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Some Terminology

A matrix is a rectangular array of numbers, denoted as

A = [aik] = [A]ik =


a11 a12 · · · a1K

a21 a22 · · · a2K
...

...
...

...

an1 an2 · · · anK



=


a1

a2

...

an

 = [a1, a2, · · · , aK ]
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where

ai
= [ai1, ai2, · · · , ai K ]

is a row vector, and

ak =


a1k

a2k
...

ank


is a column vector.
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A couple of notations we need to know.

dimemsions:
The dimensions of matrix A is n × K .

square matrix:
A is a square matrix if n = K .

symmetric matrix:
Square matrix A is symmetric if aik = aki ∀ i and k.
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diagonal matrix:
Square matrix A is diagonal if aik = 0 for i 6= k.

scalar matrix:
Diagonal matrix A is a scalar matrix if ai i = akk for
i 6= k.

identity matrix:
Scalar matrix A is a identity matrix if ai i = 1 ∀ i ,
denoted as I .
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triangular matrix:
Square matrix A is an upper triangular matrix if
aik = 0 for i > k.
Square matrix A is an lower triangular matrix if
aik = 0 for i < k.

zero matrix:
Matrix A is a zero matrix if aik = 0 ∀ i and k.
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Algebraic Manupulation of Matrices

Equality
If A and B have the same dimensions, then

A = B if aik = bik, ∀i and k.
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Transposition
The transposition of matrix A, denoted as A′, is

B = A′
⇔ bik = aki , ∀i and k.

It follows that

(A′)′
= A

Therefore, if A is symmetric, then A′
= A.
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Addition
If A and B have the same dimensions, then the sum of A
and B is matrix

C = A + B = [aik + bik], or cik = aik + bik

Obviously, the sum of A and a zero matrix is A + O = A.
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Substraction
Substraction of matrices is defined similar to addition.

C = A − B ⇒ cik = aik − bik
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It follows that

A + B = B + A
(A + B) + C = A + (B + C)

(A + B)′
= [aik + bik]

′
= [aki + bki ]

= [aki ] + [bki ] = [aik]
′
+ [bik]

′

= A′
+ B ′
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Multiplication
Inner product of two vectors a and b is

a′b = [a1, a2, · · · , an]


b1

b2
...

bn


= a1b1 + a2b2 + · · · + anbn =

n∑
i=1

aibi

This implies that a′b = b′a.
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The multiplication of matrices is defined as

C
n×T

= A
n×K

B
K×T

ci j = aib j = [ai1, ai2, · · · , aik]


b1 j

b2 j
...

bnj

 =

K∑
k=1

aikbk j

The number of columns of matrix A has to be equal to the
number of rows of matrix B, i.e., A and B has to be
conformable.

14 / 74



Outline
Algebraic Manupulation of Matrices

Geomerty of Matrices
Solutions of a System of Linear Equation

Partitioned Matrices

For example,

AB
2×2

=

[
1 3 2
4 5 −1

]
2×3

 2 4
1 6
0 5


3×2

=

[
5 32

13 41

]

It can be easily shown that the dimensions of B A is 3 × 3.
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In general, AB 6= B A.
Therefore, the order of the multiplication is important.
It the case of AB, we say that B is pre-multiplied by A
while A is post-multiplied by B.
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It also can be easily seen that any matrix multiplied by
identity matrix is still the matrix itself.

AIK =


a11 a12 · · · a1K
a21 a22 · · · a2K
...

...
...

...

an1 an2 · · · anK


n×K


1 0 · · · 0
0 1 · · · 0
...

...
...

...

0 0 · · · 1


K×K

=


a11 a12 · · · a1K
a21 a22 · · · a2K
...

...
...

...

an1 an2 · · · anK

 = A
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And any matrix multiplied by a zero matrix is a zero
matrix, AO = O .
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There are a couple of important properties of
multiplication.

associative law: (AB)C = A(BC).
proof:
Let A : n × K , B : K × T , C : T × Q and let
D

n×T
= AB, then

di j = [AB]i j =

K∑
k=1

aikbk j .
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Let E = DC , then

ei j =

T∑
t=1

di t ctq =

T∑
t=1

( K∑
k=1

aikbkt

)
ctq

=

T∑
t=1

K∑
k=1

aikbkt ctq =

K∑
k=1

T∑
t=1

aikbkt ctq

=

K∑
k=1

( T∑
t=1

bkt ctq

)
aik =

K∑
k=1

fkqaik, F ≡ BC

=

K∑
k=1

aik fkq = giq, G ≡ AF

DC = AF
∴ (AB)C = A(BC)
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distributive law:A(B + C) = AB + AC .
proof:
Let A : n × K , B : K × T , C : K × T and
D = A(B + C), let E = AB, F = AC , then

di j =

K∑
k=1

aik(bk j + ck j)

=

K∑
k=1

(aikbk j + aikck j)

= ei j + fi j

∴ A(B + C) = AB + AC
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transpose of a product: (AB)′
= B ′ A′.

proof: First thing is to check the dimensions.
Let C = (AB)′ and D = B ′ A′. A : n × K ,
B : K × T , then C will be T × n which is the same as
the dimensions of D. Then

ci j = [AB] j i =

K∑
k=1

a jkbki

di j = (i th row of B ′) · ( j th column of A′)

= (i th column of B)′( j th row of A)′
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di j =


b1i

b2i
...

bki


′

[a j1, a j2, · · · , a jk]
′

=

K∑
k=1

bkia jk =

K∑
k=1

a jkbki

= [AB] j i = [(AB)′
]i j = ci j .

D = B ′ A′
= (AB)′
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idempotent matrix
Matrix M is idempotent if and only if
M2

= M M = M .
If M is a symmetric idempotent matrix, then
M ′M = M M = M .
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sum of values.
We can write sum of value in terms of matrix using a

vector i which consists of all one’s, i.e., i =


1
1
...

1

.
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Suppose x is vector of n elements, or a n × 1 matrix,

x =


x1

x2
...

xn

 ,

then i ′x =

n∑
i=1

xi
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Similarly,

x̄ =
1

n

n∑
i=1

xi =
1

n
i ′x

n∑
i=1

x2
i = x ′x

n∑
i=1

xi yi = x ′y = y′x
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Vecotr Spaces

The K elements of a column vector a =


a1

a2
...

aK

 can be

viewed as the corridinates of a point in a K -dimensional
space.
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We can plot vectors in a two-dimensional plan.
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Let a =

[
1
2

]
, a∗

=

[
2
4

]
= 2a,

a∗∗
=

[
−

1
2

−1

]
= −

1
2a,

and c = a + b =

[
1
2

]
+

[
2
1

]
=

[
3
3

]
.

We say that a∗ and a∗∗ are scalar multiplications of vector
a. The 2-dimensional plan is denoted as R2.
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R2 has two important properties.

R2 is closed under scalar multiplication: every
scalar multiple of a vector in the plane is also in the
plane.

R2 is closed under addition: the sum of any two
vectors in the plane if always a vector in the plane.
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Definition
Vector Space. A vector space is any set of vectors that is
closed under scalar multiplication and addition.

Definition
Length of a Vector. The length, or norm, of a vector a is

‖a‖ =
√

a′a
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Definition
Orthogonal Vectors. Two vectors a and b are orthogonal,
written as a⊥b, if and only if

a′b = b′a = 0
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Theorem
The Cosine Law. The angle θ between two vectors a and b
satisfies

cosθ =
a′b

‖a‖ · ‖b‖
proof:
Note that the vector connecting the end points of a and b
is a − b. Then

‖a − b‖
2

= (a − b)′(a − b) = (a′
− b′)(a − b)

= a′a + b′b − 2a′b = ‖a‖
2
+ ‖b‖

2
− 2a′b
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From a simple diagram of a, b and a − b.

‖a − b‖
2

= (‖a‖sinθ)2
+ (‖a‖cosθ − ‖b‖)2

= ‖a‖
2sin2θ + ‖a‖

2cos2θ + ‖b‖
2
− 2‖a‖‖b‖cosθ

= ‖a‖
2
+ ‖b‖

2
− 2‖a‖‖b‖cosθ

Therefore,

cosθ =
‖a‖

2
+ ‖b‖

2
− ‖a − b‖

2

2‖a‖‖b‖
=

a′b
‖a‖‖b‖
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When a and b are orthogonal, a′b = 0, then
cos θ = 0, θ =

π
2 .

Since −1 ≤ cos θ ≤ 1, it follows immediately that

a′b = ‖a‖ · ‖b‖cos θ ≤ ‖a‖ · ‖b‖

This is called Cauchy-Schwartz inequality.
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Linear Combinations of Vectors and Basis
Vectors

It can be shown that any vector in R2 could be obtained as
a linear combination of a and b, i.e.,

c = α1a + α2b, α1, α2 ∈ R

Then a and b are called basis vectors of R2.

37 / 74



Outline
Algebraic Manupulation of Matrices

Geomerty of Matrices
Solutions of a System of Linear Equation

Partitioned Matrices

Vector Spaces
Linear Combinations of Vectors and Basis Vectors
Rank of a Matrix
Determinant of a Matrix

Definition
Basis Vectors. A set of vectors in a vector space is a basis
for that vector if any vector in the vector space can be
written as a linear combination of them.

K vectors are required to form a basis for RK .
From the previous example of vectors, a and b can be
basis vectors for R2, but a and a∗ can not be basis vectors.
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The association among vectors can be classfied as linear
dependence and linear indenpendence.

Definition
Linear Dependence. A set of vectors is linearly dependent
if any one of the vectors in the set can be written as a linear
combination of the others.

Since a∗ is a multiple of a, a, and a∗ are linearly
dependent. Also c = a + b, a, b and c are linear
dependent.
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Definition
Linear Independence. A set of vectors {a1, · · · , aK } is
linearly independent if and only if the only solution to

α1a1 + α2a2 + · · · + αK aK = 0

is α1 = α2 = · · · = αK = 0.
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Definition
Basis for a Vector Space. A basis for a vector space of K
dimensions is any set of K linearly independent vectors
in that space.

A set of more than K vectors in a K -dimensional space
must be linearly dependent.
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Rank of a Matrix

Definition
Column Space. The column space of a matrix is the vector
space that is spanned by its column vectors.

Definition
Column Rank. The column rank of a matrix is the
dimension of the vector space that is spanned by its
columns.

Row space and row rank are defined similarly.
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It follows that the column rank of a matrix is equal to the
largest number of linearly independent column vectors it
contains.
For example,

A =

 1 5 6
2 6 8
7 1 8

 , B =


1 2 3
5 1 5
6 4 5
3 1 4

 , C =

 1 5 6 3
2 1 4 1
3 5 5 4


Since a3 = a1 + a2, the column rank of A is 2, while the
column rank of B is 3.
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B =


1 2 3
5 1 5
6 4 5
3 1 4

 , C =

 1 5 6 3
2 1 4 1
3 5 5 4


Since the column space of C is at most R3, one of the
column vector of C can be written as the linear
combination of the others.

Therefore, the column rank of C is the same as the
column rank of B. But, the columns of C is in fact the
rows of B. It follows that row rank of B equals the
column rank of C .
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Theorem
Equality of Row and Column Rank. The column rank and
row rank of a matrix are equal.

Matrix A is said to have full column rank if its column
rank equals to its number of column.
Similar definition applies to full row rank. Therefore, A
has short column rank while B has full column rank.
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Since row and column rank are the same, we can simply
say rank of a matrix and have the following result,

rank(A) = rank(A′)

≤ min(number of rows, number of columns)
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In a product matrix C = AB, where A is n × K and B is
K × T , then each column of C is

ci =


c1i
c2i
...

cni

 =


a1bi
a2bi

...

anbi

 =


a1

a2

...

an

 bi = Abi

= [a1, a2, · · · , ak]


b1i
b2i
...

bK i

 =

K∑
k=1

akbki

ci is a linear combination of columns of A, so each
column of C is in the column space of A.
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It is possible that the set of columns in C can span this
space, but it is not possible for them to span a
higher-dimensional space.
At best, they could be a full set of linearly independent
vectors in A’s column space. We conclude that the column
rank of C could not be greater than that of A.
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On the other hand, each row of C is a linear combination
of rows of B because

ci
= [ci1, ci2, · · · , ciT ] = [ai b1, ai b2, · · · , ai bK ]

= ai
[b1, b2, · · · , bK ] = ai B

= [ai1, ai2, · · · , ai K ]


b1

b2

...

bK

 =

K∑
k=1

aikbk

Therefore, row rank of C can not be greater than the row
rank of B. Since row rank and column rank are always
equal, we conclude that

rank(AB) ≤ min(rank(A), rank(B)).
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A useful corollary is:
If A is n × K and B is a square matrix of rank K , then
rank(AB)=rank(A).
proof: Note that B is of full rank and the fact that the i th
column of AB is simply a linear combination of A’s
columns by B’s column i , rank of matrixx AB is therefore
equal to rank of A.
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Another fact is

rank(A) = rank(A′ A) = rank(AA′).

proof: rank(A′ A) = rank(AA′) since rank of matrix is
equal to the rank of its transpose. And
rank(A′ A) ≤ min(rank(A′), rank(A)) = rank(A).
Similar argument can apply here. Since the i th column of
AA′ is a linear combination of A’s columns by column i
of A′, or row i of A. Therefore, rank(AA′)=rank(A).
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Determinant of a Matrix

The determinant of a K × K square matrix A can be
written as expansion by cofactors.

|A| =

K∑
j=1

ai j (−1)i+ j
|Ai j |, i = 1, · · · , K

=

K∑
i=1

ai j (−1)i+ j
|Ai j |, j = 1, · · · , K

where Ai j is the matrix obtained from A by deleting row i
and column j . The determinant of Ai j , |Ai j |, is a minor
of A. (−1)i+ j

|Ai j | is a cofactor.
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Properties of determinants.

K = 1, A is a scalar, the determinant of a scalar is the
scalar itself.

K = 2,∣∣∣∣ a11 a12

a21 a22

∣∣∣∣ = a11(−1)1+1
|a22| + (−1)2+1a21|a12|

= a11(−1)1+1
|a22| + (−1)1+2a12|a21|

= a11a22 − a21a12
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K = 3,∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣
= a11

∣∣∣∣ a22 a23

a32 a33

∣∣∣∣− a21

∣∣∣∣ a12 a13

a32 a33

∣∣∣∣+ a31

∣∣∣∣ a12 a13

a22 a23

∣∣∣∣
= a11(a22a33 − a32a23) − a21(a12a33 − a32a13)

+a31(a12a23 − a22a13)

= a11a22a33 + a21a13a32 + a31a12a23 − a11a32a23

−a21a12a33 − a31a22a13
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The determinant of a matrix when K = 2 can be
regarded as the area spanned by the two column
vectors.

The area spanned by a and r · a is zero, where r is a
scalar.

The determinant of a matrix is nonzero if and only if it
has full rank, or the columns are linearly independent.

A square matrix with non-zero determinant is said to
be non-singular. Otherwise, it is singular.
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If D is a diagonal matrix with di being the diagonal
element, then |D| =

∏K
i=1 di .

|cD| = cK
|D|, where c is a scalar.

|AB| = |A||B|,
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Solutions of a System of Linear Equation

Consider the set of n linear equations,

A
K×K

x
K×1

= b
K×1

,

where A is a K × K square matrix, x is a K × 1 vector, and b is also a
K × 1 vector. We try to solve K unknowns from K equations.

If b = 0, this is called a homogeneous system. A non-zero
solution exists if and only if A does not have full rank. In other
words, |A| = 0.

If b 6= 0, this is called a non-homogeneous equation system. Then
a solution exist if |A| 6= 0.
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Inverse Matrices

Solve the system of Ax = b, we need to find a matrix B
such that B A = I , then B Ax = I x = x = Bb.
If such B exists, then it is the inverse of A, denoted as
B = A−1. The solution is

x = A−1b.
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In the case of 2 × 2, we can get the inverse by solving the
equations directly. We have[

a11 a12

a21 a22

]−1

=
1

a11a22 − a12a21

[
a22 −a12

−a21 a11

]
=

1

|A|

[
a22 −a12

−a21 a11

]
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Definition
Nonsingular Matrix. A matrix whose inverse exists is
nonsingular.
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For the higher-dimensional matrix, the general formula
for an inverse matrix is

ai j
=

|C j i |

|A|
,

where ai j is the i j th element of A−1, |C j i | is the j i th
cofactor of A. We can check the simple case of 2 × 2 by
this general formula.
For A to be nonsingular, |A| must be nonzero.
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Some computational results involving inverses are

|A−1
| =

1
|A|

,

since AA−1
= I , then |AA−1

| = |A||A−1
| = |I | = 1.

(A−1)−1
= A,

since AA−1
= I , from the definition of inverse, we can

find B such that B A−1
= I , then B is the inverse of

A−1. In this case, B = A. Therefore, (A−1)−1
= A.

(A−1)′
= (A′)−1,

since AA−1
= I , then

(AA−1)′
= (A−1)′ A′

= I ′
= I . Therefore,

(A′)−1
= (A−1)′.
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If A is symmetric, then A−1 is symmetric.
since A is symmetric, then A′

= A. From the result
stated above, (A−1)′

= (A′)−1
= A−1. Therefore, A−1

is symmetric.

When both inverses exists, (AB)−1
= B−1 A−1.

Let X = (AB)−1, then X AB = I from the definition
of inverse. Since X AB = (X A)B = I , then
X A = B−1. Post-multiply both sides by A−1, we have
X AA−1

= B−1 A−1, or X = B−1 A−1.

(ABC)−1
= C−1(AB)−1

= C−1 B−1 A−1.
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Partitioned Matrices

A =

[
A11 A12

A21 A22

]
, B =

[
B11 B12

B21 B22

]
A + B =

[
A11 + B11 A12 + B12

A21 + B21 A22 + B22

]
AB =

[
A11 A12

A21 A22

] [
B11 B12

B21 B22

]
=

[
A11 B11 + A12 B21 A11 B12 + A12 B22

A21 B11 + A22 B21 A21 B12 + A22 B22

]
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Two cases frequently encountered are of the form[
A1

A2

]′ [ A1

A2

]
= [A′

1 A′

2]

[
A1

A2

]
= [A′

1 A1 + A′

2 A2][
A11 0
0 A22

]′ [ A11 0
0 A22

]
=

[
A′

11 0
0 A′

22

] [
A11 0
0 A22

]
=

[
A′

11 A11 0
0 A′

22 A22

]
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Determinants of Partitioned Matrices∣∣∣∣ A11 0
0 A22

∣∣∣∣ = |A11| · |A22|∣∣∣∣ A11 A12

A21 A22

∣∣∣∣ = |A22| · |A11 − A12 A−1
22 A21|

= |A11| · |A22 − A21 A−1
11 A12|
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Inverse of Partitioned Matrices[
A11 0
0 A22

]−1

=

[
A−1

11 0
0 A−1

22

]
[

A11 A12

A21 A22

]−1

=

[
A−1

11 (I + A12 F2 A21 A−1
11 ) −A−1

11 A12 F2

−F2 A21 A−1
11 F2

]
where F2 = (A22 − A21 A−1

11 A12)
−1.

This can be checked by pre-multiply the above expression
by A and get an identity matrix I .
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Kronecker Product

A
n×K

⊗ B
m×L

=


a11 B a12 B · · · a1K B
a21 B a22 B · · · a2K B

...
...

...
...

an1 B an2 B · · · anK B


nm×K L
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Properties of Kronecker product

(A ⊗ B)(C ⊗ D) = AC ⊗ B D,
pf: Let A : n × K , B : m × L , C : K × P and
D : L × Q.
Therefore, A ⊗ B : nm × K L , C ⊗ D : K L × P Q,
AC : n × P , and B D : m × Q. The dimensions of
the statement is correct.
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(A ⊗ B)(C ⊗ D)

=


a11 B a12 B · · · a1K B
a21 B a22 B · · · a2K B

...
...

...
...

an1 B an2 B · · · anK B




c11 D c12 D · · · c1P D
c21 D c22 D · · · c2P D

...
...

...
...

aK 1 D cK 2 D · · · cK P D



=


a1c1 B D a1c2 B D · · · a1cP B D
a2c1 B D a2c2 B D · · · a2cP B D

...
...

...
...

anc1 B D anc2 B D · · · ancP B D
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(A ⊗ B)(C ⊗ D)

=


a1c1 B D a1c2 B D · · · a1cP B D
a2c1 B D a2c2 B D · · · a2cP B D

...
...

...
...

anc1 B D anc2 B D · · · ancP B D



=


a1c1 a1c2 · · · a1cP

a2c1 a2c2 · · · a2cP
...

...
...

...

anc1 anc2 · · · ancP

 B D = AC ⊗ B D
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[A ⊗ B]
−1

= [A−1
⊗ B−1

], since
[A ⊗ B][A−1

⊗ B−1
] = I ⊗ I = I .

If A is M × M and B is n × n, then
|A ⊗ B| = |A|

n
|B|

M . This can be shown by direct
expansion of the definition of determinant.
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(A ⊗ B)′
= A′

⊗ B ′,

proof:

(A ⊗ B)′

=


a11 B a12 B · · · a1K B
a21 B a22 B · · · a2K B

...
...

...
...

an1 B an2 B · · · anK B


′

=


a11 B ′ a21 B ′

· · · aK 1 B ′

a12 B ′ a22 B ′
· · · aK 2 B ′

...
...

...
...

a1n B ′ a2n B ′
· · · aK n B ′



=


a11 a21 · · · aK 1

a12 a22 · · · aK 2
...

...
...

...

a1n a2n · · · aK n

⊗ B ′
= A′

⊗ B ′
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trace(A ⊗ B) = trace(A) trace(B),

proof:
Let A : K × K , B : L × L ,

trace(A ⊗ B)

= trace


a11 B a12 B · · · a1K B
a21 B a22 B · · · a2K B

...
...

...
...

aK 1 B aK 2 B · · · aK K B


= trace(a11 B) + trace(a22 B) + · · · + trace(aK K B)

= a11 trace(B) + a22 trace(B) + · · · + aK K trace(B)

= (a11 + a22 + · · · + aK K ) trace(B)

= trace(A) trace(B)
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