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Random Variable

Probability Distributions

For a discrete random variable,

f (x) = Prob(X = x)

The axioms of probability requires that
1 0 ≤ Prob(X = x) ≤ 1.
2

∑
x f (x) = 1.
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For a continuous random variable, the probability
density function (pdf) is defined so that f (x) ≥ 0 and

1 Prob(a ≤ x ≤ b) =
∫ b

a f (x)dx ≥ 0.

2
∫

+∞

−∞
f (x)d(x) = 1.
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Cumulative Distribution Function

For discrete random variable,
F(x) =

∑
X≤x f (x) = Prob(X ≤ x), and

f (xi) = F(xi) − F(xi−1).

For a continuous variable,
F(x) =

∫ x
−∞

f (t)dt and f (x) =
d F(x)

dx .
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Expectations of a Random Variable
Discuss the continuous random variable only.
Mean of a random variable is,

E(x) =

∫
x

x f (x)dx

E(g(x)) =

∫
x

g(x) f (x)dx

If g(x) = a + bx for constants a and b, then
E(a + bx) = a + bE(x).
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Then the variance of a random variable is

Var(x) = E((x − µ)2) =

∫
x
(x − µ)2 f (x)dx

= E(x2) − µ2

E(x2) = σ 2
+ µ2

Var(a + bx) = b2Var(x)

where µ = E(x).
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For any two functions g1(x) and g2(x),

E(g1(x) + g2(x)) = E(g1(x)) + E(g2(x)).

For the general case of a possibly nonlinear g(x),

E(g(x)) =

∫
x

g(x) f (x)dx

Var(g(x)) =

∫
x
(g(x) − E(g(x)))2 f (x)dx

8 / 60



Outline
Random Variables

Some Specific Probability Distributions
Joint Distributions

Multivariate Distributions
Samples and Sampling Distributions

Large Sample Distribution Theory

By a linear Taylor expansion around the mean of x , µ, we
have

g(x) ' g(µ) + g′(µ)(x − µ)

then E(g(x)) ' g(µ)

Var(g(x)) ' (g′(µ)2)Var(x)
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Normal Distribution
Chi-squared, t and F Distributions

Probability Distributions

The Normal Distribution

f (x |µ, σ 2) =
1

σ
√

2π
e−

1
2

(x−µ)2

σ2 ∼ N (µ, σ 2)

Normal distributions are preserved under linear
transformation.

If x ∼ N (µ, σ 2), then (a + bx) ∼ N (a + bµ, b2σ 2)

One particular important transformation is z =
x−µ

σ
, so

that a = −
µ

σ
, b =

1
σ

, then z ∼ N (0, 1).
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Normal Distribution
Chi-squared, t and F Distributions

The density function of the standard normal distribution
is

φ(z) =
1

√
2π

e−
1
2 z2

and

f (x) =
1

σ
φ

(
x − µ

σ

)
.

We also denote the c.d.f. of φ as 8.
Since normal distribution is symmetric on both sides of
zero, 8(−z) = 1 − 8(z).
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Normal Distribution
Chi-squared, t and F Distributions

The Chi-Squared, t, and F Distributions
These distributions are derived from the normal
distribution and arise from as sums of n or n1 and n2

other variables. The results are

If z ∼ N (0, 1), then

x = z2
∼ χ 2(1).

That is chi-squared with one degree of freedom. It can
be shown that E(x) = 1 and Var(x) = 2.
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Normal Distribution
Chi-squared, t and F Distributions

If x1, · · · , xn are n independent χ 2(1) variables, then

n∑
i=1

xi ∼ χ 2(n).

The mean and variance are
E(

∑n
i=1 xi) =

∑n
i=1 E(xi) = n and

Var(
∑n

i=1 xi) =
∑n

i=1 Var(xi) = 2n.

If zi , i = 1, · · · , n, are independent N (0, 1) variables,
then

n∑
i=1

z2
i ∼ χ 2(n).
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Normal Distribution
Chi-squared, t and F Distributions

If zi , i = 1, · · · , n, are independent N (0, σ 2)

variables, then

n∑
i=1

(zi

σ

)2
∼ χ 2(n).

If x1 and x2 are independent chi-squared variables with
n1 and n2 degrees of freedom, then

x1 + x2 ∼ χ 2(n1 + n2).
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Normal Distribution
Chi-squared, t and F Distributions

If x1 and x2 are two independent chi-squared variables
with n1 and n2 degrees of freedom, then the ratio

F(n1, n2) =
x1/n1

x2/n2

has the F distribution with n1 and n2 degrees of
freedom.
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Normal Distribution
Chi-squared, t and F Distributions

If z ∼ N (0, 1) and x ∼ χ 2(n) and is independent of
z, then

t (n) =
z

√
x/n

has the t distribution with n degrees of freedom.
t distribution has the same shape as the normal
distribution but has thicker tails. When the degrees of
freedom is beyond 100, t is equivlent to the standard
normal distribution.

If t ∼ t (n), then t2
=

z2/1
x/n = F(1, n).
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Joint Distributions
A joint density function for two random variables X and
Y denoted f (x, y) is defined so that

Prob(a ≤ x ≤ b, c ≤ y ≤ d) =

∫ b

a

∫ d

c
f (x, y)dydx

f (x, y) ≥ 0∫
x

∫
y

f (x, y)dydx = 1

F(x, y) = Prob(X ≤ x, Y ≤ Y ) =

∫ x

−∞

∫ y

−∞

f (t, s)dsdt
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The marginal probability density is

fx(x) =

∫
y

f (x, s)ds,

and similar for fy(y).

f (x, y) = fx(x) fy(y) ⇔ x and y are independent.

If x and y are independent, then from the definition of
cdf, F(x, y) = Fx(x)Fy(y).
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Expectations in a joint distribution is defined similar to
expectation is a sigle random variable,

E(x) =

∫
x

x fx(x)dx =

∫
x

∫
y

x f (x, y)dydx

Var(x) =

∫
x
(x − E(x))2 fx(x)dx

=

∫
x

∫
y
(x − E(x))2 f (x, y)dydx
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Covariance and Correlation

Cov(x, y) = E((x − µx)(y − µy))

= E(xy) − µxµy = σxy

If x and y are independent, then f (x, y) = fx(x) fy(y).
Therefore,

σxy =

∫
x

∫
y
(x − µx)(y − µy) f (x, y)dy dx

=

∫
x

∫
y
(x − µx)(y − µy) fx(x) fy(y)dy dx

=

∫
x
(x − µx) fx(x)dx

∫
y
(y − µy) fy(y)dy

= E(x − µx)E(y − µy) = 0
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The size of σxy depends on the own variance, it can be
normalize to

rxy =
σxy

σxσy
∈ (−1, 1).

which is called correlation coefficient.
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Some general results regarding expectations in a joint
distribution.

E(ax + by + c) = aE(x) + bE(y) + c
Var(ax + by + c) = Var(ax + by)

= a2Var(x) + b2Var(y)

+2abCov(x, y)
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Conditioning in a Bivariate Distribution
Conditional distributions are

f (y|x) =
f (x, y)

fx(x)
, f (x |y) =

f (x, y)

fy(y)

If x and y are independent, then f (y|x) = fy(y) and
f (x |y) = fx(x).
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Bivariate Normal Distribution

f (x, y) =
1

2πσxσy
√

1 − ρ2
e−1/2((ε2

xε2
y−2ρεxεy)/(1−ρ2))

εx =
x − µx

σx
, εy =

y − µy

σy
, ρ =

σxy

σxσy

(x, y) ∼ N (µx, µy, σ
2
x , σ

2
y , ρ)

The marginal distributions are normal.
fx(x) = N (µx, σ

2
x ), fy(y) = N (µy, σ

2
y ).
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The conditional distributions are normal:

f (y|x) = N (α + βx, σ 2
y (1 − ρ2))

α = µy − βµx

β =
σxy

σ 2
x

x and y are independent if and only if ρ = 0.
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Multivariate Normal Distribution

Multivariate Distributions

x is a random vectors with n dimensions, then

µ =


µ1

µ2
...

µn

 =


E(x1)

E(x2)
...

E(xn)

 = E(x)

(x − µ)(x − µ)′

=


(x1 − µ1)(x1 − µ1) (x1 − µ1)(x2 − µ2) · · · (x1 − µ1)(xn − µn)

(x2 − µ2)(x1 − µ1) (x2 − µ2)(x2 − µ2) · · · (x2 − µ2)(xn − µn)
...

...
...

...

(xn − µn)(x1 − µ1) (xn − µn)(x2 − µ2) · · · (xn − µn)(xn − µn)


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Multivariate Normal Distribution

E((x − µ)(x − µ)′) =


σ11 σ12 · · · σ1n

σ21 σ22 · · · σ2n
...

...
...

...

σn1 σn2 · · · σnn


= E(xx ′) − µE(x ′) − E(x)µ′

+ µµ′

= E(xx ′) − µµ′
= 6

6 is called the covariance matrix.
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Multivariate Normal Distribution

In a set of linear functions,

E(a′x) = a′µ

Var(a′x) = E((a′x − a′µ)(a′x − a′µ)′)

= E(a′(x − µ)(x − µ)′a) = a′E((x − µ)(x − µ)′)a
= a′6a

If y = Ax , then

E(y) = E(Ax) = AE(x) = Aµ

Var(y) = E((Ax − Aµ)(Ax − Aµ)′) = E(A(x − µ)(xµ)A′)

= AE((x − µ)(xµ))A′
= A6 A′
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Multivariate Normal Distribution

Multivariate Normal Distribution

f (x) = (2π)−n/2
|6|

−1/2e(−1/2)(x−µ)′6−1(x−µ)

Any linear function of a vector of joint normally
distributed variabels is also normally distributed.
If A ∼ N (µ, 6), then

Ax + b ∼ N (Aµ + b, A6 A′).
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Multivariate Normal Distribution

Consider a quadratic form in a standard normal vector x ,
q = x ′ Ax . Then

q = x ′C3C ′x = y′3y =

n∑
i=1

λi y2
i , y = C ′x

Since x is normally distributed, y is also normally
distributed.
If A is idempotent, λ’s are either 1 or 0.
Therefore, if A is idempotent then q is a χ 2 distribution
with degree of freedom being the number of non-zero
eigenvalues.
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Multivariate Normal Distribution

Theorem
Distribution of a Standardized Normal Vector. If
x ∼ N (µ, 6), then 6−1/2(x − µ) ∼ N (0, I ).

From the above theorem,

(6−1/2(x − µ))′6−1/2(x − µ) ∼ χ 2(n),

then

(x−µ)′6−1/26−1/2(x−µ) = (x−µ)′6−1(x−µ) ∼ χ 2(n).
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Samples and Sampling Distributions

A sample of n observations denoted x1, x2, · · · , xn, is a
random sample if the n observations are drawn
independently from the same population, or probability
distribution, f (xi , θ).
The sample of observations, denoted {x1, x2, · · · , xn} or
{xi}i=1,··· ,n is said to be independently, identically
distributed, or i.i.d .
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Some often-used descriptive statistics are

mean: x̄ =
1
n

∑n
i=1 xi .

median:

standard deviation: sx =

[∑n
i=1(xi−x̄)2

n−1

]1/2
.

covariance: sxy =

∑n
i=1(xi−x̄)(yi−ȳ)

n−1 , covariance
matrix: S = [si j ].

correlation: rxy =
sxy
sx sy

, correlation matrix:

R = [ri j ].
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Definition
Statistic. A statistic is any function computed from the
data in a sample.

Statistic is a random variable with a probability
distribution called a sampling distribution.
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Point Estimation of Parameters
Estimator is a rule for using the data to estimate the
parameter.
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Estimation in a Finite Sample

Definition
Unbiased Estimator.
An estimator of a parameter θ is unbiased if the mean of
its sampling distribution is θ . Formally, E(θ̂) = θ .

There are so many unbiased estimator. For example, the
first observation is an unbiased estimator of the mean. we
need more criteria.
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Definition
Efficient Unbiased Estimator.
An unbiased estimator θ̂1 is more efficient than another
unbiased estimator θ̂2 if Var(θ̂2) − Var(θ̂1) is a positive
definite matrix.
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Large Sample Distribution Theory

Definition
Convergence in Probability The random variable xn

converges in probability to a constant c if
limn→∞ Prob(|xn − c| > ε) = 0 for any positive ε.
For example, xn takes two values, 0 and n with
probabilities 1 −

1
n and 1

n . As n increases, the probability
of taking the second point becomes less and less. It will
converges to 0 in probability.
This is denoted as plim xn = c.
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Theorem
Convergence in Mean Square. If xn has mean µn and
variance σ 2

n such that the ordinary limits of µn and σ 2
n are c

and 0 respectively. Then xn converges in mean square to c
and plim xn = c.
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Theorem
Chebychev’s Inequality. If xn is a random variable and c
and ε are constants, then Prob(|xn − c| > ε) ≤

E[(xn−c)2
]

ε2 .

To establish Chebychev’s inequality, we use another result.
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Theorem
Markov’s Inequality. If yn is nonnegative random variable
and δ is a positive constant, then Prob(yn ≥ δ) ≤

E(yn)

δ
.

pf: E(yn) = Prob(yn < δ)E(yn|yn < δ) + Prob(yn ≥

δ)E(yn|yn ≥ δ).
Since yn is nonnegative, both terms must be nonnegative,
so E(yn) ≥ Prob(yn ≥ δ)E(yn|yn ≥ δ).
Since E(yn|yn ≥ δ) ≥ δ, E(yn) ≥ Prob(yn ≥ δ)δ, so
Prob(yn ≥ δ) ≤

E(yn)

δ
.
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To prove Chebychev’s inequality, let yn be (xn − c)2 is a
nonnegative random variable, and δ be ε2. Since yn ≥ δ

implies |xn − c| ≥ ε, then

Prob(|xn − c| ≥ ε) = Prob(|xn − c| > ε) ≤
E[(xn−c)2

]

ε2 .
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Take a sepcial case of c = µn, we have

Prob(|xn − µn| > ε) ≤
σ 2

n

ε2
.

If lim
n→∞

E(xn) = c and lim
n→∞

Var(xn) = 0, then

lim
n→∞

Prob(|xn − c| > ε) ≤ lim
n→∞

σ 2
n

ε2
= 0.

Therefore,
plim xn = c.

In other word, convergence in mean square implies
convergence in probability.
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Definition
Consistent Estimator. An estimator θ̂n of a parameter θ is
a consistent estimator of θ if and only if

plim θ̂n = θ.
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Theorem
Consistency of the Sample Mean. The mean of a random
sample from any population with finite mean µ and finite
variance σ 2 is a consistent estimator of µ.

pf: Since E(x̄n) =
1
n

∑n
i=1 E(xi) = µ and Var(x̄n) =

σ 2

n ,
then x̄n converges in mean square to µ which implies
plim x̄n = µ.
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Corollary to the above theorem is the Consistency of a
Mean of Functions: In random sampling, for any function
g(x), if E(g(x)) and Var(g(x)) are finite constants, then

plim
1

n

n∑
i=1

g(xi) = E(g(x)).

pf: Define yi = g(xi), then E(yi) = E(g(x)) and
Var(yi) = Var(g(x)) are finite constants. Apply the
theorem above will prove the result.
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Theorem
Slutsky Theorem. For a continuous function g(xn) that is
not a function of n,

plim g(xn) = g(plim xn).

Theorem
Jensen’s Inequality. If g(xn) is a concave function of xn,
then g(E(xn)) ≥ E(g(xn)).

47 / 60



Outline
Random Variables

Some Specific Probability Distributions
Joint Distributions

Multivariate Distributions
Samples and Sampling Distributions

Large Sample Distribution Theory

Theorem
Rules for Probability Limits. If xn and yn are random
variables with plim xn = c and plim yc = d , then

plim (xn + yn) = c + d
plim xn yn = cd

plim xn/yn = c/d if d 6= 0
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If Wn is a matrix whose elements are random variables and
if plim Wn = �, then

plim W −1
n = �−1.

If Xn and Yn are random matrices with plim Xn = A and
plim Yn = B, then

plim XnYn = AB.
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Definition
Convergence in Distribution.
xn converges in distribution to a random variable x with
cdf F(x) if lim

n→∞

|Fn(x) − F(x)| = 0 at all continuous

points of F(x).

F(x) is the limiting distribution of x , denoted as

xn → x .

50 / 60



Outline
Random Variables

Some Specific Probability Distributions
Joint Distributions

Multivariate Distributions
Samples and Sampling Distributions

Large Sample Distribution Theory

This does not require xn to converge at all. For example,
Prob(xn = 1) =

1
2 +

1
n+1 and Prob(xn = 2) =

1
2 −

1
n+1 .

The distribution converges to a distribtution with
probability 1

2 in the two points, but xn never converges to
any constants.
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Theorem
Rules for Limiting Distributions.

If xn → x and plim yn = c, then

xn yn → cx,

which means that the limiting distribution of xn yn is the
distribution of cx . Also,

xn + yn → x + c
xn

yn
→

x
c
, c 6= 0
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If xn → x and g(x) is a continuous function, then
g(xn) → g(x).

If yn has a limiting distribution and
plim (xn − yn) = 0, then xn has the same limiting
distribution as yn.
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Theorem
Central Limit Theorem (Univariate). If x1, x2, · · · , xn

are a randome sample from a probability distribution with
finite mean µ and finite variance σ 2 and x̄n =

1
n

∑n
i=1 xi ,

then
√

n(x̄n − µ) → N (0, σ 2),
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Theorem
Central Limit Theorem with Unequal Variances. Suppose
that {xi}, i = 1, · · · , n, is a set of random variables with
finite means µi and finite positive variance σ 2

i . Let
µ̄n =

1
n

∑n
i=1 µi and σ̄ 2

n =
1
n

∑n
i=1 σ 2

i . If no sigle term
dominates this average variance, which we could state as
lim

n→∞

max(σi )
nσ̄ 2

n
= 0, and if the average variance converges to a

finite constant, σ̄ 2
= lim

n→∞

σ̄ 2
n , then

√
n(x̄n − µ̄n) → N (0, σ̄ 2).
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√
n(x̄n − µ̄n) → N (0, σ̄ 2).

This version of CLT does not require the variables come
from the same underlying distribution. It requires only
that the mean be a mixture of many random variables, and
none of which is large compared with their sum.
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For multivariate cases, we have

Theorem
Lindberg-Levy Central Limit Theorem. If x1, · · · , xn are
a random sample from a multivariate distribution with finite
mean vector µ and finite positive definite matrix Q, then

√
n(x̄n − µ) → N (0, Q),

where x̄n =
1
n

∑n
i=1 xi .
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Theorem
Lindberg-Feller Central Limit Theorem. If x1, · · · , xn

are a sample of random vectors such that E(xi) = µi ,
Var(xi) = Qi , and all mixed third moments of the
multivariate distribution are finite. Assume that
lim

n→∞

Q̄n = Q, where Q is a finite, positive definite matrix

and that for every i ,

lim
n→∞

(nQ̄n)
−1 Qi = lim

n→∞

(

n∑
i=1

Qi)
−1 Qi = 0.

then
√

n(x̄n − µ̄n) → N (0, Q),
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Delta method of getting the limiting distribution of a
function. Having the fact that
g(zn) ' g(µ) + g′(µ)(zn − µ) for univariate case, and
c(zn) = c(µ) +

∂c(µ)

∂µ′ for multivariate case.

Theorem
Limiting Normal Distribution of a Function. If
√

n(zn − µ) → N (0, σ 2) and g(zn) is a continuous
function not involving n, then

√
n(g(zn) − g(µ)) → N (0, g′(µ)2σ 2).
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Theorem
Limiting Normal Distribution of a Set of Functions. If
√

n(zn − µ) → N (0, 6) and c(zn) is a set of J continuous
functions not involving n, then

√
n(c(zn) − c(µ)) → N (0, C(µ)6C(µ)′).

where C(µ) =
∂c(µ)

∂µ′ .
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