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Random Variable

Probability Distributions
@ For a discrete random variable,
f(x) = Prob(X = x)

The axioms of probability requires that
1 0<Prob(X =x)<1.
2 )y fx) =1
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e For a continuous random variable, the probability
density function (pdf) is defined so that f(x) > 0 and

I Prob(a < x <b) = [” f(x)dx > 0.
2 [T2 f)d(x) = 1.
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Cumulative Distribution Function

@ For discrete random variable,
F(x) =) y., f(x) =Prob(X < x),and
f(xi) = F(x;) — F(xi—y).

@ For a continuous variable,

F(x) = [*_ f(t)dtand f(x) = &
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Expectations of a Random Variable

Discuss the continuous random variable only.
Mean of a random variable is,

E(x) = /xf(x)dx
E(gx)) = /g(X)f(X)dx

If g(x) = a + bx for constants a and b, then
E(a + bx) = a + bE(x).
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Then the variance of a random variable is

Var(x) = B((x —p)?) = /(x — 1) f(x)dx

= E(x?) —u?
E(XZ) — 0,2 +M2
Var(a + bx) = b*Var(x)

where © = E(x).
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For any two functions g;(x) and g,(x),

E(g1(x) + &2(x)) = E(g1(x)) + E(g2(x)).

For the general case of a possibly nonlinear g(x),

E(g(x)) = fg(X)f(X)dx

Var(g(x)) = /(g(x)—E(g(X)))zf(X)dx



By a linear Taylor expansion around the mean of x, u, we

have

12

g(x) g(u) + &' () (x — w)
then E(g(x)) g(w)
Var(g(x)) =~ (g'(n)*)Var(x)

12
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Some Specific Probability Distributions Gy
! istribution
i-s red, t and F Distributions

Probability Distributions

The Normal Distribution

) 1 1 a—w? 5
f(xlu,d)za ¢ 2 e? ~ N(u,07)

Normal distributions are preserved under linear
transformation.

Ifx ~ N(u, 0?), then (a + bx) ~ N(a + bu, b*c?)

One particular important transformation is z = =5, so
thata = —£,b = i,thenz ~ N(0, 1).
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Some Specific Probability Distributions

Normal Distribution
Chi-squared, t and F Distributions

The density function of the standard normal distribution
is

12
e 2%

d(2) = N

f<x>=1¢<x_’“‘).
o o

We also denote the c.d.f. of ¢ as P.
Since normal distribution is symmetric on both sides of

zero, ®(—z) =1 — D (2).

and
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Some Specific Probability Distributions Normal Distribution

Chi-squared, t and F Distributions

The Chi-Squared, t, and F Distributions

These distributions are derived from the normal
distribution and arise from as sums of n or n; and n,
other variables. The results are

e Ifz ~ N(0, 1), then
x =z~ x*(1).

That is chi-squared with one degree of freedom. It can
be shown that E(x) = 1 and Var(x) = 2.
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Some Specific Probability Distributions Normal Distribution

Chi-squared, t and F Distributions

e Ifx,, -, x, are n independent x?(1) variables, then

D xi~ xPm).

i=1

The mean and variance are
EQ . xi) =Y  E(x;) =nand
Var(3F_ x;) = > Var(x;) = 2n.
e Ifz;,i = 1,---,n,areindependent N (0, 1) variables,

then
>~ ).

i=1
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Some Specific Probability Distributions Normal Distribution

Chi-squared, t and F Distributions

o Ifz;,i =1,---,n,areindependent N (0, 0%)
variables, then

3 (Z) ~ .

i=1

e If x; and x, are independent chi-squared variables with
n, and n, degrees of freedom, then

X1+ X ~ x*(n + ny).
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Some Specific Probability Distributions Normal Distribution

Chi-squared, t and F Distributions

e If x; and x, are two independent chi-squared variables
with 77, and n, degrees of freedom, then the ratio

xl/”l

F(ny,ny) =
X2/ 1,

has the F' distribution with n; and n, degrees of
freedom.
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Some Specific Probability Distributions Normal Distribution

Chi-squared, t and F Distributions

e Ifz ~ N(0,1) and x ~ x?*(n) and is independent of
z, then

has the ¢ distribution with n degrees of freedom.

t distribution has the same shape as the normal
distribution but has thicker tails. When the degrees of
freedom is beyond 100, ¢ is equivlent to the standard
normal distribution.

o Iff ~ t(n), then > = £L1 = F(1, n).

x/n

16 /60



Joint Distributions

A joint density function for two random variables X and
Y denoted f(x, y) is defined so that

b d
Prob(a <x <bc<y<d) — f / F(x, y)dydx
fx,y) > 0

f f fx.ydydx = 1
xJy

F(x,y)=Prob(X <x,Y <Y) = fx /y f(t,s)dsdt
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The marginal probability density is

fr(x) = /f(x,S)ds,
y

and similar for f)(y).

f&x,y) = fi(x) f,(y) ¢ x and y are independent.

If x and y are independent, then from the definition of
cdf, F(x,y) = Fx(x)Fy(y).
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Expectations in a joint distribution is defined similar to
expectation is a sigle random variable,

B(x) = f *fi(x)dx = f f xf (x, )dydx
x xJy
Var(x) = f (x — E(r) fu(x)dx

_ / f (x — EG))2f (x, y)dydx
xJy
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Covariance and Correlation

Cov(x,y) = E((x —uy)(y — :uy))
= E(xy) — txpty = 0y

If x and y are independent, then f(x, y) = f,(x) fy(y).
Therefore,

o = / (X — 10 — ) f (6 )y dx
xJy
_ /fu—mmwuﬂmmnww¢x
xJy

_ /u_ugﬂumf/@—u»n@My
X y

= E(x — ux)E(y —puy) =0
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Joint Distributions

The size of 0, depends on the own variance, it can be
normalize to

o
Fey = 2 e (—1,1).
xOy

which is called correlation coefficient.
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Some general results regarding expectations in a joint

distribution.

E(ax + by +c) = aE(x)+ bE(y) +c¢
Var(ax + by + ¢) Var(ax + by)
= a*Var(x) + b*Var(y)
+2abCov(x, y)
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Conditioning in a Bivariate Distribution
Conditional distributions are

fx,y) fx,y)

fylx) =

fony =0

If x and y are independent, then f(y[x) = f,(y) and
fxly) = fix).
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Joint Distributions

Bivariate Normal Distribution

fl,y) = : 2e—1/2((€§6§—2ﬂexey)/(1—pz))
2mo0y/1 — p

X - o

€ = Mx,eyzu’pz Xy

Ox Oy 00y

(x,y) ~ N, ty, 07,05, p)

@ The marginal distributions are normal.

fo@) = Nt 02, f(3) = N(uy, 02).
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@ The conditional distributions are normal:

FOR) = Nea+ Bx, 02(1 — p*)
o = [y _IBMx

Oy
=2
O_X

@ x and y are independent if and only if p = 0.
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Multivariate Distributions

Multivariate Distributions

X 1s a random vectors with n dimensions, then

"1 E(x1)
M2 E(x2)
H, = . = . = E(x)
Mn E(x,)
(x — ) (x —p)
(xr —p) e — ) o —p)@2 —p2) -0 (o — ) — 1)
B (2 —p2)(xr — pup) (2 — )2 — p2) -+ (%2 — p2) (X — M)
n — ) (X1 — 1) p — ) (X2 — p2) -+ (Xn — pn) (Xp — tn)
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Multivariate Distributions

E((x —p)(x —p)) =

Oni

012
O

On2

= E(xx) — pE(x") — E)u' 4+ pup'
= E(xx)—uu' =X

Y is called the covariance matrix.
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Multivariate Distributions

In a set of linear functions,

E(a'x)
Var(a'x)

an

E((a'x —ad'p)(a'x —a'n)")

= E(d'(x—wx—mw'a)=adE(x—wx—pna
a'Xa

If y = Ax, then

E(y) = E(Ax) = AE(x) = Au
Var(y) = E((Ax — Ap)(Ax — Ap)") = E(A(x — w)(xp)A”)
= AE((x —p)(xu))A' = AT A’
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Multivariate Normal Distribution

Multivariate Distributions

Multivariate Normal Distribution

f(x) = (zn)—n/zm|—l/ze(—l/zxx—u)’z—l(x—u)

Any linear function of a vector of joint normally
distributed variabels is also normally distributed.
IfA~ N(u, X), then

Ax +b~NAn+b, AZA).
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Multivariate Normal Distribution

Multivariate Distributions

Consider a quadratic form in a standard normal vector x,
g = x'Ax. Then

g=xCAC'x =y Ay=) hy, y=Clx

i=1

Since x is normally distributed, y is also normally
distributed.

If A is idempotent, A’s are either 1 or 0.

Therefore, if A is idempotent then g is a x* distribution
with degree of freedom being the number of non-zero
eigenvalues.
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Multivariate Normal Distribution

Theorem
Distribution of a Standardized Normal Vector. If
x~ N(u, ), then T72(x — ) ~ N(0, I).

From the above theorem,

(72 = ) T2 (x — ) ~ x2(n),

then

x—w)EPET P (x—p) = (k=)' TN x—p) ~ x(n).
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Samples and Sampling Distributions

Samples and Sampling Distributions

A sample of n observations denoted x1, x;, - - - , X, 1sa
random sample if the n observations are drawn
independently from the same population, or probability
distribution, f(x;, 0).

The sample of observations, denoted {x1, X,, - - - , x,,} or
{xi}i=1.... n is said to be independently, identically
distributed, or i.i.d.
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Samples and Sampling Distributions

Some often-used descriptive statistics are

-y = 1§ .
mean: X = > ., X;.
median:

n—1

noo_zy271/2
standard deviation: s, = [M] .

n B} B}
. (i —X)(yi— .
covariance: Sy, = iz (i OGS ), covariance

n—1
matrix: § = [s;;].

. Syv . .
correlation: ryy, = %, correlation matrix:
X2y

R = [rij]-
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Samples and Sampling Distributions

Definition
Statistic. A statistic is any function computed from the
data in a sample.

Statistic is a random variable with a probability
distribution called a sampling distribution.
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Samples and Sampling Distributions

Point Estimation of Parameters
Estimator is a rule for using the data to estimate the
parameter.
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Samples and Sampling Distributions

Estimation in a Finite Sample

Definition

Unbiased Estimator.

An estimator of a parameter 6 is unbiased if the mean of
its sampling distribution is 6. Formally, Ed) = 6.

There are so many unbiased estimator. For example, the
first observation is an unbiased estimator of the mean. we
need more criteria.
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Samples and Sampling Distributions

Definition

Efficient Unbiased Estimator.

An unbiased estimator él is more efficient than another
unbiased estimator éz if Var(éz) — Var(él) is a positive
definite matrix.
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Large Sample Distribution Theory

Large Sample Distribution Theory

Definition

Convergence in Probability The random variable x,,
converges in probability to a constant c if

lim,,_, oo Prob(|x, — ¢| > €) = 0 for any positive €.
For example, x,, takes two values, 0 and n with
probabilities 1 — % and % As n increases, the probability
of taking the second point becomes less and less. It will
converges to 0 in probability.

This is denoted as plim x,, = c.

38/60



Large Sample Distribution Theory

Theorem

Convergence in Mean Square. If x,, has mean [L, and
variance o, such that the ordinary limits of i, and o, are ¢
and 0 respectively. Then x, converges in mean square to ¢
and plim x,, = c.
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Large Sample Distribution Theory

Theorem

Chebychev’s Inequality. If x,, is a random variable and ¢
and € are constants, then Prob(|x,, — c| > €) < M

To establish Chebychev’s inequality, we use another result.
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Large Sample Distribution Theory

Theorem
Markov’s Inequality. If y, is nonnegative random variable
E(yn)

and é is a positive constant, then Prob(y, > 8) < =5*.

pf: E(yn) = Prob(y, < 8)E(ynlyn < &) + Prob(y, =
S)E(Ynlyn = 8).

Since y, is nonnegative, both terms must be nonnegative,
so E(y,) > Prob(y, > 8)E(y,|y. = 6).

Since E(y, |y, = 8) = &, E(y,) = Prob(y, > 6)J, so
Prob(y, > §) < %,
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Large Sample Distribution Theory

To prove Chebychev’s inequality, let y, be (x, — ¢)?isa
nonnegative random variable, and § be €2. Since Yo >0
implies |x,, — c| > €, then

2
Prob(|x, — ¢| > €) = Prob(|x, — ¢| > €) < Hu ]
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Large Sample Distribution Theory

Take a sepcial case of ¢ = w,,, we have
Prob(|x, — py| > €) < —..

If lim E(x,) = cand lim Var(x,) = 0, then

n—o0 n—oo

2
o

lim Prob(|x, —c¢| > €) < lim —'21 = 0.

n—oo n—oo
Therefore,

plim x, = c.

In other word, convergence in mean square implies
convergence in probability.
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Large Sample Distribution Theory

Definition
Consistent Estimator. An estimator 6, of a parameter 0 is
a consistent estimator of 6 if and only if

plim 6, = 6.
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Large Sample Distribution Theory

Theorem

Consistency of the Sample Mean. The mean of a random
sample from any population with finite mean w and finite
variance o * is a consistent estimator of L.

pf: Since E(x,,) = %Z?:] E(x;) = i and Var(x,) = 072,
then Xx,, converges in mean square to @ which implies

plim x, = u.
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Large Sample Distribution Theory

Corollary to the above theorem is the Consistency of a
Mean of Functions: In random sampling, for any function
g(x),if E(g(x)) and Var(g(x)) are finite constants, then

plim 3 ¢ () = B(g(x).
i=1

pf: Define y; = g(x;), then E(y;) = E(g(x)) and
Var(y;) = Var(g(x)) are finite constants. Apply the
theorem above will prove the result.
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Large Sample Distribution Theory

Theorem
Slutsky Theorem. For a continuous function g(x,) that is
not a function of n,

plim g(xn) = g(plim -xn)-

Theorem
Jensen’s Inequality. If g(x,) is a concave function of x,,

then g(E(x,)) > E(g(x,)).
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Large Sample Distribution Theory

Theorem
Rules for Probability Limits. If x,, and y, are random
variables with plim x,, = ¢ and plim y. = d, then

plim (x, +y,) = c+d
plimx,y, = cd
plimx,/y, = c/difd #0
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Large Sample Distribution Theory

If W,, is a matrix whose elements are random variables and

if plim W,, = €2, then
plim W' = Q™"

If X, and Y,, are random matrices with plim X,, = A and
plim Y, = B, then

plim X, Y, = AB.
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Large Sample Distribution Theory

Definition
Convergence in Distribution.
X, converges in distribution to a random variable x with

cdf F(x)if lim |F,(x) — F(x)| = 0 at all continuous

n— oo
points of F'(x).
F(x) is the limiting distribution of x, denoted as

xn%x.
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Large Sample Distribution Theory

This does not require x,, to converge at all. For example,
i i i i
Prob(xn = 1) =3 + 1 and Prob(xn = 2) =5 PR
The distribution converges to a distribtution with
probability % in the two points, but x, never converges to

any constants.
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Large Sample Distribution Theory

Theorem
Rules for Limiting Distributions.

e Ifx, — x andplim y, = c, then

which means that the limiting distribution of x,, y, is the

distribution of cx. Also,

Xpn+Yy, = x+c

X, X
— —> —,c#0
Yn c
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Large Sample Distribution Theory

e Ifx, — x and g(x) is a continuous function, then
g(x,) = g(x).

e If y, has a limiting distribution and
plim (x, — y,) = 0, then x,, has the same limiting
distribution as y,,.
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Large Sample Distribution Theory

Theorem

Central Limit Theorem (Univariate). If x|, x,, - - - , X,
are a randome sample from a probability distribution with
finite mean (u and finite variance o and x, = % Y X
then

Vn(E, — n) — N, 07,
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Large Sample Distribution Theory

Theorem

Central Limit Theorem with Unequal Variances. Suppose
that {x;},i =1, --- , n, is a set of random variables with
finite means ; and finite positive variance 0. Let

fin = 5 Y iy Wi and 6 = + 37 o7 If no sigle term
dominates this average variance, which we could state as

. o; . .
lim 2% — 0, and if the average variance converges to a
nUn
n— oo
: —2 o =2
finite constant, 6~ = lim o), then

V%, — i) = N(0,5%).
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Large Sample Distribution Theory

V%, = ftn) = N(0,5%).

This version of CLT does not require the variables come
from the same underlying distribution. It requires only
that the mean be a mixture of many random variables, and
none of which is large compared with their sum.
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Large Sample Distribution Theory

For multivariate cases, we have

Theorem

Lindberg-Levy Central Limit Theorem. If x,, - - - , X, are
a random sample from a multivariate distribution with finite
mean vector |4 and finite positive definite matrix Q, then

V&, — w) — N, 0),

- 1 n )
where X, = + ) _ Xj.
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Large Sample Distribution Theory

Theorem

Lindberg-Feller Central Limit Theorem. If x,, - - - , x,,
are a sample of random vectors such that E(x;) = w;,
Var(x;) = Q;, and all mixed third moments of the
multivariate distribution are finite. Assume that

lim Q, = Q, where Q is a finite, positive definite matrix
n— o0

and that for every i,
n
lim (Q,)'Q; = lim () 0:)~' Qi =0.
n—o0 n—oo (=1
then

V%, — i) — N, Q),
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Large Sample Distribution Theory

Delta method of getting the limiting distribution of a
function. Having the fact that

g(zy) = g(n) + g (M) (z, — ) for univariate case, and
c(z,) = c(p) + & ” for multivariate case.

Theorem

Limiting Normal Distribution of a Function. If
Vn(z, — ) — N(0,0?) and g(z,) is a continuous
function not involving n, then

Vn(g(z,) — g(w)) — N0, g'(w’o?).
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Large Sample Distribution Theory

Theorem
Limiting Normal Distribution of a Set of Functions. If

Jn(z, — ) = N(0, X) and c(z,) is a set of ] continuous
functions not involving n, then

Vi(e(z,) — e(p)) = N0, C(WEC(W)).

where C (1) = agfff).
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