.

The OLS estimator mininizes the sum of squared residuals∑n
i=1 u2

i = u′u. In other words,

min
β

S(β) = (y − xβ)′(y − xβ)

= y′y − β ′x ′y − y′xβ + β ′x ′xβ
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The first order condition is

∂S(β)

∂β
K×1

= −2x ′y + 2x ′xβ = 0

β̂O L S = (x ′x)−1x ′y = (x ′x)−1x ′(xβ + u),

= β + (x ′x)−1x ′u

And the Hessian matrix is

∂2S(β)

∂ββ ′

K×K

= 2x ′x

The Hessian matrix is positive definite. This ensures a
minimum.
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