Introduction to Quantatative Methods Final Exam. September 16, 2005

1. (10%) For the matrices

$$A = \begin{bmatrix} 1 & 3 & 3 \\ 2 & 4 & 1 \end{bmatrix}, B = \begin{bmatrix} 2 & 4 \\ 1 & 5 \\ 6 & 2 \end{bmatrix}$$

compute AB, A'B' and BA.

- 2. (15%) Suppose A is a symmetric and idempotent matrix with full rank K, then
 - (a) What is the trace of *A*?
 - (b) What is the determinant of *A*?
 - (c) What is the difference between *A* and the identity matrix *I*?
- 3. (15%) Briefly answer or prove the following questions.
 - (a) (5%) Suppose A is a 2 \times 2 symmetric matrix, A's eigenvalues are 1, 2 and A's eigenvectors are c_1 and c_2 . What are the eigenvalues and eigenvectors of A^2 .
 - (b) (5%) Using the fact that (AB)' = B'A' to show $(A^{-1})' = (A')^{-1}$.
 - (c) (5%) (True or False ?) If A is positive definite, then A^{-1} is also positive definite.
- 4. (15%) Find the vector x that minimize

$$y = x'Ax + 2a'x - 10,$$

where A is a $K \times K$ symmetric matrix, a and x are both $K \times 1$ vectors.

- (a) What is the first order condition for optimization? Derive the solution for x.
- (b) Suppose matrix *A* is $\begin{bmatrix} -3 & 1 \\ 1 & -3 \end{bmatrix}$ and $a = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$, calculate the optimal *x*.
- (c) Is the optimum in (b) a maximum or a minimum?
- 5. (15%) Let $\{z_i\}$ be a sequence of i.i.d. (independently and identically distributed) random variables with $E(z_i) = \mu \neq 0$ and $Var(z_i) = \sigma^2 > 0$, and let \overline{z}_n be the sample mean.
 - (a) (5%) What is the limiting distribution of $\sqrt{n}(\bar{z}_n \mu)$?

- (b) (10%) What is the limiting distribution of $\sqrt{n}(\sqrt{\overline{z_n}} \sqrt{\mu})$?
- 6. (30%) We can write a regression model in the matrix form

$$y = X \quad \beta + u$$

$$n \times 1 \quad n \times K \quad K \times 1 \quad n \times 1$$

Suppose *u* is distributed with zero mean and covariance matrix Σ , i.e. $E(uu') = \Sigma$, and E(X'u) = 0. It can be shown that the least square estimator of β is $\hat{\beta} = (X'X)^{-1}X'y$.

- (a) (5%) Show that Σ is symmetric and positive definite.
- (b) (5%) What is the covariance matrix of Pu, where P is a $n \times n$ matrix?
- (c) (5%) Find a $n \times n$ matrix P such that the covariance matrix of Pu is an identity matrix I_n . (Hint: think about the diagonalization and spectral decomposition of Σ .)
- (d) (5%) Show that $\hat{\beta}$ is consistent.
- (e) (5%) Let $\hat{u} \equiv y X\hat{\beta} = My$, where $M = I X(X'X)^{-1}X'$. Show that M is both symmetric and idempotent.
- (f) (5%) Show that $X'\hat{u} = 0$. In other words, \hat{u} and X are orthogonal.

1

$$AB = \begin{bmatrix} 23 & 25 \\ 14 & 30 \end{bmatrix}$$

$$A'B' = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 & 6 \\ 4 & 5 & 2 \end{bmatrix} = \begin{bmatrix} 10 & 11 & 10 \\ 22 & 23 & 26 \\ 10 & 8 & 20 \end{bmatrix}$$

$$BA = (A'B')' = \begin{bmatrix} 10 & 22 & 10 \\ 11 & 23 & 8 \\ 10 & 26 & 20 \end{bmatrix}$$

2a The eigenvalues of an idempotent matrix are either 1 or 0. Since A is of full rank, all the eigenvalues are 1. Therefore, trace $(A) = \sum_{i=1}^{K} \lambda_i = K$.

2b $|A| = \prod_{i=1}^{K} \lambda_i = 1.$

2c Since $\Lambda = \text{diag}(1, 1, \dots, 1) = I$, then $A = C\Lambda C' = CC' = I$. A - I = 0.

3a 1,4 and *c*₁, *c*₂.

3b Since $AA^{-1} = I$, then $(AA^{-1})' = (A^{-1})'A' = I' = I$. Therefore, $(A')^{-1} = (A^{-1})'$.

3c The eigenvalues of A^{-1} are the reciprocals of eigenvalues of A which are all positive because A is positive definite. Therefore, A^{-1} is also positive definite.

4a The first order condition is 2Ax + 2a = 0, and $x = -A^{-1}a$.

4b
$$x = -\begin{bmatrix} -3 & 1 \\ 1 & -3 \end{bmatrix}^{-1} \begin{bmatrix} 2 \\ 2 \end{bmatrix} = -\frac{1}{8} \begin{bmatrix} -3 & -1 \\ -1 & -3 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}.$$

4c The Hessian matrix is 2A. We need to check whether A is positive or negative definite. One way to check this is to find the eigenvlues of A.

$$\begin{vmatrix} -3 - \lambda & 1 \\ 1 & -3 - \lambda \end{vmatrix} = \lambda^2 + 6\lambda + 8 = 0$$
$$\lambda_1 + \lambda_2 = -6, \ \lambda_1 \lambda_2 = 8$$

Therefore, λ_1 , $\lambda_2 < 0$. *A* is negative definite. Optimum in (b) is a maximum.

5a From the Central Limit Theorem,

$$\sqrt{n}(\bar{z}_n-\mu) \stackrel{d}{\rightarrow} N(0,\sigma^2)$$

5b Let $a(x) = \sqrt{x}$, from Delta method we have

$$\sqrt{n}(a(\bar{z}_n) - a(\mu)) \xrightarrow{d} N\left(0, \left(\frac{da(\mu)}{d\mu}\right)^2 \sigma^2\right)$$

and

$$\sqrt{n}(\sqrt{\overline{z}_n} - \sqrt{\mu}) \xrightarrow{d} N\left(0, \frac{\sigma^2}{4\mu}\right).$$

6a $\Sigma = E(uu')$, then $\Sigma' = (E(uu'))' = E(uu') = \Sigma$, Σ is symmetric. Let *a* be a *n* × 1 column vector, then

$$a'\Sigma a = E(a'uu'a) = E(\epsilon'\epsilon), \quad \epsilon \equiv u'a$$

= $E(\epsilon^2) > 0$

 Σ is positive definite.

6b

$$\operatorname{Var}(Pu) = \operatorname{E}(Puu'P') = P\Sigma P'$$

6c Since $\Sigma = C \Lambda C'$ where columns of *C* are eigenvectors and the diagonal elements of Λ are eigenvalues of Σ . Because Σ is positive definite, its eigenvalues are positive and thus $\Lambda^{1/2}$ exists.

We want to find a P such that

$$PC\Lambda^{1/2}\Lambda^{1/2}C'P' = I_n$$

Note that C'C = I, if $P = \underline{\Lambda^{-1/2}C'}$, then

$$\Lambda^{-1/2} C' C \Lambda^{1/2} \Lambda^{1/2} C' C \Lambda^{-1/2} = I_n$$

6d

$$\hat{\beta} = (X'X)^{-1}X'(X\beta + u)$$

$$= \beta + \left(\frac{X'X}{n}\right)^{-1}\frac{X'u}{n}$$

$$\stackrel{p}{\rightarrow} \beta + \left(\mathbb{E}(X'X)\right)^{-1} \cdot \mathbb{E}(X'u) = \beta.$$

 $\hat{\beta}$ is consistent.

6e

$$M' = I - (X(X'X)^{-1}X')' = I - X(X'X)^{-1}X' = M, M \text{ is symmetric.}$$

$$MM = (I - X(X'X)^{-1}X') (I - X(X'X)^{-1}X')$$

$$= I - X(X'X)^{-1}X' - X(X'X)^{-1}X' + X(X'X)^{-1}X'X(X'X)^{-1}X'$$

$$= I - X(X'X)^{-1}X' = M, M \text{ is idempotent.}$$

6f

$$\hat{X}'u = X'My = X'(I - X(X'X)^{-1}X')y$$

= $X'y - X'y = 0$