Using genetic risk score approaches to infer whether an environmental factor attenuates or exacerbates the adverse influence of a candidate gene

Wan-Yu Lin 1,2*, Yu-Shun Lin 1, Chang-Chuan Chan 2,3, Yu-Li Liu 4, Shih-Jen Tsai 5,6, Po-Hsiu Kuo 1,2

1 Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
2 Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan
3 Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan
4 Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Taiwan
5 Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
6 Division of Psychiatry, National Yang-Ming University, Taipei, Taiwan
7 Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan

* Corresponding author:

Wan-Yu Lin, Ph.D.
Room 501, No. 17, Xu-Zhou Road, Taipei 100, Taiwan
Phone/Fax: +886-2-33668106; E-mail: linwy@ntu.edu.tw
Figure S1 Empirical type I error rates under the nominal significance level of 0.05 (binary trait)
Figure S2 The sensitivity of the marginal-association filtering in ENET, LASSO, and SBERIA, for continuous traits and $P(E = 1) = 0.2$

Figure S3 The positive predictive value of the marginal-association filtering in ENET, LASSO, and SBERIA, for continuous traits and $P(E = 1) = 0.2$
Figure S4 Power given a significance level of 0.05, for continuous traits and $P(E = 1) = 0.5$

Figure S5 Percentages of sign-misspecifications for γ_{int}, under continuous traits and $P(E = 1) = 0.5$
Figure S6 Power given a significance level of 0.05, for continuous traits and a continuous E

Figure S7 Percentages of sign-misspecifications for γ_{int}, under continuous traits and a continuous E
Figure S8 Power given a significance level of 0.05, for binary traits, \(P(Y = 1) = 0.1 \), and \(P(E = 1) = 0.2 \)

Figure S9 Percentages of sign-misspecifications for \(\gamma_{int} \), under binary traits, \(P(Y = 1) = 0.1 \), and \(P(E = 1) = 0.2 \)
Figure S10 Power given a significance level of 0.05, for binary traits, \(P(Y = 1) = 0.4 \), and \(P(E = 1) = 0.2 \)

Figure S11 Percentages of sign-misspecifications for \(\gamma_{int} \), under binary traits, \(P(Y = 1) = 0.4 \), and \(P(E = 1) = 0.2 \)
Figure S12 Power given a significance level of 0.05, for binary traits, \(P(Y = 1) = 0.1 \), and \(P(E = 1) = 0.5 \)

Figure S13 Percentages of sign-misspecifications for \(\gamma_{\text{int}} \), under binary traits, \(P(Y = 1) = 0.1 \), and \(P(E = 1) = 0.5 \)
Figure S14 Power given a significance level of 0.05, for binary traits, $P(\gamma = 1) = 0.4$, and $P(\varepsilon = 1) = 0.5$.

Figure S15 Percentages of sign-misspecifications for γ_{int}, under binary traits, $P(\gamma = 1) = 0.4$, and $P(\varepsilon = 1) = 0.5$.
Figure S16 The sensitivity of the marginal-association filtering in ENET, LASSO, and SBERIA, for binary traits, $P(Y = 1) = 0.4$, and $P(E = 1) = 0.5$

Figure S17 The positive predictive value of the marginal-association filtering in ENET, LASSO, and SBERIA, for binary traits, $P(Y = 1) = 0.4$, and $P(E = 1) = 0.5$
Figure S18 Power given a significance level of 0.05, for binary traits, $P(Y = 1) = 0.1$, and a continuous E

Figure S19 Percentages of sign-misspecifications for γ_{int}, under binary traits, $P(Y = 1) = 0.1$, and a continuous E
1 Exacerbation 2 Attenuation 3 Exacerbation 4 Attenuation 5 Cross-over 6 Exacerbation 7 Attenuation

1 Exacerbation 2 Attenuation 3 Exacerbation 4 Attenuation 6 Exacerbation 7 Attenuation

8 Exacerbation 9 Attenuation 10 Exacerbation 11 Attenuation 12 Cross-over 13 Exacerbation 14 Attenuation

8 Exacerbation 9 Attenuation 10 Exacerbation 11 Attenuation 13 Exacerbation 14 Attenuation

Figure S20 Power given a significance level of 0.05, for binary traits, $P(Y = 1) = 0.4$, and a continuous E

Figure S21 Percentages of sign-misspecifications for γ_{int}, under binary traits, $P(Y = 1) = 0.4$, and a continuous E
Figure S22 Average time spent (in seconds) for each simulation replication, under H_0, for continuous traits.
Figure S23 Average time spent (in seconds) for each simulation replication, under H_0, for binary traits.
Figure S24 Average time spent (in seconds) for each simulation replication, under H_1, for continuous traits and $P(E = 1) = 0.2$

Figure S25 Average time spent (in seconds) for each simulation replication, under H_1, for continuous traits and $P(E = 1) = 0.5$
Figure S26 Average time spent (in seconds) for each simulation replication, under H_1, for binary traits, $P(Y = 1) = 0.1$, and $P(E = 1) = 0.2$.

Figure S27 Average time spent (in seconds) for each simulation replication, under H_1, for binary traits, $P(Y = 1) = 0.4$, and $P(E = 1) = 0.2$.
Figure S28 Average time spent (in seconds) for each simulation replication, under H_1, for binary traits, $P(Y = 1) = 0.1$, and $P(E = 1) = 0.5$.

Figure S29 Average time spent (in seconds) for each simulation replication, under H_1, for binary traits, $P(Y = 1) = 0.4$, and $P(E = 1) = 0.5$.