Supplementary Materials

Cardiovascular health and four epigenetic clocks

Yun-Hsiang Lo¹, Wan-Yu Lin^{1,2,3}*

¹ Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan

² Master of Public Health Degree Program, College of Public Health, National Taiwan University, Taipei, Taiwan

³ Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan

Running title: Cardiovascular health and aging

* Corresponding author: Wan-Yu Lin, Ph.D.

Wan-Yu Lin, Ph.D. (<u>http://orcid.org/0000-0002-3385-4702</u>) Room 501, No. 17, Xu-Zhou Road, Taipei 100, Taiwan Phone/Fax: +886-2-33668106; E-mail: <u>linwy@ntu.edu.tw</u>

Supplemental Tables

Table S1: Basic characteristics of the 2,474 TWB participants stratified by tertiles of PhenoEAA

Table S2: Basic characteristics of the 2,474 TWB participants stratified by tertiles of IEAA

Table S3: Basic characteristics of the 2,474 TWB participants stratified by tertiles of HannumEAA

Table S4: The 17 diet-related questions in the TWB questionnaire

Table S5: Regression coefficients of all the covariates included in statistical models

Table S6: Variance inflation factors (VIF) to check multicollinearity

Table S7: Regressing rank-based inverse normal transformation of the four measures of EAA on the CVH score

Supplemental Figures

Figure S1: Residual and Normal Quantile-Quantile plots for regression models based on IEAA

Figure S2: Residual and Normal Quantile-Quantile plots for regression models based on HannumEAA

Figure S3: Residual and Normal Quantile-Quantile plots for regression models based on PhenoEAA

Figure S4: Residual and Normal Quantile-Quantile plots for regression models based on GrimEAA

Figure S5: Residual and Normal Quantile-Quantile plots for rank-based inverse normal transformation (rank-based INT) of IEAA

Figure S6: Residual and Normal Quantile-Quantile plots for rank-based inverse normal transformation (rank-based INT) of HannumEAA

Figure S7: Residual and Normal Quantile-Quantile plots for rank-based inverse normal transformation (rank-based INT) of PhenoEAA

Figure S8: Residual and Normal Quantile-Quantile plots for rank-based inverse normal transformation (rank-based INT) of GrimEAA

Table S1. Basic characteristics of the 2,474 TWB participants stratified by tertiles of PhenoEAA													
	Querrall		PhenoEAA T1		PhenoEAA T2		PhenoEAA T3						
	Overall		(< -2.16 years.) ^{Ref}		(-2.16~1.89 years.)		(> 1.89 years.)						
N (male %)	2474 (50.24%)		825 (49.70%)		824 (49.27%)		825 (51.76%)						
Chronological age (standard	40.76 (11.09)		FO 01 (11 72)		40.41.(10.68)		40.95 (10.91)						
deviation, s.d.)	49.76 (11.08)		50.01 (11.72)		49.41 (10.08)		49.85 (10.81)						
Education (%)													
Illiterate	5 (0.20%)		1 (0.12%)		1 (0.12%)		3 (0.36%)						
No formal education but	2 (0.08%)		0 (0 00%)		2 (0 240/)		0 (0 00%)						
literate	2 (0.08%)		0 (0.00%)		2 (0.24%)		0 (0.00%)						
Primary school graduate	95 (3.84%)		32 (3.88%)		27 (3.28%)		36 (4.36%)						
Junior high school graduate	137 (5.54%)		36 (4.36%)		48 (5.83%)		53 (6.42%)						
Senior high school graduate	718 (29.02%)		230 (27.88%)		244 (29.61%)		244 (29.58%)						
College graduate	1254 (50.69%)		430 (52.12%)		410 (49.76%)		414 (50.18%)						
Master's or higher degree	261 (10.55%)		96 (11.64%)		90 (10.92%)		75 (9.09%)						
7 components of the CVH score													
(%)													
Smoking status – never	1614 (65.24%)		570 (69.09%)		527 (63.88%) *		517 (62.67%) **						
Smoking status – former ¹	312 (12.61%)		92 (11.15%)		96 (11.64%)		124 (15.03%) *						
Smoking status – current	283 (11.44%)		69 (8.36%)		109 (13.21%) **		105 (12.73%) **						
Ideal BMI ²	1240 (50.12%)		472 (57.21%)		395 (47.88%) ***		373 (45.21%) ***						
Ideal physical activity ³	1092 (44.14%)		409 (49.58%)		349 (42.30%) **		334 (40.48%) ***						
Ideal cholesterol level ⁴	1444 (58.37%)		453 (54.91%)		488 (59.15%)		503 (60.97%) *						
Ideal fasting glucose level ⁵	1951 (78.86%)		671 (81.33%)		642 (77.82%)		638 (77.33%)						
Ideal blood pressure ⁶	1315 (53.15%)		461 (55.88%)		450 (54.55%)		404 (48.97%) **						
Ideal diat ⁷	456 (31.78% out		167 (34.08% out		146 (30.10% out of		143 (31.09% out						
	of 1435)		of 490)		485)		of 460)						
6-point CVH score (%)													
N	2471		824		823		824						
0-1	127 (5.13%)		23 (2.79%)		52 (6.30%) ***		52 (6.30%) ***						
2	329 (13.30%)		98 (11.88%)		110 (13.33%)		121 (14.67%)						
3	554 (22.39%)		158 (19.15%)		180 (21.82%)		216 (26.18%) ***						
4	716 (28.94%)		268 (32.48%)		246 (29.82%)		202 (24.48%) ***						
5	586 (23.69%)		219 (26.55%)		181 (21.94%) *		186 (22.55%)						
6	159 (6.43%)		58 (7.04%)		54 (6.56%)		47 (5.70%)						

^{Ref} T1 (tertile 1, the reference group); T2 (or T3) compared with T1 based on the two-sample proportion test; *p < 0.05; ** p < 0.01; *** p < 0.001.

¹A former smoker was defined as an individual who has quitted smoking for at least 6 months.

²Ideal BMI: body mass index less than 24 kg/m², according to the criterion proposed by the Ministry of Health and Welfare, Taiwan. ³Ideal physical activity was defined as performing 30 minutes of exercise (including leisure-time activities such as swimming, cycling, jogging, weight training, dancing, mountain climbing, etc.) at least 3 times a week.

⁴Ideal cholesterol level was defined as total cholesterol level less than 200 mg/dL.

⁵Ideal fasting glucose level was defined as fasting glucose level less than 100 mg/dL.

⁶Ideal blood pressure was defined as systolic blood pressure less than 120 mmHg and diastolic blood pressure below 80 mmHg.

⁷Ideal diet was assessed according to the consumption of food categories, sodium and fat intake.

Table S2. Basic characteristics of the 2,474 TWB participants stratified by tertiles of IEAA												
		Querell		IEAA T1		IEAA T2		IEAA T3				
		Overall		(< -1.60 years.) ^{Ref}		(-1.60~1.48 years.)		(> 1.48 years.)				
N (male %)		2474 (50.24%)		825 (40.24%)		824 (49.88%) ***		825 (60.61%) ***				
Chronological age (standard		40.76 (11.08)		FO 14 (11 70)		40.24 (11.14)		40.70 (10.25)				
deviation, s.d.)		49.70 (11.08)		50.14 (11.79)		49.34 (11.14)		49.79 (10.23)				
Education (%)												
Illiterate		5 (0.20%)		1 (0.12%)		3 (0.36%)		1 (0.12%)				
No formal education but		2 (0.08%)		2 (0 24%)		0 (0 00%)		0 (0 00%)				
literate		2 (0.08%)		2 (0.24%)		0 (0.00%)		0 (0.00%)				
Primary school graduate		95 (3.84%)		40 (4.85%)		33 (4.00%)		22 (2.67%) *				
Junior high school graduate		137 (5.54%)		48 (5.82%)		39 (4.73%)		50 (6.06%)				
Senior high school graduate		718 (29.02%)		239 (28.97%)		238 (28.88%)		241 (29.21%)				
College graduate		1254 (50.69%)		410 (49.70%)		431 (52.31%)		413 (50.06%)				
Master's or higher degree		261 (10.55%)		85 (10.30%)		80 (9.71%)		96 (11.64%)				
7 components of the CVH score												
(%)												
Smoking status – never		1614 (65.24%)		596 (72.24%)		534 (64.73%) **		484 (58.67%) ***				
Smoking status – former ¹		312 (12.61%)		83 (10.06%)		104 (12.61%)		125 (15.15%) **				
Smoking status – current		283 (11.44%)		76 (9.21%)		94 (11.39%)		113 (13.70%) **				
Ideal BMI ²		1240 (50.12%)		437 (52.97%)		428 (51.88%)		375 (45.45%) **				
Ideal physical activity ³		1092 (44.14%)		376 (45.58%)		354 (42.91%)		362 (43.88%)				
Ideal cholesterol level ⁴		1444 (58.37%)		455 (55.15%)		494 (59.88%)		495 (60.00%)				
Ideal fasting glucose level ⁵		1951 (78.86%)		656 (79.52%)		657 (79.64%)		638 (77.33%)				
Ideal blood pressure ⁶		1315 (53.15%)		469 (56.85%)		450 (54.55%)		396 (48.00%) ***				
		456 (31.78% out of		155 (32.36% out		155 (31.00% out		146 (32.02% out				
ideal diet?		1435)		of 479)		of 500)		of 456)				
6-point CVH score (% ^e												
Ν		2471		824		823		824				
0-1		127 (5.13%)		32 (3.88%)		41 (4.97%)		54 (6.55%) *				
2		329 (13.30%)		98 (11.88%)		104 (12.61%)		127 (15.39%) *				
3		554 (22.39%)		173 (20.97%)		190 (23.03%)		191 (23.15%)				
4		716 (28.94%)		262 (31.76%)		228 (27.64%)		226 (27.39%)				
5		586 (23.69%)		216 (26.18%)		192 (23.27%)		178 (21.58%) *				
6		159 (6.43%)		43 (5.22%)		68 (8.26%) *		48 (5.83%)				

^{Ref} T1 (tertile 1, the reference group); T2 (or T3) compared with T1 based on the two-sample proportion test; *p < 0.05; **p < 0.01;

*** *p* < 0.001.

¹A former smoker was defined as an individual who has quitted smoking for at least 6 months.

²Ideal BMI: body mass index less than 24 kg/m², according to the criterion proposed by the Ministry of Health and Welfare, Taiwan. ³Ideal physical activity was defined as performing 30 minutes of exercise (including leisure-time activities such as swimming, cycling, jogging, weight training, dancing, mountain climbing, etc.) at least 3 times a week. ⁴Ideal cholesterol level was defined as total cholesterol level less than 200 mg/dL.

⁵Ideal fasting glucose level was defined as fasting glucose level less than 100 mg/dL.

⁶Ideal blood pressure was defined as systolic blood pressure less than 120 mmHg and diastolic blood pressure below 80 mmHg.

⁷Ideal diet was assessed according to the consumption of food categories, sodium and fat intake.

Table S3. Basic characteristics of th	e 2,474 TWB participa	ant	s stratified by tertiles o	f H	annumEAA	
	Querall		HannumEAA T1		HannumEAA T2	HannumEAA T3
	Overall		(< -1.58 years.) ^{Ref}		(-1.58~1.37 years.)	(> 1.37 years.)
N (male %)	2474 (50.24%)		825 (38.79%)		824 (50.61%) ***	825 (61.33%) ***
Chronological age (standard	40.76 (11.09)				40.21 (10.86)	40.09 (10.92)
deviation, s.d.)	49.76 (11.08)		50.08 (11.53)		49.21 (10.86)	49.98 (10.82)
Education (%)						
Illiterate	5 (0.20%)		3 (0.36%)		1 (0.12%)	1 (0.12%)
No formal education but	2 (0.00%)		0.40.0004)		0 (0 00%)	2 (0 24%)
literate	2 (0.08%)		0 (0.00%)		0 (0.00%)	2 (0.24%)
Primary school graduate	95 (3.84%)		29 (3.52%)		38 (4.61%)	28 (3.39%)
Junior high school graduate	137 (5.54%)		45 (5.45%)		51 (6.19%)	41 (4.97%)
Senior high school graduate	718 (29.02%)		244 (29.58%)		233 (28.28%)	241 (29.21%)
College graduate	1254 (50.69%)		418 (50.67%)		411 (49.88%)	425 (51.52%)
Master's or higher degree	261 (10.55%)		86 (10.42%)		90 (10.92%)	85 (10.30%)
7 components of the CVH score						
(%)						
Smoking status – never	1614 (65.24%)		593 (71.88%)		546 (66.18%) *	475 (57.58%) ***
Smoking status – former ¹	312 (12.61%)		83 (10.06%)		93 (11.27%)	136 (16.48%) ***
Smoking status – current	283 (11.44%)		70 (8.48%)		97 (11.76%) *	116 (14.06%) ***
Ideal BMI ²	1240 (50.12%)		457 (55.39%)		402 (48.73%) **	381 (46.18%) ***
Ideal physical activity ³	1092 (44.14%)		373 (45.21%)		350 (42.42%)	369 (44.73%)
Ideal cholesterol level ⁴	1444 (58.37%)		452 (54.79%)		494 (59.88%) *	498 (60.36%) *
Ideal fasting glucose level ⁵	1951 (78.86%)		677 (82.06%)		649 (78.67%)	625 (75.76%) **
Ideal blood pressure ⁶	1315 (53.15%)		479 (58.06%)		446 (54.06%)	390 (47.27%) ***
	456 (31.78% out		178 (35.53% out of		142 (29.71% out	136 (29.82% out
	of 1435)		501)		of 478)	of 456)
6-point CVH score (%)						
N	2471		824		823	824
0-1	127 (5.13%)		34 (4.12%)		44 (5.33%)	49 (5.94%)
2	329 (13.30%)		93 (11.27%)		112 (13.58%)	124 (15.03%) *
3	554 (22.39%)		165 (20.00%)		179 (21.7%)	210 (25.45%) **
4	716 (28.94%)		251 (30.42%)		240 (29.09%)	225 (27.27%)
5	586 (23.69%)		227 (27.52%)		199 (24.12%)	160 (19.39%) ***
6	159 (6.43%)		54 (6.55%)		49 (5.95%)	56 (6.80%)

^{Ref} T1 (tertile 1, the reference group); T2 (or T3) compared with T1 based on the two-sample proportion test; *p < 0.05; ** p< 0.01;

*** *p* < 0.001.

¹A former smoker was defined as an individual who has quitted smoking for at least 6 months.

²Ideal BMI: body mass index less than 24 kg/m², according to the criterion proposed by the Ministry of Health and Welfare, Taiwan.
³Ideal physical activity was defined as performing 30 minutes of exercise (including leisure-time activities such as swimming, cycling, jogging, weight training, dancing, mountain climbing, etc.) at least 3 times a week.
⁴Ideal cholesterol level was defined as total cholesterol level less than 200 mg/dL.

⁵Ideal fasting glucose level was defined as fasting glucose level less than 100 mg/dL.

⁶Ideal blood pressure was defined as systolic blood pressure less than 120 mmHg and diastolic blood pressure below 80 mmHg.

⁷Ideal diet was assessed according to the consumption of food categories, sodium and fat intake.

Table S4. The 17 diet-related questions in the TWB questionnaire												
Die	tary habits/ Food Category	Always	Most of the	Half of the	Seldom	Never						
			time	time								
1.	When you eat meat (such as pork,	1	2	3	4	5						
	beef, mutton, chicken, duck, goose,											
	etc.), do you eat it with fat, suet, or											
	skin?											
2.	When you eat fish or meat, do you	1	2	3	4	5						
	prefer cooking it with oil (such as											
	frying, deep-frying, frying and then											
	braised, steamed fish topped with											
	oil, etc.)?											
3.	When you eat vegetables, do you	1	2	3	4	5						
	prefer cooking them in stir-fry way?											
4.	When you eat rice or noodles	1	2	3	4	5						
	(staple food), do you eat them with											
	marinade, gravy, or lard?											
5.	When you eat soy foods, do you	1	2	3	4	5						
	prefer cooking them in deep-fry way											
	(such as fried tofu, stinky tofu, fried											
	tofu skin, etc.)?											
6.	When you eat bread, do you spread	1	2	3	4	5						
	butter, plant-based butter											
	(margarine), or mayonnaise?											
7.	When you have a meal, do you add	1	2	3	4	5						
	additional salt, soy sauce, chili											
	sauce, or any other seasoning?											
8.	Are you used to having pickles,	1	2	3	4	5						
	fermented tofu, fermented soy											
	beans as side dishes in a meal?											
9.	When you have snacks, do you	1	2	3	4	5						
	choose to eat fruits or vegetables											
	instead of high-fat snacks (such as											
	chips, cakes, doughnuts, etc.)?											
10.	When you prepare meat (such as	1	2	3	4	5						
	pork, beef, mutton, chicken, duck,											
	goose, etc.) for a meal, do you cook											

Table S4. The 17 diet-related questions in	the TWB ques	stionnaire			
Dietary habits/ Food Category	Always	Most of the	Half of the	Seldom	Never
		time	time		
it in roasted or braised way instead					
of deep-frying?					
11. If a food product has a low-fat	1	2	3	4	5
option (such as low-fat ice cream,					
low-fat milk, skim milk, low-fat salad					
sauce, etc.), would you choose it					
instead of regular product?					
12. Do you eat food with low-sodium	1	2	3	4	5
ingredients (such as low-sodium					
salt, lower-sodium soy sauce, etc.)?					
13. Would you like to eat lower-fat meat	1	2	3	4	5
(such as fish or chicken) instead of					
higher-fat meat (such as beef or					
pork)?					
14. Would you choose to eat lean meat	1	2	3	4	5
instead of fatty meat?					
15. Would you choose to perform	1	2	3	4	5
vegetarian and light diet in certain					
meals of the day, to reduce the					
intake of higher-fat food such as					
meat or fat.					
16. Do you eat at least 2 kinds of	1	2	3	4	5
vegetables a day?					
17. When you have meat, do you	1	2	3	4	5
intentionally eat less?					

Scoring for dietary habits:

For questions 1-8, 1 point for answering = 4 or 5; for questions 9-17, 1 point for answering = 1 or 2.

Ideal diet score was calculated by summing the scores of these 17 questions. Therefore, the ideal diet score ranged from 0 to 17. We further categorized dietary habits as poor (0-5), intermediate (6-11), and ideal (12-17), as listed in Table 3.

Table S5. Regression coefficients of all the covariates included in statistical models (*p < 0.05; ** p< 0.01; *** p < 0.001)																	
	1 st Genera	ation of Epig	enetic Clocks						2 nd Generation of Epigenetic Clocks								
	IEAA			Hanı	numEA	۹A			PhenoE	AA			GrimEAA				
Covariates	beta	95% C.I.	p	beta		95% C.I.	p		beta	95% C.I.	p		beta	95% C.I.	Р		
Intercept	1.711	[-0.0689,	0.060	1.80	1	[-0.0049,	0.051		2.283	[-0.0895,	0.059		5.529	[4.0342,	6.9E-13 ***		
		3.4902]				3.6076]				4.6554]				7.0247]			
CVH score	-0.101	[-0.2475,	0.177	-0.12	22	[-0.2709,	0.108		-0.350	[-0.5459,	4.5E-4 ***		-0.499	[-0.6222,	4.2E-15 ***		
(2-level, 7 point)		0.0458]				0.0269]				-0.1550]				-0.3758]			
SEX	-1.001	[-1.4263,	4.2E-6 ***	-1.16	51	[-1.5925,	1.5E-7 ***		0.116	[-0.4507,	0.688		-2.387	[-2.7445,	5.9E-37 ***		
(female vs. male)		-0.5763]		-0.7293] 0.6825]			-2.0302]										
Drinking status	0.299	0.471	0.10	6	[-0.7208,	0.802	0.453	[-0.6328,	0.413	0.647	[-0.0405,	0.065					
(Yes vs. no)		1.1141]				0.9327]			1.5398]				1.335]				
Educational	-0.035 [-0.2489,	[-0.2489,	0 749	19 0.036	6	[-0.1812,	0.745	-0 297	[-0.5819,	0.042 *		-0.120	[-0.3000,	0.190			
attainment	0.035	0.179]	0.715	0.05	0	0.2534]	0.713		0.237	-0.0114]	0.012		0.120	0.0595]	0.190		
	1 st Genera	ation of Epig	enetic Clocks						2 nd Generation of Epigenetic Clocks								
	IEAA			Hanı	HannumEAA					AA			GrimEAA				
Covariates	beta	95% C.I.	Р	beta	1	95% C.I.	p		beta	95% C.I.	Р		beta	95% C.I.	Р		
Intercept	2.078	[0.2063, 3.9502]	0.030 *	2.13	6	[0.236, 4.0364]	0.028 *		3.475	[0.9843 <i>,</i> 5.9666]	6.3E-3 **		7.116	[5.5564, 8.6761]	1.2E-18 ***		
CVH score	0.074	[-0.1670,	0.120	0.00		[-0.1773,	0.007		0.260	[-0.3919,			0.264	[-0.4419,			
(3-level, 14 point)	-0.074	0.0194]	0.120	-0.08	33	0.0119]	0.087		-0.268	-0.1439]	2.4E-5 ***		-0.364	-0.2865]	1.5E-19 ***		
SEX	0.001	[-1.4113,	4 OF C ***	1.10	- 7	[-1.5944,	0050***		0.120	[-0.422,	0.020		2.270	[-2.7261,			
(female vs. male)	-0.991	-0.5703]	4.2E-6	-1.16	57	-0.7401]	9.8E-8		0.138	0.6972]	0.630		-2.376	-2.0251]	7.0E-38		
Drinking status	0.202	[-0.5313,	0.405	0.00		[-0.728,	0.014		0.400	[-0.6763,	0.461			[-0.0868,	0.087		
(Yes vs. no)	0.283	1.0983]	0.495	0.09	Э	0.9259]	0.814		0.408	1.4923]	0.461		0.595	1.2775]			
Educational	0.022	[-0.2465,	0.759	0.02	2	[-0.1833,	0.764		0.205	[-0.5786,	0.041 *		0 1 2 2	[-0.3004,	0 175		
attainment	-0.055	0.1797]	0.756	0.03	5	0.2497]	0.704		-0.295	-0.0115]	0.041 *	_	-0.123	0.0547]	0.175		

	1 st Genera	1 st Generation of Epigenetic Clocks								^{ad} Generation of Epigenetic Clocks									
	IEAA				Hannum	AA			PhenoE	AA			GrimEAA						
Covariates	beta	95% C.I.	Р		beta	95% C.I.	p		beta	95% C.I.	Р		beta	95% C.I.	p				
Intercept	2.046	[0.643 <i>,</i> 3.4485]	4.3E-3 **		2.351	[0.9732, 3.7281]	8.3E-4 **		2.110	[0.234, 3.9869]	0.028 *		5.686	[4.5078, 6.8638]	7.3E-21***				
CVH score (2-level, 6 point)	-0.086	[-0.2093, 0.0366]	0.169		-0.088	[-0.2092, 0.0324]	0.151		-0.388	[-0.5528, -0.2238]	3.9E-6 ***		-0.526	[-0.6289, -0.4222]	6.1E-23***				
SEX (female vs. male)	-1.331	[-1.6536, -1.0078]	1.0E-15 ***		-1.273	[-1.5906, -0.956]	5.5E-15 ***		0.187	[-0.2454, 0.6185]	0.397		-2.397	[-2.6684, -2.1261]	3.3E-63***				
<i>Drinking status</i> (Yes vs. no)	0.423	[-0.1795, 1.0254]	0.169		0.289	[-0.3029, 0.88]	0.339		0.543	[-0.2626, 1.3491]	0.186		1.009	[0.5006, 1.5171]	1.0E-4***				
Educational attainment	-0.042	[-0.2118, 0.1277]	0.627		-0.082	[-0.2486, 0.085]	0.336		-0.278	[-0.5047, -0.0506]	0.017 *		-0.231	[-0.3733, -0.0883]	0.002 **				
			igenetic Clocks																
	1 st Genera	ation of Epige	enetic Clocks						2 nd Gen	eration of E	pigenetic Clock	S							
	1 st Genera	ation of Epigo	enetic Clocks		Hannum	EAA			2 nd Gen PhenoE	eration of E	pigenetic Clock	s	GrimEAA						
Covariates	1 st Genera IEAA beta	ation of Epige 95% C.I.	enetic Clocks		Hannum beta	EAA 95% C.I.	P		2 nd Gen PhenoE beta	eration of E EAA 95% C.I.	pigenetic Clock	s	GrimEAA beta	95% C.I.	P				
Covariates Intercept	1st GeneralIEAAbeta2.290	95% C.I. [0.8294, 3.7515]	P 2.1E-3 **		Hannum beta	95% C.I. [1.1357, 4.0049]	P 4.5E-4 **		2 nd Gen PhenoE beta 3.038	eration of E AA 95% C.I. [1.0861, 4.9896]	P 2.3E-3 **	S	GrimEAA beta 6.950	95% C.I. [5.7324, 8.1677]	P 2.6E-28 ***				
Covariates Intercept CVH score (3-level, 12 point)	1st General IEAA beta 2.290 -0.068	95% C.I. [0.8294, 3.7515] [-0.1440, 0.0085]	P 2.1E-3 ** 0.082 0.082		Hannum beta 2.570 -0.065	95% C.I. [1.1357, 4.0049] [-0.1396, 0.0102]	P 4.5E-4 ** 0.091		2 nd Gen PhenoE beta 3.038 -0.278	eration of E AA 95% C.I. [1.0861, 4.9896] [-0.3798, -0.1761]	P 2.3E-3 ** 9.6E-8 ***	S	GrimEAA beta 6.950 -0.377	95% C.I. [5.7324, 8.1677] [-0.4407, -0.3136]	P 2.6E-28 *** 2.1E-30 ***				
Covariates Intercept CVH score (3-level, 12 point) SEX (female vs. male)	1st General IEAA beta 2.290 -0.068 -1.325	95% C.I. [0.8294, 3.7515] [-0.1440, 0.0085] [-1.645, -1.0046]	P 2.1E-3 ** 0.082 8.1E-16 ***		Hannum beta 2.570 -0.065 -1.272	AA 95% C.I. [1.1357, 4.0049] [-0.1396, 0.0102] [-1.5862, -0.9569]	P 4.5E-4 ** 0.091 3.6E-15 ***		2 nd Gen PhenoE beta 3.038 -0.278 0.188	eration of E AA 95% C.I. [1.0861, 4.9896] [-0.3798, -0.1761] [-0.2398, 0.6156]	pigenetic Clock P 2.3E-3 ** 9.6E-8 *** 0.389	s	GrimEAA beta 6.950 -0.377 -2.394	95% C.I. [5.7324, 8.1677] [-0.4407, -0.3136] [-2.6612, -2.1276]	P 2.6E-28 *** 2.1E-30 *** 6.1E-65 ***				
Covariates Intercept CVH score (3-level, 12 point) SEX (female vs. male) Drinking status (Yes vs. no)	1st General IEAA beta 2.290 -0.068 -1.325 0.410	95% C.I. [0.8294, 3.7515] [-0.1440, 0.0085] [-1.645, -1.0046] [-0.192, 1.0128]	P 2.1E-3 ** 0.082 8.1E-16 *** 0.182 1.182		Hannum beta 2.570 -0.065 -1.272 0.280	95% C.I. 95% C.I. [1.1357, 4.0049] [-0.1396, 0.0102] [-1.5862, -0.9569] [-0.3118, 0.8712]	P 4.5E-4 ** 0.091 3.6E-15 *** 0.354		2 nd Gen PhenoE beta 3.038 -0.278 0.188 0.509	eration of E AA 95% C.I. [1.0861, 4.9896] [-0.3798, -0.1761] [-0.2398, 0.6156] [-0.2958, 1.3136]	pigenetic Clock P 2.3E-3 ** 9.6E-8 *** 0.389 0.215		GrimEAA beta 6.950 -0.3777 -2.394 0.959	95% C.I. [5.7324, 8.1677] [-0.4407, -0.3136] [-2.6612, -2.1276] [0.4550, 1.4639]	P 2.6E-28 *** 2.1E-30 *** 6.1E-65 *** 2.0E-4 ***				

 Table S6. Variance inflation factors (VIF) to check multicollinearity. VIF scores of all the explanatory variables were controlled under

 1.2, indicating no multicollinearity in all models. Sex, drinking status, and educational attainment have been adjusted in all models.

		Explanato	ry variables	
Regression Model	CVH score	SEX	Drinking status	Educational attainment
Regressing IEAA on CVH score (7-point)	1.1374	1.1842	1.0520	1.0573
Regressing IEAA on CVH score (14-point)	1.1105	1.1604	1.0529	1.0494
Regressing IEAA on CVH score (6-point)	1.1051	1.1515	1.0536	1.0524
Regressing IEAA on CVH score (12-point)	1.0865	1.1328	1.0540	1.0514
		Explanate	ory variables	
Regression Model	CVH score	SEX	Drinking status	Educational attainment
Regressing HannumEAA on CVH score (7-point)	1.1374	1.1836	1.0520	1.0567
Regressing HannumEAA on CVH score (14-point)	1.1107	1.1599	1.0528	1.0490
Regressing HannumEAA on CVH score (6-point)	1.1053	1.1509	1.0536	1.0518
Regressing HannumEAA on CVH score (12-point)	1.0868	1.1325	1.0540	1.0508
		Explanate	ory variables	
Regression Model	CVH score	SEX	Drinking status	Educational attainment
Regressing PhenoEAA on CVH score (7-point)	1.1374	1.1842	1.0520	1.0573
Regressing PhenoEAA on CVH score (14-point)	1.1105	1.1604	1.0529	1.0494
Regressing PhenoEAA on CVH score (6-point)	1.1051	1.1515	1.0536	1.0524
Regressing PhenoEAA on CVH score (12-point)	1.0865	1.1328	1.0540	1.0514
		Explanate	ory variables	
Regression Model	CVH score	SEX	Drinking status	Educational attainment
Regressing GrimEAA on CVH score (7-point)	1.1377	1.1841	1.0509	1.0577
Regressing GrimEAA on CVH score (14-point)	1.1106	1.1602	1.0517	1.0498
Regressing GrimEAA on CVH score (6-point)	1.1047	1.1512	1.0520	1.0528
Regressing GrimEAA on CVH score (12-point)	1.0863	1.1324	1.0526	1.0516

Table S7. Regress	sing rank-base	ed inverse nor	mal transfo	rmation of th	e four measures	s of EAA on t	he CVH score								
	1 st Generati	ion of Epigene	tic Clocks				2 nd Gener	2 nd Generation of Epigenetic Clocks							
	IEAA ¹			Hannum	IEAA ¹		PhenoEA	A ¹		GrimEAA ¹	GrimEAA ¹				
	beta	95% C.I.	p	beta	95% C.I.	p	beta	95% C.I.	ρ	beta	95% C.I.	p			
Seven-component CVH scores ²															
CVH score	0.028	[-0.0675,	0.169	0.029	[-0.0784,	0.060	0.075	[-0.1160,	2 1 5 4	0 1 2 9	[-0.1742,	1 45 12			
(2-level, 7-point)	-0.028	0.0118]	0.108	-0.058	0.003]	0.009	-0.075	-0.0345]	5.1C-4	-0.158	-0.1018]	1.46-13			
CVH score	0.022	[-0.0473,	0.077	0.026	[-0.0519,	0.042	0.057	[-0.0825,	1 25 5	0.100	[-0.1228,	8.9E-18			
(3-level, 14-point)	-0.022	0.0024]	0.077	-0.026	-0.0009]	0.043	-0.057	-0.0314]	1.3E-5	-0.100	-0.0776]				
Six-component CVH	l scores ³														
CVH score	0.025	[-0.0587,	0 1 2 7	0.025	[-0.0583,	0.120	0.083	[-0.1162,	2 9F C	0 1 4 2	[-0.1736,	2 55 20			
(2-level, 6-point)	-0.025	0.0081]	0.137	-0.025	0.0082]	0.139	-0.082	-0.0478]	2.85-0	-0.143	-0.1131]	3.5E-20			
CVH score	0.010	[-0.0399,	0.000	0.010	[-0.0392,	0.077	0.050	[-0.0794,	7.05.0	0.102	[-0.1206,	2 15 26			
(3-level, 12-point)	-0.019	0.0015]	0.069	-0.019	0.002]	0.077	-0.058	-0.0371]	7.0E-8	-0.102	-0.0834]	3.1E-26			

¹IEAA (i.e., intrinsic EAA), HannumEAA, PhenoEAA, and GrimEAA were calculated according to the four epigenetic clocks: Horvath's clock [11], Hannum et al's clock [10], Levine et

al's PhenoAge [12], and Lu et al's GrimAge [13], respectively.

² The seven-component CVH score was calculated according to the definition of CVH from the American Heart Association (AHA).

³ Because 42% of the 2,474 TWB participants were surveyed by the simplified questionnaire without diet information, the six-component CVH score was calculated without the

"ideal diet score". Other components followed the same definition of the CVH score from the AHA.

Figure S1. Residual and Normal Quantile-Quantile plots for regression models based on IEAA. (A-D) Residual plots for regressing IEAA on: (A) 6-point CVH score; (B) 7-point CVH score; (C) 12-point CVH score; (D) 14-point CVH score. (E-H) The Normal Q-Q plots for models regressing IEAA on: (E) 6-point CVH score; (F) 7-point CVH score; (G) 12-point CVH score; (H) 14-point CVH score. Sex, drinking status, and educational attainment have been adjusted in all models. No substantial violation of the assumption of normality or constant variance was observed for any model.

Figure S2. Residual and Normal Quantile-Quantile plots for regression models based on HannumEAA. (A-D) Residual plots for regressing HannumEAA on: (A) 6-point CVH score; (B) 7-point CVH score; (C) 12-point CVH score; (D) 14-point CVH score. (E-H) The Normal Q-Q plots for models regressing HannumEAA on: (E) 6-point CVH score; (F) 7-point CVH score; (G) 12-point CVH score; (H) 14-point CVH score. Sex, drinking status, and educational attainment have been adjusted in all models. No substantial violation of the assumption of normality or constant variance was observed for any model.

Figure S3. Residual and Normal Quantile-Quantile plots for regression models based on PhenoEAA. (A-D) Residual plots for regressing PhenoEAA on: (A) 6-point CVH score; (B) 7-point CVH score; (C) 12-point CVH score; (D) 14-point CVH score. (E-H) The Normal Q-Q plots for models regressing PhenoEAA on: (E) 6-point CVH score; (F) 7-point CVH score; (G) 12-point CVH score; (H) 14-point CVH score. Sex, drinking status, and educational attainment have been adjusted in all models. No substantial violation of the assumption of normality or constant variance was observed for any model.

Figure S4. Residual and Normal Quantile-Quantile plots for regression models based on GrimEAA. (A-D) Residual plots for regressing GrimEAA on: (A) 6-point CVH score; (B) 7-point CVH score; (C) 12-point CVH score; (D) 14-point CVH score. (E-H) The Normal Q-Q plots for models regressing GrimEAA on: (E) 6-point CVH score; (F) 7-point CVH score; (G) 12-point CVH score; (H) 14-point CVH score. Sex, drinking status, and educational attainment have been adjusted in all models. No substantial violation of the assumption of constant variance was observed for any model. However, the QQ plots showed that the residuals followed distributions with heavier tails than the normal distribution.

Figure S5. Residual and Normal Quantile-Quantile plots for rank-based inverse normal transformation (rank-based INT) of IEAA. (A-D) Residual plots for regressing rank-based INT of IEAA on: (A) 6-point CVH score; (B) 7-point CVH score; (C) 12-point CVH score; (D) 14-point CVH score. (E-H) The Normal Q-Q plots for models regressing rank-based INT of IEAA on: (E) 6-point CVH score; (F) 7-point CVH score; (G) 12-point CVH score; (H) 14-point CVH score. Sex, drinking status, and educational attainment have been adjusted in all models. No substantial violation of the assumption of normality or constant variance was observed for any model.

Figure S6. Residual and Normal Quantile-Quantile plots for rank-based inverse normal transformation (rank-based INT) of HannumEAA. (A-D) Residual plots for regressing rank-based INT of HannumEAA on: (A) 6-point CVH score; (B) 7-point CVH score; (C) 12-point CVH score; (D) 14-point CVH score. (E-H) The Normal Q-Q plots for models regressing rank-based INT of HannumEAA on: (E) 6-point CVH score; (F) 7-point CVH score; (G) 12-point CVH score; (H) 14-point CVH score. Sex, drinking status, and educational attainment have been adjusted in all models. No substantial violation of the assumption of normality or constant variance was observed for any model.

Figure S7. Residual and Normal Quantile-Quantile plots for rank-based inverse normal transformation (rank-based INT) of PhenoEAA. (A-D) Residual plots for regressing rank-based INT of PhenoEAA on: (A) 6-point CVH score; (B) 7-point CVH score; (C) 12-point CVH score; (D) 14-point CVH score. (E-H) The Normal Q-Q plots for models regressing rank-based INT of PhenoEAA on: (E) 6-point CVH score; (F) 7-point CVH score; (G) 12-point CVH score; (H) 14-point CVH score. Sex, drinking status, and educational attainment have been adjusted in all models. No substantial violation of the assumption of normality or constant variance was observed for any model.

Figure S8. Residual and Normal Quantile-Quantile plots for rank-based inverse normal transformation (rank-based INT) of GrimEAA. (A-D) Residual plots for regressing rank-based INT of GrimEAA on: (A) 6-point CVH score; (B) 7-point CVH score; (C) 12-point CVH score; (D) 14-point CVH score. (E-H) The Normal Q-Q plots for models regressing rank-based INT of GrimEAA on: (E) 6-point CVH score; (F) 7-point CVH score; (G) 12-point CVH score; (H) 14-point CVH score. Sex, drinking status, and educational attainment have been adjusted in all models. No substantial violation of the assumption of normality or constant variance was observed for any model.

