Probability and Distribution Theory

Ming-Ching Luoh

2005.9.13

イロト 人間 トイヨト イヨト

1/60

Outline

Random Variables Some Specific Probability Distributions Joint Distributions Multivariate Distributions Samples and Sampling Distribution Large Sample Distribution Theory

Random Variables

Some Specific Probability Distributions

Normal Distribution Chi-squared, t and F Distributions

Joint Distributions

Multivariate Distributions Multivariate Normal Distribution

Samples and Sampling Distributions

Large Sample Distribution Theory

Random Variable

Probability Distributions

• For a **discrete** random variable,

$$f(x) = \operatorname{Prob}(X = x)$$

The axioms of probability requires that

1
$$0 \le \operatorname{Prob}(X = x) \le 1.$$

2 $\sum_{x} f(x) = 1.$

- For a **continuous** random variable, the probability density function (pdf) is defined so that $f(x) \ge 0$ and
 - 1 Prob $(a \le x \le b) = \int_a^b f(x) dx \ge 0.$

$$2 \quad \int_{-\infty}^{+\infty} f(x)d(x) = 1.$$

Cumulative Distribution Function

- For discrete random variable, $F(x) = \sum_{X \le x} f(x) = \operatorname{Prob}(X \le x)$, and $f(x_i) = F(x_i) - F(x_{i-1})$.
- For a continuous variable, $F(x) = \int_{-\infty}^{x} f(t)dt$ and $f(x) = \frac{dF(x)}{dx}$.

5/60

Expectations of a Random Variable

Discuss the continuous random variable only. Mean of a random variable is,

$$E(x) = \int_{x} xf(x)dx$$
$$E(g(x)) = \int_{x} g(x)f(x)dx$$

If g(x) = a + bx for constants a and b, then E(a + bx) = a + bE(x).

Then the variance of a random variable is

$$Var(x) = E((x - \mu)^2) = \int_x (x - \mu)^2 f(x) dx$$
$$= E(x^2) - \mu^2$$
$$E(x^2) = \sigma^2 + \mu^2$$
$$Var(a + bx) = b^2 Var(x)$$

where $\mu = E(x)$.

For any two functions $g_1(x)$ and $g_2(x)$,

$$E(g_1(x) + g_2(x)) = E(g_1(x)) + E(g_2(x)).$$

For the general case of a possibly nonlinear g(x),

$$E(g(x)) = \int_{x} g(x) f(x) dx$$

Var(g(x)) =
$$\int_{x} (g(x) - E(g(x)))^{2} f(x) dx$$

By a linear Taylor expansion around the mean of x, μ , we have

$$g(x) \simeq g(\mu) + g'(\mu)(x - \mu)$$

then E(g(x)) $\simeq g(\mu)$
Var(g(x)) $\simeq (g'(\mu)^2)$ Var(x)

Normal Distribution Chi-squared, t and F Distributions

Probability Distributions

The Normal Distribution

$$f(x|\mu,\sigma^2) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\frac{(x-\mu)^2}{\sigma^2}} \sim N(\mu,\sigma^2)$$

Normal distributions are preserved under linear transformation.

If
$$x \sim N(\mu, \sigma^2)$$
, then $(a + bx) \sim N(a + b\mu, b^2\sigma^2)$

One particular important transformation is $z = \frac{x-\mu}{\sigma}$, so that $a = -\frac{\mu}{\sigma}$, $b = \frac{1}{\sigma}$, then $z \sim N(0, 1)$.

Normal Distribution Chi-squared, t and F Distributions

The density function of the standard normal distribution is

$$\phi(z) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}z^2}$$

and

$$f(x) = \frac{1}{\sigma}\phi\left(\frac{x-\mu}{\sigma}\right).$$

We also denote the c.d.f. of ϕ as Φ . Since normal distribution is symmetric on both sides of zero, $\Phi(-z) = 1 - \Phi(z)$.

Normal Distribution Chi-squared, t and F Distributions

The Chi-Squared, t, and F Distributions

These distributions are derived from the normal distribution and arise from as sums of n or n_1 and n_2 other variables. The results are

• If
$$z \sim N(0, 1)$$
, then

$$x=z^2\sim\chi^2(1).$$

That is chi-squared with one degree of freedom. It can be shown that E(x) = 1 and Var(x) = 2.

Normal Distribution Chi-squared, t and F Distributions

• If x_1, \dots, x_n are *n* independent $\chi^2(1)$ variables, then

$$\sum_{i=1}^n x_i \sim \chi^2(n).$$

The mean and variance are

$$E(\sum_{i=1}^{n} x_i) = \sum_{i=1}^{n} E(x_i) = n$$
 and
 $Var(\sum_{i=1}^{n} x_i) = \sum_{i=1}^{n} Var(x_i) = 2n$.

• If z_i , $i = 1, \dots, n$, are independent N(0, 1) variables, then

$$\sum_{i=1}^{n} z_i^2 \sim \chi^2(n).$$

Normal Distribution Chi-squared, t and F Distributions

If z_i, i = 1, · · · , n, are independent N(0, σ²) variables, then

$$\sum_{i=1}^n \left(\frac{z_i}{\sigma}\right)^2 \sim \chi^2(n).$$

• If x_1 and x_2 are independent chi-squared variables with n_1 and n_2 degrees of freedom, then

$$x_1 + x_2 \sim \chi^2(n_1 + n_2).$$

Normal Distribution Chi-squared, t and F Distributions

• If *x*₁ and *x*₂ are two independent chi-squared variables with *n*₁ and *n*₂ degrees of freedom, then the ratio

$$F(n_1, n_2) = \frac{x_1/n_1}{x_2/n_2}$$

has the *F* distribution with n_1 and n_2 degrees of freedom.

Normal Distribution Chi-squared, t and F Distributions

If z ~ N(0, 1) and x ~ χ²(n) and is independent of z, then

$$t(n) = \frac{z}{\sqrt{x/n}}$$

has the t distribution with n degrees of freedom. t distribution has the same shape as the normal distribution but has thicker tails. When the degrees of freedom is beyond 100, t is equivlent to the standard normal distribution.

• If
$$t \sim t(n)$$
, then $t^2 = \frac{z^2/1}{x/n} = F(1, n)$.

Joint Distributions

F

A joint density function for two random variables X and Y denoted f(x, y) is defined so that

$$\operatorname{Prob}(a \le x \le b, c \le y \le d) = \int_{a}^{b} \int_{c}^{d} f(x, y) dy dx$$
$$f(x, y) \ge 0$$
$$\int_{x} \int_{y} f(x, y) dy dx = 1$$
$$(x, y) = \operatorname{Prob}(X \le x, Y \le Y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(t, s) ds dt$$

The marginal probability density is

$$f_x(x) = \int_y f(x,s) ds,$$

and similar for $f_y(y)$.

 $f(x, y) = f_x(x)f_y(y) \Leftrightarrow x$ and y are independent.

If *x* and *y* are independent, then from the definition of cdf, $F(x, y) = F_x(x)F_y(y)$.

Expectations in a joint distribution is defined similar to expectation is a sigle random variable,

$$E(x) = \int_{x} x f_{x}(x) dx = \int_{x} \int_{y} x f(x, y) dy dx$$

$$Var(x) = \int_{x} (x - E(x))^{2} f_{x}(x) dx$$

$$= \int_{x} \int_{y} (x - E(x))^{2} f(x, y) dy dx$$

Covariance and Correlation

$$Cov(x, y) = E((x - \mu_x)(y - \mu_y))$$
$$= E(xy) - \mu_x \mu_y = \sigma_{xy}$$

If *x* and *y* are independent, then $f(x, y) = f_x(x)f_y(y)$. Therefore,

$$\sigma_{xy} = \int_{x} \int_{y} (x - \mu_{x})(y - \mu_{y}) f(x, y) dy dx$$

= $\int_{x} \int_{y} (x - \mu_{x})(y - \mu_{y}) f_{x}(x) f_{y}(y) dy dx$
= $\int_{x} (x - \mu_{x}) f_{x}(x) dx \int_{y} (y - \mu_{y}) f_{y}(y) dy$
= $E(x - \mu_{x}) E(y - \mu_{y}) = 0$

20/60

The size of σ_{xy} depends on the own variance, it can be normalize to

$$r_{xy} = \frac{\sigma_{xy}}{\sigma_x \sigma_y} \in (-1, 1).$$

which is called **correlation coefficient**.

Some general results regarding expectations in a joint distribution.

$$E(ax + by + c) = aE(x) + bE(y) + c$$

$$Var(ax + by + c) = Var(ax + by)$$

$$= a^{2}Var(x) + b^{2}Var(y)$$

$$+2abCov(x, y)$$

Conditioning in a Bivariate Distribution Conditional distributions are

$$f(y|x) = \frac{f(x, y)}{f_x(x)}, f(x|y) = \frac{f(x, y)}{f_y(y)}$$

If x and y are independent, then $f(y|x) = f_y(y)$ and $f(x|y) = f_x(x)$.

Bivariate Normal Distribution

$$f(x, y) = \frac{1}{2\pi\sigma_x\sigma_y\sqrt{1-\rho^2}}e^{-1/2\left((\epsilon_x^2\epsilon_y^2-2\rho\epsilon_x\epsilon_y)/(1-\rho^2)\right)}$$

$$\epsilon_x = \frac{x-\mu_x}{\sigma_x}, \epsilon_y = \frac{y-\mu_y}{\sigma_y}, \rho = \frac{\sigma_{xy}}{\sigma_x\sigma_y}$$

$$(x, y) \sim N(\mu_x, \mu_y, \sigma_x^2, \sigma_y^2, \rho)$$

• The marginal distributions are normal. $f_x(x) = N(\mu_x, \sigma_x^2), f_y(y) = N(\mu_y, \sigma_y^2).$

• The conditional distributions are normal:

$$f(y|x) = N(\alpha + \beta x, \sigma_y^2(1 - \rho^2))$$

$$\alpha = \mu_y - \beta \mu_x$$

$$\beta = \frac{\sigma_{xy}}{\sigma_x^2}$$

• x and y are independent if and only if $\rho = 0$.

Multivariate Normal Distribution

Multivariate Distributions

=

x is a random vectors with n dimensions, then

$$\mu = \begin{bmatrix} \mu_1 \\ \mu_2 \\ \vdots \\ \mu_n \end{bmatrix} = \begin{bmatrix} E(x_1) \\ E(x_2) \\ \vdots \\ E(x_n) \end{bmatrix} = E(x)$$

$$(x - \mu)(x - \mu)'$$

$$= \begin{bmatrix} (x_1 - \mu_1)(x_1 - \mu_1) & (x_1 - \mu_1)(x_2 - \mu_2) & \cdots & (x_1 - \mu_1)(x_n - \mu_n) \\ (x_2 - \mu_2)(x_1 - \mu_1) & (x_2 - \mu_2)(x_2 - \mu_2) & \cdots & (x_2 - \mu_2)(x_n - \mu_n) \\ \vdots & \vdots & \vdots & \vdots \\ (x_n - \mu_n)(x_1 - \mu_1) & (x_n - \mu_n)(x_2 - \mu_2) & \cdots & (x_n - \mu_n)(x_n - \mu_n) \end{bmatrix}$$

Multivariate Normal Distribution

$$E((x - \mu)(x - \mu)') = \begin{bmatrix} \sigma_{11} & \sigma_{12} & \cdots & \sigma_{1n} \\ \sigma_{21} & \sigma_{22} & \cdots & \sigma_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ \sigma_{n1} & \sigma_{n2} & \cdots & \sigma_{nn} \end{bmatrix}$$
$$= E(xx') - \mu E(x') - E(x)\mu' + \mu\mu'$$
$$= E(xx') - \mu\mu' = \Sigma$$

Σ is called the **covariance matrix**.

Multivariate Normal Distribution

In a set of linear functions,

$$E(a'x) = a'\mu Var(a'x) = E((a'x - a'\mu)(a'x - a'\mu)') = E(a'(x - \mu)(x - \mu)'a) = a'E((x - \mu)(x - \mu)')a = a'\Sigma a$$

If y = Ax, then

$$E(y) = E(Ax) = AE(x) = A\mu$$

Var(y) = $E((Ax - A\mu)(Ax - A\mu)') = E(A(x - \mu)(x\mu)A')$
= $AE((x - \mu)(x\mu))A' = A\Sigma A'$

Multivariate Normal Distribution

Multivariate Normal Distribution

$$f(x) = (2\pi)^{-n/2} |\Sigma|^{-1/2} e^{(-1/2)(x-\mu)'\Sigma^{-1}(x-\mu)}$$

Any linear function of a vector of joint normally distributed variabels is also normally distributed. If $A \sim N(\mu, \Sigma)$, then

$$Ax + b \sim N(A\mu + b, A\Sigma A').$$

Multivariate Normal Distribution

Consider a quadratic form in a standard normal vector x, q = x'Ax. Then

$$q = x'C\Lambda C'x = y'\Lambda y = \sum_{i=1}^{n} \lambda_i y_i^2, \ y = C'x$$

Since x is normally distributed, y is also normally distributed.

If A is idempotent, λ 's are either 1 or 0. Therefore, if A is idempotent then q is a χ^2 distribution with degree of freedom being the number of non-zero eigenvalues.

Multivariate Normal Distribution

Theorem

Distribution of a Standardized Normal Vector. If $x \sim N(\mu, \Sigma)$, then $\Sigma^{-1/2}(x - \mu) \sim N(0, I)$. From the above theorem,

$$(\Sigma^{-1/2}(x-\mu))'\Sigma^{-1/2}(x-\mu) \sim \chi^2(n),$$

then

$$(x-\mu)'\Sigma^{-1/2}\Sigma^{-1/2}(x-\mu) = (x-\mu)'\Sigma^{-1}(x-\mu) \sim \chi^2(n).$$

Samples and Sampling Distributions

A sample of *n* observations denoted x_1, x_2, \dots, x_n , is a **random sample** if the *n* observations are drawn **independently** from the **same population**, or probability distribution, $f(x_i, \theta)$. The sample of observations, denoted $\{x_1, x_2, \dots, x_n\}$ or $\{x_i\}_{i=1,\dots,n}$ is said to be independently, identically distributed, or *i.i.d*.

Some often-used descriptive statistics are

- mean: $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$.
- median:
- standard deviation: $s_x = \left[\frac{\sum_{i=1}^n (x_i \bar{x})^2}{n-1}\right]^{1/2}$.
- covariance: $s_{xy} = \frac{\sum_{i=1}^{n} (x_i \bar{x})(y_i \bar{y})}{n-1}$, covariance matrix: $S = [s_{ij}]$.
- correlation: $r_{xy} = \frac{s_{xy}}{s_x s_y}$, correlation matrix: $R = [r_{ij}]$.

Definition

Statistic. A statistic is any function computed from the data in a sample.

Statistic is a random variable with a probability distribution called a **sampling distribution**.

Point Estimation of Parameters

Estimator is a rule for using the data to estimate the parameter.

Estimation in a Finite Sample

Definition

Unbiased Estimator.

An estimator of a parameter θ is unbiased if the mean of its sampling distribution is θ . Formally, $E(\hat{\theta}) = \theta$.

There are so many unbiased estimator. For example, the first observation is an unbiased estimator of the mean. we need more criteria.

Definition

Efficient Unbiased Estimator.

An unbiased estimator $\hat{\theta}_1$ is more efficient than another unbiased estimator $\hat{\theta}_2$ if $Var(\hat{\theta}_2) - Var(\hat{\theta}_1)$ is a **positive definite** matrix.

Large Sample Distribution Theory

Definition

Convergence in Probability The random variable x_n converges in probability to a constant c if $\lim_{n\to\infty} \operatorname{Prob}(|x_n - c| > \epsilon) = 0$ for any positive ϵ . For example, x_n takes two values, 0 and *n* with probabilities $1 - \frac{1}{n}$ and $\frac{1}{n}$. As *n* increases, the probability of taking the second point becomes less and less. It will converges to 0 in probability. This is denoted as plim $x_n = c$.

Theorem

Convergence in Mean Square. If x_n has mean μ_n and variance σ_n^2 such that the ordinary limits of μ_n and σ_n^2 are c and 0 respectively. Then x_n converges in mean square to c and plim $x_n = c$.

Theorem **Chebychev's Inequality.** If x_n is a random variable and cand ϵ are constants, then $\operatorname{Prob}(|x_n - c| > \epsilon) \leq \frac{\operatorname{E}[(x_n - c)^2]}{\epsilon^2}$. To establish Chebychev's inequality, we use another result.

Theorem

Markov's Inequality. If y_n is nonnegative random variable and δ is a positive constant, then $\operatorname{Prob}(y_n \ge \delta) \le \frac{\operatorname{E}(y_n)}{\delta}$. pf: $\operatorname{E}(y_n) = \operatorname{Prob}(y_n < \delta) \operatorname{E}(y_n | y_n < \delta) + \operatorname{Prob}(y_n \ge \delta) \operatorname{E}(y_n | y_n > \delta)$.

Since y_n is nonnegative, both terms must be nonnegative, so $E(y_n) \ge \operatorname{Prob}(y_n \ge \delta) E(y_n | y_n \ge \delta)$. Since $E(y_n | y_n \ge \delta) \ge \delta$, $E(y_n) \ge \operatorname{Prob}(y_n \ge \delta)\delta$, so $\operatorname{Prob}(y_n \ge \delta) \le \frac{E(y_n)}{\delta}$.

To prove Chebychev's inequality, let
$$y_n$$
 be $(x_n - c)^2$ is a
nonnegative random variable, and δ be ϵ^2 . Since $y_n \ge \delta$
implies $|x_n - c| \ge \epsilon$, then
 $\operatorname{Prob}(|x_n - c| \ge \epsilon) = \operatorname{Prob}(|x_n - c| > \epsilon) \le \frac{\operatorname{E}[(x_n - c)^2]}{\epsilon^2}$.

Take a sepcial case of $c = \mu_n$, we have $\operatorname{Prob}(|x_n - \mu_n| > \epsilon) \le \frac{\sigma_n^2}{\epsilon^2}.$ If $\lim_{n \to \infty} \operatorname{E}(x_n) = c$ and $\lim_{n \to \infty} \operatorname{Var}(x_n) = 0$, then $\lim_{n \to \infty} \operatorname{Prob}(|x_n - c| > \epsilon) \le \lim_{n \to \infty} \frac{\sigma_n^2}{\epsilon^2} = 0.$

Therefore,

plim $x_n = c$.

In other word, **convergence in mean square implies convergence in probability**.

Definition Consistent Estimator. An estimator $\hat{\theta}_n$ of a parameter θ is

a consistent estimator of θ if and only if

plim
$$\hat{\theta}_n = \theta$$
.

<ロト</p>
<日ト</p>
<10</p>
<10</p

Theorem

Consistency of the Sample Mean. The mean of a random sample from any population with finite mean μ and finite variance σ^2 is a consistent estimator of μ .

pf: Since $E(\bar{x}_n) = \frac{1}{n} \sum_{i=1}^{n} E(x_i) = \mu$ and $Var(\bar{x}_n) = \frac{\sigma^2}{n}$, then \bar{x}_n converges in mean square to μ which implies plim $\bar{x}_n = \mu$.

Corollary to the above theorem is the **Consistency of a Mean of Functions:** In random sampling, for any function g(x), if E(g(x)) and Var(g(x)) are finite constants, then

$$\operatorname{plim} \frac{1}{n} \sum_{i=1}^{n} g(x_i) = \operatorname{E}(g(x)).$$

pf: Define $y_i = g(x_i)$, then $E(y_i) = E(g(x))$ and $Var(y_i) = Var(g(x))$ are finite constants. Apply the theorem above will prove the result.

Theorem Slutsky Theorem. For a continuous function $g(x_n)$ that is not a function of n,

$$\operatorname{plim} g(x_n) = g(\operatorname{plim} x_n).$$

Theorem

Jensen's Inequality. If $g(x_n)$ is a concave function of x_n , then $g(E(x_n)) \ge E(g(x_n))$.

Theorem Rules for Probability Limits. *If* x_n *and* y_n *are random variables with* plim $x_n = c$ *and* plim $y_c = d$, *then*

$$plim (x_n + y_n) = c + d$$

$$plim x_n y_n = cd$$

$$plim x_n / y_n = c/d \text{ if } d \neq 0$$

If W_n is a matrix whose elements are random variables and if plim $W_n = \Omega$, then

plim
$$W_n^{-1} = \Omega^{-1}$$
.

If X_n and Y_n are random matrices with plim $X_n = A$ and plim $Y_n = B$, then

$$plim X_n Y_n = AB.$$

Definition

Convergence in Distribution.

 x_n converges in distribution to a random variable x with cdf F(x) if $\lim_{n \to \infty} |F_n(x) - F(x)| = 0$ at all continuous points of F(x).

F(x) is the limiting distribution of x, denoted as

$$x_n \to x$$
.

This does not require x_n to converge at all. For example, $\operatorname{Prob}(x_n = 1) = \frac{1}{2} + \frac{1}{n+1}$ and $\operatorname{Prob}(x_n = 2) = \frac{1}{2} - \frac{1}{n+1}$. The distribution converges to a distribution with probability $\frac{1}{2}$ in the two points, but x_n never converges to any constants.

Theorem Rules for Limiting Distributions.

• If
$$x_n \to x$$
 and plim $y_n = c$, then

$$x_n y_n \to c x$$
,

which means that the limiting distribution of $x_n y_n$ is the distribution of cx. Also,

$$\begin{array}{rccc} x_n + y_n & \to & x + c \\ & \frac{x_n}{y_n} & \to & \frac{x}{c}, c \neq 0 \end{array}$$

52/60

- If $x_n \to x$ and g(x) is a continuous function, then $g(x_n) \to g(x)$.
- If y_n has a limiting distribution and plim (x_n - y_n) = 0, then x_n has the same limiting distribution as y_n.

Theorem Central Limit Theorem (Univariate). If x_1, x_2, \dots, x_n are a randome sample from a probability distribution with finite mean μ and finite variance σ^2 and $\bar{x}_n = \frac{1}{n} \sum_{i=1}^n x_i$, then

$$\sqrt{n}(\bar{x}_n-\mu) \to N(0,\sigma^2),$$

イロト 不得 とくき とくきとう き

54/60

Theorem

Central Limit Theorem with Unequal Variances. Suppose that $\{x_i\}, i = 1, \dots, n$, is a set of random variables with finite means μ_i and finite positive variance σ_i^2 . Let $\bar{\mu}_n = \frac{1}{n} \sum_{i=1}^n \mu_i$ and $\bar{\sigma}_n^2 = \frac{1}{n} \sum_{i=1}^n \sigma_i^2$. If no sigle term dominates this average variance, which we could state as $\lim_{n \to \infty} \frac{\max(\sigma_i)}{n\bar{\sigma}_n^2} = 0$, and if the average variance converges to a finite constant, $\bar{\sigma}^2 = \lim_{n \to \infty} \bar{\sigma}_n^2$, then

$$\sqrt{n}(\bar{x}_n-\bar{\mu}_n)\to N(0,\bar{\sigma}^2).$$

$$\sqrt{n}(\bar{x}_n-\bar{\mu}_n)\to N(0,\bar{\sigma}^2).$$

This version of CLT does not require the variables come from the same underlying distribution. It requires only that the mean be a mixture of many random variables, and none of which is large compared with their sum.

For multivariate cases, we have

Theorem Lindberg-Levy Central Limit Theorem. If x_1, \dots, x_n are a random sample from a multivariate distribution with finite mean vector μ and finite positive definite matrix Q, then

$$\sqrt{n}(\bar{x}_n-\mu) \to N(0, Q),$$

57/60

where $\bar{x}_n = \frac{1}{n} \sum_{i=1}^n x_i$.

Theorem

Lindberg-Feller Central Limit Theorem. If x_1, \dots, x_n are a sample of random vectors such that $E(x_i) = \mu_i$, $Var(x_i) = Q_i$, and all mixed third moments of the multivariate distribution are finite. Assume that $\lim_{n \to \infty} \bar{Q}_n = Q$, where Q is a finite, positive definite matrix and that for every i,

$$\lim_{n \to \infty} (n\bar{Q}_n)^{-1}Q_i = \lim_{n \to \infty} (\sum_{i=1}^n Q_i)^{-1}Q_i = 0.$$

then

$$\sqrt{n}(\bar{x}_n - \bar{\mu}_n) \to N(0, Q), \quad \text{for a product solution}$$

Delta method of getting the limiting distribution of a function. Having the fact that

 $g(z_n) \simeq g(\mu) + g'(\mu)(z_n - \mu)$ for univariate case, and $c(z_n) = c(\mu) + \frac{\partial c(\mu)}{\partial \mu'}$ for multivariate case.

Theorem

Limiting Normal Distribution of a Function. If $\sqrt{n}(z_n - \mu) \rightarrow N(0, \sigma^2)$ and $g(z_n)$ is a continuous function not involving *n*, then

$$\sqrt{n}(g(z_n)-g(\mu)) \rightarrow N(0,g'(\mu)^2\sigma^2).$$

Theorem

Limiting Normal Distribution of a Set of Functions. If $\sqrt{n}(z_n - \mu) \rightarrow N(0, \Sigma)$ and $c(z_n)$ is a set of *J* continuous functions not involving *n*, then

$$\sqrt{n}(c(z_n) - c(\mu)) \rightarrow N(0, C(\mu)\Sigma C(\mu)').$$

where $C(\mu) = \frac{\partial c(\mu)}{\partial \mu'}$.