Introduction to Quantatative Methods
 Final Exam.

September 16, 2005

1. (10%) For the matrices

$$
A=\left[\begin{array}{lll}
1 & 3 & 3 \\
2 & 4 & 1
\end{array}\right], B=\left[\begin{array}{ll}
2 & 4 \\
1 & 5 \\
6 & 2
\end{array}\right]
$$

compute $A B, A^{\prime} B^{\prime}$ and $B A$.
2. (15%) Suppose A is a symmetric and idempotent matrix with full rank K, then
(a) What is the trace of A ?
(b) What is the determinant of A ?
(c) What is the difference between A and the identity matrix I ?
3. (15\%) Briefly answer or prove the following questions.
(a) (5%) Suppose A is a 2×2 symmetric matrix, A^{\prime} s eigenvalues are 1,2 and A^{\prime} s eigenvectors are c_{1} and c_{2}. What are the eigenvalues and eigenvectors of A^{2}.
(b) (5%) Using the fact that $(A B)^{\prime}=B^{\prime} A^{\prime}$ to show $\left(A^{-1}\right)^{\prime}=\left(A^{\prime}\right)^{-1}$.
(c) (5%) (True or False ?) If A is positive definite, then A^{-1} is also positive definite.
4. (15\%) Find the vector x that minimize

$$
y=x^{\prime} A x+2 a^{\prime} x-10
$$

where A is a $K \times K$ symmetric matrix, a and x are both $K \times 1$ vectors.
(a) What is the first order condtion for optimization? Derive the solution for x.
(b) Suppose matrix A is $\left[\begin{array}{cc}-3 & 1 \\ 1 & -3\end{array}\right]$ and $a=\left[\begin{array}{l}2 \\ 2\end{array}\right]$, calculate the optimal x.
(c) Is the optimum in (b) a maximum or a minimum?
5. (15%) Let $\left\{z_{i}\right\}$ be a sequence of i.i.d. (independently and identically distributed) random variables with $\mathrm{E}\left(z_{i}\right)=\mu \neq 0$ and $\operatorname{Var}\left(z_{i}\right)=\sigma^{2}>0$, and let \bar{z}_{n} be the sample mean.
(a) (5\%) What is the limiting distribution of $\sqrt{n}\left(\bar{z}_{n}-\mu\right)$?
(b) (10%) What is the limiting distribution of $\sqrt{n}\left(\sqrt{\bar{z}_{n}}-\sqrt{\mu}\right)$?
6. (30%) We can write a regression model in the matrix form

$$
\begin{gathered}
y=\begin{array}{cc}
y & \beta \quad+\quad u \\
n \times 1 & n \times K K \times 1 \quad n \times 1
\end{array} .
\end{gathered}
$$

Suppose u is distributed with zero mean and covariance matrix Σ, i.e. $\mathrm{E}\left(u u^{\prime}\right)=\Sigma$, and $\mathrm{E}\left(X^{\prime} u\right)=0$. It can be shown that the least square estimator of β is $\hat{\beta}=$ $\left(X^{\prime} X\right)^{-1} X^{\prime} y$.
(a) (5%) Show that Σ is symmetric and positive definite.
(b) (5\%) What is the covariance matrix of $P u$, where P is a $n \times n$ matrix?
(c) (5\%) Find a $n \times n$ matrix P such that the covariance matrix of $P u$ is an identity matrix I_{n}. (Hint: think about the diagonalization and spectral decomposition of Σ.)
(d) (5%) Show that $\hat{\beta}$ is consistent.
(e) (5%) Let $\hat{u} \equiv y-X \hat{\beta}=M y$, where $M=I-X\left(X^{\prime} X\right)^{-1} X^{\prime}$. Show that M is both symmetric and idempotent.
(f) (5\%) Show that $X^{\prime} \hat{u}=0$. In other words, \hat{u} and X are orthogonal.

Suggested Answers for Introduction to Quantatative Methods Final Exam.

September 16, 2005

1

$$
\begin{aligned}
A B & =\left[\begin{array}{ll}
23 & 25 \\
14 & 30
\end{array}\right] \\
A^{\prime} B^{\prime} & =\left[\begin{array}{ll}
1 & 2 \\
3 & 4 \\
3 & 1
\end{array}\right]\left[\begin{array}{lll}
2 & 1 & 6 \\
4 & 5 & 2
\end{array}\right]=\left[\begin{array}{ccc}
10 & 11 & 10 \\
22 & 23 & 26 \\
10 & 8 & 20
\end{array}\right] \\
B A & =\left(A^{\prime} B^{\prime}\right)^{\prime}=\left[\begin{array}{ccc}
10 & 22 & 10 \\
11 & 23 & 8 \\
10 & 26 & 20
\end{array}\right]
\end{aligned}
$$

2a The eigenvalues of an idempotent matrix are either 1 or 0 . Since A is of full rank, all the eigenvalues are 1 . Therefore, $\operatorname{trace}(A)=\sum_{i=1}^{K} \lambda_{i}=K$.

2b $|A|=\prod_{i=1}^{K} \lambda_{i}=1$.
2c Since $\Lambda=\operatorname{diag}(1,1, \cdots, 1)=I$, then $A=C \Lambda C^{\prime}=C C^{\prime}=I . A-I=0$.

3a 1,4 and c_{1}, c_{2}.
3b Since $A A^{-1}=I$, then $\left(A A^{-1}\right)^{\prime}=\left(A^{-1}\right)^{\prime} A^{\prime}=I^{\prime}=I$. Therefore, $\left(A^{\prime}\right)^{-1}=$ $\left(A^{-1}\right)^{\prime}$.

3c The eigenvalues of A^{-1} are the reciprocals of eigenvalues of A which are all positive because A is positive definite. Therefore, A^{-1} is also positive definite.

4a The first order condition is $2 A x+2 a=0$, and $x=-A^{-1} a$.
$\mathbf{4} \mathbf{b} \quad x=-\left[\begin{array}{cc}-3 & 1 \\ 1 & -3\end{array}\right]^{-1}\left[\begin{array}{l}2 \\ 2\end{array}\right]=-\frac{1}{8}\left[\begin{array}{ll}-3 & -1 \\ -1 & -3\end{array}\right]\left[\begin{array}{l}2 \\ 2\end{array}\right]=\left[\begin{array}{l}1 \\ 1\end{array}\right]$.
4c The Hessian matrix is $2 A$. We need to check whether A is positive or negative definite. One way to check this is to find the eigenvlues of A.

$$
\begin{aligned}
\left|\begin{array}{cc}
-3-\lambda & 1 \\
1 & -3-\lambda
\end{array}\right| & =\lambda^{2}+6 \lambda+8=0 \\
\lambda_{1}+\lambda_{2} & =-6, \quad \lambda_{1} \lambda_{2}=8
\end{aligned}
$$

Therefore, $\lambda_{1}, \lambda_{2}<0$. A is negative definite. Optimum in (b) is a maximum.

5a From the Central Limit Theorem,

$$
\sqrt{n}\left(\bar{z}_{n}-\mu\right) \xrightarrow{d} N\left(0, \sigma^{2}\right)
$$

5b Let $a(x)=\sqrt{x}$, from Delta method we have

$$
\sqrt{n}\left(a\left(\bar{z}_{n}\right)-a(\mu)\right) \xrightarrow{d} N\left(0,\left(\frac{d a(\mu)}{d \mu}\right)^{2} \sigma^{2}\right)
$$

and

$$
\sqrt{n}\left(\sqrt{\bar{z}_{n}}-\sqrt{\mu}\right) \xrightarrow{d} N\left(0, \frac{\sigma^{2}}{4 \mu}\right)
$$

6a $\quad \Sigma=\mathrm{E}\left(u u^{\prime}\right)$, then $\Sigma^{\prime}=\left(\mathrm{E}\left(u u^{\prime}\right)\right)^{\prime}=\mathrm{E}\left(u u^{\prime}\right)=\Sigma, \Sigma$ is symmetric.
Let a be a $n \times 1$ column vector, then

$$
\begin{aligned}
a^{\prime} \Sigma a & =\mathrm{E}\left(a^{\prime} u u^{\prime} a\right)=\mathrm{E}\left(\epsilon^{\prime} \epsilon\right), \quad \epsilon \equiv u^{\prime} a \\
& =\mathrm{E}\left(\epsilon^{2}\right)>0
\end{aligned}
$$

Σ is positive definite.
6b

$$
\operatorname{Var}(P u)=\mathrm{E}\left(P u u^{\prime} P^{\prime}\right)=P \Sigma P^{\prime}
$$

6c Since $\Sigma=C \Lambda C^{\prime}$ where columns of C are eigenvectors and the diagonal elements of Λ are eignevalues of Σ. Because Σ is positive definite, its eigenvalues are positive and thus $\Lambda^{1 / 2}$ exists.

We want to find a P such that

$$
P C \Lambda^{1 / 2} \Lambda^{1 / 2} C^{\prime} P^{\prime}=I_{n}
$$

Note that $C^{\prime} C=I$, if $P=\underline{\Lambda^{-1 / 2} C^{\prime}}$, then

$$
\Lambda^{-1 / 2} C^{\prime} C \Lambda^{1 / 2} \Lambda^{1 / 2} C^{\prime} C \Lambda^{-1 / 2}=I_{n}
$$

6d

$$
\begin{aligned}
\hat{\beta} & =\left(X^{\prime} X\right)^{-1} X^{\prime}(X \beta+u) \\
& =\beta+\left(\frac{X^{\prime} X}{n}\right)^{-1} \frac{X^{\prime} u}{n} \\
& \xrightarrow{p} \beta+\left(\mathrm{E}\left(X^{\prime} X\right)\right)^{-1} \cdot \mathrm{E}\left(X^{\prime} u\right)=\beta
\end{aligned}
$$

$\hat{\beta}$ is consistent.
$6 e$

$$
\begin{aligned}
M^{\prime} & =I-\left(X\left(X^{\prime} X\right)^{-1} X^{\prime}\right)^{\prime}=I-X\left(X^{\prime} X\right)^{-1} X^{\prime}=M, M \text { is symmetric. } \\
M M & =\left(I-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right)\left(I-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right) \\
& =I-X\left(X^{\prime} X\right)^{-1} X^{\prime}-X\left(X^{\prime} X\right)^{-1} X^{\prime}+X\left(X^{\prime} X\right)^{-1} X^{\prime} X\left(X^{\prime} X\right)^{-1} X^{\prime} \\
& =I-X\left(X^{\prime} X\right)^{-1} X^{\prime}=M, M \text { is idempotent. }
\end{aligned}
$$

$6 f$

$$
\begin{aligned}
\hat{X}^{\prime} u & =X^{\prime} M y=X^{\prime}\left(I-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right) y \\
& =X^{\prime} y-X^{\prime} y=0
\end{aligned}
$$

