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Abstract 
Epigenetic clocks use DNA methylation (DNAm) levels to predict an individual's biological age. 

However, relationships between lifestyle/biomarkers and epigenetic age acceleration (EAA) in 

Asian populations remain unknown. We here explored associations between lifestyle factors, 

physiological conditions, and epigenetic markers, including HannumEAA, IEAA, PhenoEAA, 

GrimEAA, DunedinPACE, DNAm-based smoking pack-years (DNAmPACKYRS), and DNAm 

plasminogen activator inhibitor 1 level (DNAmPAI1). A total of 2,474 Taiwan Biobank (TWB) 

individuals aged between 30 and 70 provided physical health examinations, lifestyle 

questionnaire surveys, and blood and urine samples. Partial correlation analysis (while adjusting 
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for chronological age, smoking, and drinking status) demonstrated that 29 factors were 

significantly correlated with at least one epigenetic marker (Pearson’s correlation coefficient |r| > 

0.15). Subsequently, by exploring the model with the smallest Akaike information criterion 

(AIC), we identified the best model for each epigenetic marker. As a DNAm-based marker 

demonstrated to predict healthspan and lifespan with greater accuracy, GrimEAA was also found 

to be better explained by lifestyle factors and physiological conditions. Totally 15 factors 

explained 44.7% variability in GrimEAA, including sex, body mass index (BMI), waist-hip ratio 

(WHR), smoking, hemoglobin A1c (HbA1c), high-density lipoprotein cholesterol (HDL-C), 

creatinine, uric acid, gamma-glutamyl transferase (GGT), hemoglobin, and five cell-type 

proportions. In summary, smoking, elevated HbA1c, BMI, WHR, GGT, and uric acid were 

associated with more than one kind of EAA. At the same time, higher HDL-C and hemoglobin 

were related to epigenetic age deceleration (EAD). These findings offer valuable insights into 

biological aging. 

1 | Introduction 
 The global development of healthcare and medical technology has increased life 

expectancy. Many nations across the globe are witnessing a rise in the number and percentage of 

older people in their populations. By 2050, the 65-and-over population will increase to 38% in 

some countries (United Nations 2002). People with a slower aging rate will likely stay healthier 

in their declining years (McCrory et al. 2021). It was necessary to identify biomarkers to more 

accurately predict an individual’s aging rate (Baker and Sprott 1988). For over 30 years, 

scientists have explored biomarkers capable of predicting an individual’s biological age. 

With the advancement of epigenetics in this decade, DNA methylation (DNAm) age has 

become a molecular measure of biological age (Horvath and Raj 2018). DNAm age is an 
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aggregation of the DNAm levels at aging-related Cytosine-phosphate-Guanine (CpG) sites. For 

example, the first-generation epigenetic clocks referred to Hannum’s (Hannum et al. 2013) and 

Horvath’s clocks (Horvath 2013) based on 71 and 353 CpG sites, respectively. These 71 and 353 

methylation sites were selected because of their superior predictive ability for chronological age. 

Moreover, incorporating DNAm levels from 513 and 1030 CpG sites, PhenoAge (Levine et al. 

2018) and GrimAge (Lu et al. 2022; Lu et al. 2019) stood out as the second-generation DNAm-

based aging clocks. They were developed to estimate the health span and lifespan.  

GrimAge incorporated methylation-based smoking pack-years (DNAmPACKYRS) and 

seven plasma protein markers that were found to be linked to mortality and morbidity (Lu et al. 

2022; Lu et al. 2019). GrimAge is a DNAm-based marker that has been demonstrated to predict 

healthspan and lifespan with greater accuracy (Lu et al. 2019). Among the eight GrimAge 

components (a DNAm-based estimator of smoking pack-years and seven DNAm surrogates), 

DNAm plasminogen activator inhibitor 1 (DNAmPAI1) outperforms GrimAge acceleration for 

several age-related traits. Being two components of GrimAge, DNAmPAI1 and 

DNAmPACKYRS warrant further investigation by predicting lifespan and time-to-coronary 

heart disease (Lu et al. 2019).  

Recently, DunedinPACE (Dunedin Pace of Aging Calculated from the Epigenome) was 

developed and known as the third-generation epigenetic clock (Belsky et al. 2022). Belsky et al. 

(2022) analyzed the longitudinal data from ~1,000 babies born during 1972-1973 in Dunedin, 

New Zealand, and they selected 173 CpG sites to predict individuals’ aging paces across ~20 

years. DunedinPACE is an epigenetic marker aggregating the DNAm levels of these 173 CpG 

sites. It may predict a pace of aging beyond GrimAge (Belsky et al. 2020; 2022; Lin 2023).  

In an era marked by a globally aging population, it is crucial to understand the intricate 
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connections between lifestyle factors, biomarkers, and aging rate. Epigenetic age acceleration 

(EAA) is calculated as the residuals of regressing biological age on chronological age. Negative 

EAA implies biologically younger than people at the same chronological age. Conversely, 

positive EAA indicates biologically older than the counterparts. Multiple studies have 

highlighted that epigenetic aging is linked to physiological conditions. For example, EAA is 

related to cardiovascular health, fatty liver diseases, numerous cancer risks, cognitive function, 

respiratory organs, and kidney function (Fernanda et al. 2022; Lemke et al. 2022; Lu et al. 2019; 

Suarez et al. 2018; Wu et al. 2019; Yusipov et al. 2022). 

Furthermore, much research has demonstrated a strong link between lifestyle-related 

factors and DNAm-based markers. Essential characteristics include dietary habits, alcohol 

consumption, educational attainment, physical activity, smoking, sleeping quality, body 

composition, and mental health status (Cardenas et al. 2022; Carroll et al. 2017; Carskadon et al. 

2019; Crimmins et al. 2021; Han et al. 2019; Jansen et al. 2021; Kresovich et al. 2021; Quach et 

al. 2017; Sae-Lee et al. 2018; Wu et al. 2019; Xu et al. 2021; Zindler et al. 2022). These studies 

indicated that individuals may experience accelerated or decelerated epigenetic clocks due to 

these factors. For example, Kresovich et al. evaluated the associations of adiposity indicators and 

physical activity with four measures of EAA (HannumEAA, IEAA, PhenoEAA, and GrimEAA). 

Body mass index (BMI) and waist-hip ratio (WHR) were associated with most EAA measures, 

whereas physical activity was only associated with deceleration in GrimAge (p = 0.001) 

(Kresovich et al. 2021). 

Several measures of EAA have been widely used to quantify biological aging. To 

investigate determinants that can influence the aging rate, we explore essential lifestyle factors 

and physiological conditions on seven DNAm-based markers in the Taiwanese population. 
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Epigenetic age can predict health span and lifespan, which vary with ethnicity (Lu et al. 2019). 

For example, according to “Life Expectancy Estimates for 2022” reported by the U.S. Centers 

for Disease Control and Prevention (CDC), the average life expectancy for Asian Americans was 

84.5 years, while it was 77.5 years for non-Hispanic whites 

(https://www.cdc.gov/nchs/data/vsrr/vsrr031.pdf). More studies on Asian populations will be 

necessary because most previous investigations have been based on individuals of European, 

African, or Hispanic ancestry (Belsky et al. 2022; Levine et al. 2018; Lu et al. 2022; Lu et al. 

2019). In this work, we analyzed the DNAm data of 2,474 Taiwan Biobank (TWB) individuals. 

A total of 81 factors were first screened through a partial correlation analysis. We then chose 

factors more correlated with any measure of EAA to perform a best-subset analysis. Through 

these procedures, we identified EAA-associated lifestyle factors and physiological conditions.     

2 | Materials and methods 

2.1 | The Taiwan Biobank data 
The TWB has collected health data from volunteers for investigation since 2012. This 

project recruited Taiwanese aged 30 to 70 without a cancer diagnosis history. After obtaining 

written informed consent, the TWB conducted comprehensive physical health examinations, 

blood and urine tests, and lifestyle questionnaire surveys for each individual. Trained and 

qualified health professionals were employed to assist participants in completing these items. 

Participants were required to provide 30 ml of venous blood, primarily for blood and genomic 

testing. Additionally, participants needed to provide a 15 ml urine sample for testing.  

Height, weight, blood pressure levels, and lung function were all included in physical 

examinations. Standing height was gauged with a fixed stadiometer, and body weight was 

measured using an electronic load cell scale (Chen et al. 2024). TWB measured diastolic and 

https://www.cdc.gov/nchs/data/vsrr/vsrr031.pdf
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systolic blood pressure (DBP, SBP) levels twice with a 5-minute rest interval in a sitting 

position. Jamieson et al. suggested that two measurements of DBP (or SBP) should be taken, and 

the average of DBP (or SBP) should be recorded (Jamieson et al. 1990). Therefore, we averaged 

the two DBP (or SBP) measurements to analyze blood pressure more reliably. Details of lung 

function tests (spirometry) were described in a previous study investigating the TWB data 

(Chang et al. 2021). 

The TWB questionnaire covered personal information, lifestyles, dietary habits, and 

environmental exposures. The questionnaire was designed by epidemiologists. Several 

workgroups evaluated the logical flows and clarity of the questions. Moreover, a pilot study was 

conducted to validate the questionnaire. The reliability of the questionnaire was measured by 

comparing the responses at baseline and follow-up visits (Feng et al. 2022). The blood and urine 

tests were carried out by laboratories certified with the ISO and College of American 

Pathologists (CAP) accreditation.  

As of 2021, TWB randomly selected 2,474 individuals for DNAm quantification. The 2,474 

subjects were randomly sampled from each county of Taiwan following the population sizes and 

male-female ratios. The DNAm levels were quantified through the Illumina Infinium 

MethylationEPIC BeadChip, encompassing approximately 860,000 CpG sites. 

2.2 | Epigenetic age acceleration 
We used the DNAm Age Calculator provided by Horvath’s laboratory, 

https://dnamage.genetics.ucla.edu/new, to calculate four measures of EAA and the two 

components of GrimEAA: HannumEAA (column “AgeAccelerationResidualHannum” from the 

DNAm Age Calculator output), IEAA (column “IEAA”), PhenoEAA (column 

“AgeAccelPheno”), GrimEAA (column “AgeAccelGrim2”, which was version 2 of GrimEAA 
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(Lu et al. 2022)), DNAmPACKYRS (column “DNAmPACKYRS”), and DNAmPAI1 (column 

“DNAmPAI1”). We also used the R package “DunedinPACE” 

(https://github.com/danbelsky/DunedinPACE) to calculate DunedinPACE of each individual. 

The quality control and normalization of the DNAm data were described in our previous 

work (Lin 2023). Specifically, to evaluate the quality of DNAm quantification for each sample, 

we calculated the average detection p-value across 27,526 CpGs used in the DNAm Age 

Calculator. Samples with more failed probes generally produce larger mean detection p-values. 

The average detection p-values of all 2,474 samples were much smaller than the acceptable 

cutoff 0.01 (Maksimovic et al. 2016). Therefore, we regarded the quality of the TWB DNAm 

data as satisfactory. 

After obtaining the seven epigenetic markers, we excluded extreme outliers from the 

subsequent analysis. Extreme outliers denoted values larger than 𝑄3 + 3 × (𝑄3 − 𝑄1) or smaller 

than 𝑄1 − 3 × (𝑄3 − 𝑄1), where 𝑄1 and 𝑄3 represented the first and third quartiles. Based on 

this criterion, we excluded 7, 1, 2, 5, 54, 0, and 1 extreme outliers for HannumEAA, IEAA, 

PhenoEAA, GrimEAA, DNAmPACKYRS, DNAmPAI1, and DunedinPACE, respectively. It is 

noteworthy that the former four EAA measures have been adjusted for chronological age (EAA 

is the residual of regressing the epigenetic age on chronological age), while the latter three 

markers have not. 

Moreover, because the TWB collected the DNAm data from peripheral blood, an analysis 

while adjusting for cell-type composition is crucial. We used the Houseman deconvolution 

method (Houseman et al. 2012) to estimate five cell-type proportions, including B lymphocytes, 

natural killer cells, CD4+ T cells, CD8+ T cells, and monocytes. 

https://github.com/danbelsky/DunedinPACE
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2.3 | Lifestyle factors and physiological conditions 
The 81 factors evaluated in our partial correlation analysis included four demographic 

variables, two obesity indicators (BMI and WHR), 15 lifestyle factors, 17 diet-related questions, 

20 physiological conditions, 18 results for lung function tests, and the five cell-type proportions 

described in the previous section. 

The four demographic variables included sex (male vs. female), chronological age (in 

years), educational attainment (an integer ranging from 1 to 7 representing different levels of 

education), and household composition (living alone vs. not living alone). 

The 15 lifestyle factors included drinking (consuming more than 150 mL of alcoholic 

beverages per week, yes vs. no); active smoking (cigarette smoking for at least six months, yes 

vs. no); passive smoking (or secondhand smoking, yes vs. no); physical activities (exercising for 

at least 30 minutes thrice a week, yes vs. no); betel nut chewing (yes vs. no); regularly taking 

drugs such as cough syrup, sedatives, or pain relievers at least once a week (yes vs. no); regularly 

cooking meals by yourselves within six months before participating in the TWB (yes vs. no); 

being exposed to incense burning, mosquito coils, or fragrances for at least five minutes within 

the past year before joining the TWB (yes vs. no); consuming tea at least once daily (yes vs. no); 

coffee drinking thrice a week (yes vs. no); having a vegetarian diet for at least six months before 

joining the TWB (yes vs. no); the number of main meals per day (an integer ranging from 1 to 

6); eating supper within an hour before bedtime (yes vs. no); eating out at least once in the past 

month when joining the TWB (yes vs. no); regularly taking vitamins, minerals, or supplements 

in the past month before joining the TWB (yes vs. no).  

Furthermore, Supplementary Table S1 lists 17 diet-related questions in the TWB 

questionnaire. Each question described a dietary habit. For example, the first question was, 

“When you eat meat (such as pork, beef, mutton, chicken, duck, goose, etc.), do you eat it with 
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fat, suet, or skin?” A participant was asked to choose one item from “Always,” “Most of the 

time,” “Half of the time,” “Seldom,” or “Never.” The five choices were scored as an integer 

ranging from 1 to 5. 

A total of 20 physiological conditions contained SBP, DBP, heart rate, hemoglobin A1c 

(HbA1c), fasting glucose, total cholesterol, triglyceride, high-density lipoprotein cholesterol 

(HDL-C), low-density lipoprotein cholesterol (LDL-C), serum glutamic oxaloacetic 

transaminase, serum glutamic pyruvic transaminase, gamma-glutamyl transferase (GGT), total 

bilirubin, albumin, blood urea nitrogen (BUN), creatinine, uric acid, microalbumin, hemoglobin, 

and hematocrit.  

Totally 18 results for lung function tests included vital capacity, vital capacity/height, 

forced vital capacity, forced expiratory volume in 1.0 s, (forced expiratory volume in 1.0 s/vital 

capacity)*100, forced expiratory volume in 1.0 s/forced vital capacity, forced expiratory volume 

in 1.0 s/predicted vital capacity, maximum mid-expiratory flow, peak expiratory flow, forced 

expiratory flow at 25%, forced expiratory flow at 50%, forced expiratory flow at 75%, forced 

expiratory flow at 75%/height, (Extrapolated Volume/forced vital capacity) *100, tidal volume, 

expiratory reserve volume, inspiratory reserve volume, and inspiratory capacity.  

2.4 | Statistical analysis 
We first conducted a partial correlation analysis to examine the correlation between 

lifestyles, physiological conditions, and epigenetic markers. Following Kawamura et al. 

(Kawamura et al. 2024), we adjusted the partial correlation analysis for chronological age, 

smoking, and drinking status. Because we plan to perform the best-subset analysis to select 

important factors from many explanatory variables, we hope to preserve more EAA-correlated 

factors that can be jointly considered in regression models. Therefore, we adopted a more liberal 
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correlation cutoff (|𝑟| > 0.15) compared with Kawamura et al.’s criterion (|𝑟| > 0.20). 

Moreover, we calculated the 95% confidence interval (CI) for each partial correlation estimate 

(r). If |𝑟| > 0.15 and the 95% CI did not overlap with 0, we preserved the factor to the best-

subset selection. 

The R software (version 4.2.3) was used for our statistical analysis, and the R package 

ppcor (Kim 2015) was utilized for the partial correlation analysis. Subsequently, with the R 

package bestglm (https://cran.r-project.org/web/packages/bestglm/index.html), we performed 

the best-subset selection to investigate the optimal model for each epigenetic marker. We aimed 

to pinpoint a subset of explanatory variables (lifestyle factors and physiological conditions) that 

could best predict the outcome (epigenetic markers). We conducted an exhaustive search to 

achieve this goal while considering all possible combinations of the factors selected from the 

above partial correlation analysis. By exploring the model with the smallest Akaike information 

criterion (AIC), we identified the best model for each epigenetic marker. 

The criterion to evaluate the best model for each epigenetic marker is the AIC, which is 

−2 × logLikelihood + 2𝑝 and p is the number of estimated parameters in the model (i.e., the 

number of predictors plus one intercept term). AIC strikes a balance between the ability of a 

model to describe the observed data and the number of parameters. A smaller AIC indicates that 

the model can depict the data well while following the principle of simplicity.  

The false discovery rate (FDR) was computed according to the R built-in function 

p.adjust(p-vector, method="BH") (Benjamini and Hochberg 1995), where the p-vector contained 

p-values in the seven best models (each epigenetic marker had its own best model). We used the 

R package car (https://cran.r-project.org/web/packages/car/index.html) to compute the variance 

inflation factor (VIF). A VIF larger than 5 is an alarm of multicollinearity.  

https://cran.r-project.org/web/packages/bestglm/index.html
https://cran.r-project.org/web/packages/car/index.html
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3 | Results 

3.1 | Partial correlation analysis  
The 2,474 TWB individuals were randomly sampled from each county of Taiwan while 

considering the population sizes and male-female ratios. Over 99% of TWB subjects are Han 

Chinese, including Minnan Taiwanese, Hakka Taiwanese, and people of Chinese descent (Chen 

et al. 2016; Wei et al. 2021). To identify correlated factors with the seven DNAm-based markers, 

we conducted a partial correlation analysis for 81 factors, including blood biochemical measures, 

physical health examinations, and questionnaire surveys. Supplementary Figures S1-S10 

revealed that each DNAm-based marker was correlated with several factors. With a partial 

correlation coefficient (r) cutoff of 0.15 (r > 0.15 or r < -0.15 regarded as correlated), the seven 

DNAm-based markers (HannumEAA, IEAA, PhenoEAA, GrimEAA, DNAmPACKYRS, 

DNAmPAI1, and DunedinPACE) were correlated with 4, 1, 4, 15, 15, 25, and 10 factors, 

respectively. GrimEAA (correlated with 15 factors) and its components, DNAmPAI1 (correlated 

with 25 factors) and DNAmPACKYRS (correlated with 15 factors), were related to more factors 

than other epigenetic clocks.  

The liver function indicator (GGT) and the two kidney function measures (creatinine and 

uric acid) were “positively correlated” (r > 0 and the 95% CI did not overlap with 0) with four 

epigenetic markers (GrimEAA, DNAmPACKYRS, DNAmPAI1, and DunedinPACE), especially 

DNAmPAI1 (supplementary Figures S3-S4).  

Most lifestyle-related factors were not correlated with any epigenetic markers (Figures S1 

and S9), such as eating nuts (|r| ≤ 0.03, Figure S1), playing sports (|r| ≤ 0.07, Figure S1), taking 

drugs (|r| ≤ 0.04, Figure S9), being exposed to incense (|r| ≤ 0.05, Figure S9), drinking coffee (|r| 

≤ 0.08, Figure S9) or tea (|r| ≤ 0.09, Figure S9), being a vegetarian (|r| ≤ 0.04, Figure S9), 
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eating supper (late-night snacks, |r| ≤ 0.06, Figure S9), eating out at least once in the past month 

(|r| ≤ 0.04, Figure S9), regularly taking supplements such as vitamins and minerals (|r| ≤ 0.07, 

Figure S9), and the number of daily meals (|r| ≤ 0.04, Figure S9). 

If we treated |𝑟| > 0.15 and the 95% CI did not overlap with 0 as correlated, only two 

lifestyle factors were correlated with some epigenetic markers, including smoking (Figure S1) 

and cooking by yourselves (Figure S9). Smoking was positively correlated with four epigenetic 

markers, including DNAmPACKYRS (r = 0.61), GrimEAA (r = 0.38), DunedinPACE (r = 

0.20), and DNAmPAI1 (r = 0.18). Cooking by yourselves within six months was negatively 

correlated with DNAmPAI1 (r = -0.22) and DNAmPACKYRS (r = -0.21, Figure S9). This result 

implies that smoking is an unhealthy habit. On the contrary, controlling things eaten into the 

body is beneficial by making food yourself. 

Furthermore, the 17 items for diet preference were not correlated with any epigenetic 

marker (|r| < 0.15, Figure S8). Supplementary Table S1 lists the 17 diet-related questions in the 

TWB questionnaire. From diet question 1 (D1) to diet question 8 (D8), high points are healthier 

than low points according to common sense. For example, D1 asked, “When you eat meat (such 

as pork, beef, mutton, chicken, duck, goose, etc.), do you always (1 point) / never (5 points) eat it 

with fat, suet, or skin?” Conversely, low points are healthier than high points for D9-D17 

(Supplementary Table S1). For example, D9 asked, “Do you always (1 point) / never (5 points) 

eat fruits or vegetables instead of high-fat snacks (such as chips, cakes, doughnuts, etc.) when 

enjoying snacks?” In line with our common sense, D1-D8 were generally negatively correlated 

with the seven epigenetic markers, while D9-D17 were roughly positively correlated with the 

epigenetic markers. This pattern can be observed in Figure S8. 

[Table 1 is approximately here] 
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In summary, given the partial correlation coefficient (r) cutoff of 0.15 (r > 0.15 or r < -0.15 

regarded as correlated), 29 out of the 81 factors were correlated with at least one epigenetic 

marker (listed in Table 1). The other 52 factors not correlated with any marker are listed in 

Supplementary Table S2. Among the 29 correlated factors, “cooking by yourselves” and six lung 

function measures (inspiratory capacity, inspiratory reserve volume, vital capacity, vital 

capacity/height, forced expiratory volume in 1.0 second, and forced vital capacity) were 

responded/measured in only ~60% of the 2,474 TWB individuals. If we put all 29 factors into a 

regression model, only the ~60% of individuals with complete data will be analyzed. Therefore, 

we considered the other 22 (= 29-7) characteristics as potential predictors. Besides, we did not 

perform multiple regression by modeling these 22 factors simultaneously to avoid 

multicollinearity. Instead, we put the 22 factors into the best-subset selection. 

3.2 | Best-subset selection  
While we aim to explore the association between lifestyle factors, physiological conditions, 

and EAA, we cannot put all 22 factors into the prediction model due to multicollinearity (i.e., 

VIF > 5). Therefore, we explored the best model with the smallest AIC for each epigenetic 

marker, indicating that the model had the best performance while accounting for the model 

complexity. However, loglikelihood changes with the response variable (i.e., epigenetic 

marker), AIC = −2 × logLikelihood + 2𝑝 (where p is the number of estimated parameters) 

cannot be compared across different epigenetic markers. Hence, we used the adjusted R-square 

to evaluate the explanatory ability of the seven best models. 

Unlike the conventional R-square, the adjusted R-square can compare models with different 

numbers of predictors. Through the best-subset analysis, the adjusted R-squares for the seven 

DNAm markers were ranked as (supplementary Table S3): DNAmPACKYRS (53.5%) > 
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GrimEAA (44.7%) > DNAmPAI1 (42.2%) > DunedinPACE (29.1%) > PhenoEAA (19.9%) > 

HannumEAA (19.3%) > IEAA (5.6%). GrimEAA and its two components (DNAmPACKYRS 

and DNAmPAI1) can be best explained by the predictors, followed by DunedinPACE. 

Although DNAmPACKYRS had the highest adjusted R-square (53.5%) among all DNAm-

based markers, it is one of the eight components belonging to GrimAge. Because our primary 

purpose was to investigate factors associated with the aging rate, we chose GrimEAA’s model 

for further interpretation. The best model for GrimEAA includes 15 explanatory variables: sex, 

BMI, WHR, smoking, hemoglobin A1c (HbA1c), HDL-C, creatinine, uric acid, GGT, 

hemoglobin, B lymphocytes, natural killer cells, CD4+ T cells, CD8+ T cells, and monocytes. 

The three indicators of kidney (creatinine, uric acid) and liver (GGT) function were all selected 

as predictors for GrimEAA. 

[Table 2 is approximately here] 

Following the partial correlation analysis, GrimEAA and DNAmPAI1 were correlated with 

more factors (15 and 25, respectively). Therefore, we put the best model for GrimEAA and 

DNAmPAI1 in Table 2, and those for the remaining five DNAm-based markers are presented in 

Supplementary Table S4. All VIF values were under 5 when considering the factors in the best 

model as the explanatory variables. If we bypass the best-subset analysis and directly put all 22 

factors into a regression model, some VIF values will be larger than 5. Therefore, refining 

models through the best-subset selection is justifiable. 

[Figure 1 is approximately here] 

We summarized the factor-EAA associations in a phylogenetic heat map (Figure 1). The 

magnitude of the value represents –log10(FDR), which is always positive. Moreover, we 

deliberately added a positive/negative sign before the magnitude. A positive/negative sign 
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indicates that the regression coefficient (β) is positive/negative. As shown in Figure 1, the 22 

factors can be roughly categorized as the top (red) and bottom (blue) parts. A total of 96 p-values 

were put into the R built-in function p.adjust(p-vector, method="BH"), where “BH” indicated the 

Benjamini-Hochberg method (Benjamini and Hochberg 1995), where 96 was the total number of 

factors in the seven best models (96 checks in Table S3). 

Being a female, having higher HDL-C and hemoglobin levels was associated with 

epigenetic age deceleration (EAD), shown as blue cells in Figure 1. On the contrary, smoking, 

higher BMI, WHR, HbA1c, GGT, uric acid, creatinine, and triglyceride were all positively 

associated with EAA, demonstrated as red cells in Figure 1. The details of Figure 1 can be found 

in Table 2 and Supplementary Table S4. 

4 | Discussion 
Two systematic reviews, including 156 and 299 publications, respectively, have revealed 

that EAA is associated with smoking, a larger BMI, male sex, and diabetes (Chervova et al. 

2024; Oblak et al. 2021). These conclusions align with our work (Figure 1). By investigating 

DNAm samples from 144 Japanese men aged 65-72 years, Kawamura et al. found that the 

contribution (adjusted R-square) of 16 factors was 5.6% for PhenoEAA and 32.9% for 

GrimEAA (Kawamura et al. 2024). Their 16 factors included oxygen uptake at the ventilatory 

threshold (physical fitness), peak oxygen uptake (physical fitness), grip strength (physical 

fitness), fat-free mass (anthropometric factor), visceral fat area (anthropometric factor), calf 

circumference (anthropometric factor), head fat percentage, triglyceride, HDL-C, carbohydrate 

intake (nutrient), copper intake (nutrient), vitamin C intake (nutrient), beta-carotene intake 

(nutrient), smoking, drinking, and chronotype.  

In this work, we used 14 and 15 factors to construct the PhenoEAA and GrimEAA 
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models, respectively contributing 19.9% and 44.7% of the adjusted R-square (Table S3). 

Although the sample size (2,474 vs. 144), study population (Taiwanese vs. Japanese), and age 

range (30-70 vs. 65-72) are different, this comparison may imply that our factors are more 

relevant to PhenoEAA and GrimEAA than those investigated in Kawamura et al.’s research 

(Kawamura et al. 2024). 

The TWB data showed the relationship between epigenetic aging, lifestyle factors, and 

physiological conditions. This work revealed some novel findings. Firstly, the EAA that can be 

mostly explained by lifestyle, kidney or liver function, and metabolic factors is GrimEAA 

(Adjusted R-square = 44.7%, Table S3). By contrast, IEAA is the measure least explained by the 

factors in this study (Adjusted R-square = 5.6%, Table S3). Secondly, elevated GGT, creatinine, 

and uric acid are associated with an increased risk of liver (GGT) and kidney (creatinine and uric 

acid) impairment (Cho et al. 2023; Joo et al. 2020). Our result shows that GrimEAA can better 

reflect these biomarkers (Figure 1). Thirdly, smoking was identified as the primary lifestyle 

factor significantly contributing to biological aging, as evidenced by its strong associations with 

all epigenetic markers except for IEAA (Figure 1). On the other hand, secondhand smoking (or 

passive smoking) was not related to any EAA (Figure S1). 

Obesity traits such as BMI and WHR were associated with various measures of EAA, 

except for IEAA and DNAmPACKYRS (Figure 1). This result indicates that general 

(represented by BMI) and abdominal obesity (measured by WHR) are independent risk factors of 

aging acceleration. We could incorporate both indices into a regression model without the 

multicollinearity problem (VIF < 5, Tables 2 and S4). 

Four lipid traits were investigated in this work, including HDL-C, LDL-C, triglyceride, 

and total cholesterol. Only HDL-C and triglyceride were correlated (Figure S2, |𝑟| > 0.15) and 



17 

associated (Figure 1) with epigenetic markers. As reported by other studies, these two lipid traits 

are more critical to coronary heart disease, and the triglyceride/HDL-C ratio is a useful indicator 

for detecting metabolic syndrome (Borrayo et al. 2018). DNAmPAI1 is the only epigenetic 

marker associated with triglyceride (FDR < 0.001, Figure 1). This result aligns with European 

ancestry data - DNAmPAI1 stands out regarding the association with triglyceride levels (Lu et 

al. 2019). 

Except for smoking, most lifestyle factors were not related to EAA (|𝑟| ≤ 0.15), such as 

education, living alone, performing physical exercise (Figure S1), drinking tea or coffee, 

vegetarian eating style, regularly taking vitamins (Figure S9), etc. Although dietary habits were 

not prominently correlated with any epigenetic marker (D1-D17, |𝑟| ≤ 0.15, Figure S8), the 

pattern in Figure S8 suggested that a healthier dietary attitude was slightly related to EAD. 

Examples included “Never eat fat, suet, or skin when eating meat (such as pork, beef, mutton, 

chicken, duck, goose, etc.)” and “Always eat fruits or vegetables instead of high-fat snacks (such 

as chips, cakes, doughnuts, etc.) when enjoying snacks” (D1-D17 dietary habits can be found in 

Supplementary Table S1). 

Typically, hemoglobin levels decline with aging. Studies have shown an increasing 

prevalence of anemia in older people (Le 2016). Our results show that a low hemoglobin level is 

associated with all measures of EAA (FDR < 0.001, the bottom row of Figure 1), except for 

IEAA.  

This study included three kidney function indicators: creatinine, uric acid, and BUN. 

BUN was not correlated with any epigenetic marker (|𝑟| ≤ 0.15, Figure S4). Creatinine and uric 

acid were correlated with GrimEAA and its components (DNAmPAI1 and DNAmPACKYRS) 

(|𝑟| > 0.15, Figure S4). When considering the 15 factors selected by GrimEAA’s best model, 
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creatinine and uric acid were still associated with GrimEAA (FDR < 0.05, Figure 1). Uric acid 

was even more associated with GrimEAA’s component - DNAmPAI1 (FDR < 0.001, Figure 1). 

PAI1 and uric acid are both critical factors in blood clotting and metabolic abnormalities (Jin et 

al. 2012; Zhang et al. 2020). As the epigenetic surrogate marker of PAI1, DNAmPAI1 is 

inherently the DNAm marker most related to uric acid. 

Three measures of liver function were considered in this work: total bilirubin, albumin, 

and GGT. Total bilirubin and albumin were not correlated with any epigenetic marker (|𝑟| ≤ 

0.15, Figure S3). GGT was correlated with DNAmPAI1 (|𝑟| > 0.15, Figure S3). A Korean 

nationwide database including 9.6 million individuals showed that higher GGT levels were 

associated with increased mortality in cardiovascular disease, cancer, respiratory disease, and 

liver disease (Cho et al. 2023). This study implies that GGT is critical to human health and not 

only restricted to the liver. As shown by Figure 1, GGT was associated with all epigenetic 

markers except for the first-generation clocks (HannumEAA and IEAA). This evidence confirms 

that a worse liver function is related to acceleration in epigenetic age assessed by the second or 

third-generation clocks. 

Two diabetes traits, fasting glucose and HbA1c, were investigated here. Like GGT, 

HbA1c was associated with all epigenetic markers except for the first-generation clocks 

(HannumEAA and IEAA, Figure 1). Fasting glucose was not as relevant to EAA as HbA1c 

(Figure 1). A possible explanation for this finding is that HbA1c measures blood sugar for the 

recent 2~3 months; consequently, it is less sensitive to acute hyperglycemic changes than fasting 

glucose. HbA1c is regarded as a more reliable measure of long-term glycemic levels than fasting 

glucose (Sherwani et al. 2016). 

The main conclusions have been summarized in Figure 1. From the findings of this work, 
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people may slow their aging rate by controlling the HbA1c, BMI, WHR, GGT, uric acid, 

creatinine, triglyceride, avoiding smoking, and preventing a low HDL-C or a low hemoglobin 

level.  

The biological aging rate is associated with lifestyle factors and physiological conditions. 

With a sizable sample size (2,474), we built the best model for each of the seven commonly 

discussed epigenetic markers. The main limitation of this study is the incomplete survey of some 

factors. To save time, ~40% of the participants selected simplified questionnaires and 

examinations. Although 29 factors passed the partial correlation filter, “cooking by yourselves” 

and six lung function measures were responded/measured in only ~60% of the 2,474 TWB 

individuals. Therefore, we had to build the best model with the remaining 22 factors. 

5 | Conclusion 
The adjusted R-squares for the five measures of EAA were ranked as (supplementary Table 

S3): GrimEAA (44.7%) > DunedinPACE (29.1%) > PhenoEAA (19.9%) > HannumEAA 

(19.3%) > IEAA (5.6%). GrimEAA can be best explained by physiological conditions and 

lifestyle factors, while IEAA is difficult to explain. The result revealed that three liver or kidney 

function indicators (GGT, creatinine, and uric acid) were positively associated with GrimEAA 

(Figure 1). Our research explored the connections between DNAm-based markers, liver or 

kidney functions, and lifestyle-related factors, particularly for the Asian population. 
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Table 

Table 1. Seven epigenetic markers and 29 EAA-correlated factors 

 Males Females P-value a 

Total, n (%) 1243 (50.24) 1231 (49.76) - 

Chronological age (years), mean (s.d.) 50.24 (11.34) 49.25 (10.79) 0.025* 

Seven epigenetic markers    

HannumEAA (years), mean (s.d.) 0.683 (3.57) -0.733 (3.63) <0.001*** 

IEAA (years), mean (s.d.) 0.710 (3.78) -0.735 (3.70) <0.001*** 

PhenoEAA (years), mean (s.d.) 0.069 (4.67) -0.132 (5.00) 0.303 

GrimEAA (years), mean (s.d.) 1.11 (4.00) -1.19 (3.18) <0.001*** 

DNAmPACKYRS, mean (s.d.) 10.58 (8.94) 4.88 (5.07) <0.001*** 

DNAmPAI1 (pg/mL), mean (s.d.) 16960 (2259.90) 14655 (2207.51) <0.001*** 

DunedinPACE, mean (s.d.) 1.01 (0.11) 0.976 (0.10) <0.001*** 

Anthropometric indices    

Body mass index (kg/𝑚2), mean (s.d.) 25.24 (3.43) 23.52 (3.72) <0.001*** 

Waist-hip ratio, mean (s.d.) 0.894 (0.06) 0.841 (0.07) <0.001*** 

Cardiovascular health metrics    

Systolic blood pressure (mmHg), mean (s.d.)  122.10 (16.35) 113.0 (17.13) <0.001*** 

Diastolic blood pressure (mmHg), mean (s.d.) 77.12 (10.62) 69.36 (10.44) <0.001*** 

Blood biochemical indicators    

Hemoglobin A1c (%), mean (s.d.) 5.77 (0.81) 5.66 (0.64) <0.001*** 

HDL-C (mg/dL), mean (s.d.) 48.51(11.58) 59.18 (13.61) <0.001*** 

Creatinine (mg/dL), mean (s.d.) 0.889 (0.18) 0.626 (0.40) <0.001*** 

Uric acid (mg/dL), mean (s.d.) 6.41 (1.33) 4.83 (1.08) <0.001*** 

GGT (U/L), mean (s.d.) 31.43 (45.35) 18.53 (15.60) <0.001*** 

Hematocrit (%), mean (s.d.) 45.95 (3.73) 40.79 (3.49) <0.001*** 

Hemoglobin (g/dL), mean (s.d.) 14.99 (1.19) 13.01 (1.19) <0.001*** 

Fasting glucose (mg/dL), mean (s.d.) 98.89 (22.07) 92.86 (17.10) <0.001*** 

Triglyceride (mg/dL), mean (s.d.) 134.32 (116.49) 101.73 (92.08) <0.001*** 

SGPT (U/L), mean (s.d.) 28.20 (22.25) 19.52 (12.51) <0.001*** 

Lung function measures    

Vital capacity (L), mean (s.d.) 3.76 (0.73) 2.63 (0.71) <0.001*** 

Vital capacity / Height (L/m), mean (s.d.) 2.20 (0.38) 1.66 (0.43) <0.001*** 

Forced vital capacity (L), mean (s.d.) 3.65 (0.72) 2.55 (0.75) <0.001*** 

Forced expiratory volume in 1.0 second (L), mean (s.d.) 2.66 (0.86) 1.85 (0.67) <0.001*** 

Inspiratory reserve volume (L), mean (s.d.) 1.58 (0.63) 0.986 (0.43) <0.001*** 

Inspiratory capacity (L), mean (s.d.) 2.58 (0.65) 1.74 (0.49) <0.001*** 
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 Males Females P-value a 

Lifestyle-related factors    

Smoking (yes vs. no) b, n/a (%) 235/1243 (18.91%) 48/1231 (3.90%) <0.001*** 

Cooking by yourselves (yes vs. no) c, n/a (%)  159/689 (23.08%) 549/752 (73.01%) <0.001*** 

Cell-type proportions    

B lymphocytes (%), mean (s.d.) 0.063 (0.03) 0.068 (0.03) <0.001*** 

Monocytes (%), mean (s.d.) 0.060 (0.02) 0.052 (0.02) <0.001*** 

Natural killer cells (%), mean (s.d.) 0.073 (0.05) 0.055 (0.05) <0.001*** 

CD4+ T cells (%), mean (s.d.) 0.128 (0.05) 0.144 (0.05) <0.001*** 

CD8+ T cells (%), mean (s.d.) 0.072 (0.04) 0.077 (0.04) <0.001*** 

    

Note: Data are presented as mean (s.d.) or n/a (%) (n: the number of individuals belonging to this 

category; a: the total number of individuals responding to this question).  

 

Abbreviations: HDL-C, high-density lipoprotein cholesterol; GGT, gamma-glutamyl transferase; 

SGPT, serum glutamic pyruvic transaminase. 

 

P-value a: To test the difference between males and females, we used the two-sample t-test for 

continuous factors or the proportion test for dichotomous factors. If the difference is significant 

at p < 0.05, p < 0.01, or p < 0.001, we indicate it with *, **, or ***, respectively. 

Smoking b: individuals who had smoked cigarettes for at least six months when participating in 

the TWB.  

Cooking by yourselves c: individuals who cooked meals by themselves within six months when 

participating in the TWB. 
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Table 2. The best model for GrimEAA and DNAmPAI1 

 𝛽 Standard 

error 

95% Confidence interval VIF FDR a 

GrimEAA (in years)       

Sex (female vs. male) -0.7601  0.1761  [-1.1055,  -0.4148]  2.4042  4.0E-05*** 

BMI (kg/𝑚2) 0.0658  0.0198  [0.0269,  0.1047]  1.6489  1.8E-03** 

WHR 3.8404  1.1057  [1.6722,  6.0087]  1.7348  1.0E-03** 

CD8+ T cells (%) -12.8228  1.3528  [-15.4755,  -10.1701]  1.0584  4.3E-20*** 

CD4+ T cells (%) -10.9774  1.2197  [-13.3692,  -8.5857]  1.3668  3.0E-18*** 

Natural killer cells (%) -9.9934  1.2094  [-12.3650,  -7.6218]  1.1125  1.3E-15*** 

B lymphocytes (%) -21.1413  2.4250  [-25.8966,  -16.3860]  1.2925  3.3E-17*** 

Monocytes (%) 14.7432  2.8452  [9.1638,  20.3225]  1.1923  7.1E-07*** 

HbA1c (%) 0.5608  0.0826  [0.3988,  0.7227]  1.1333  6.4E-11*** 

HDL-C (mg/dL) -0.0149  0.0050  [-0.0246,  -0.0051]  1.4388  4.6E-03** 

Hemoglobin (g/dL) -0.2383  0.0492  [-0.3348,  -0.1417]  1.7987  3.7E-06*** 

GGT (U/L) 0.0078  0.0017  [0.0044,  0.0112]  1.1190  1.7E-05*** 

Creatinine (mg/dL) 0.4178  0.1873  [0.0504,  0.7851]  1.2428  3.2E-02* 

Uric acid (mg/dL) 0.1247  0.0524  [0.0219,  0.2275]  1.7801  2.3E-02* 

Smoking (yes vs. no) 5.1756  0.1923  [4.7985,  5.5527]  1.1500  2.6E-138*** 

DNAmPAI1 (in pg/mL)       

Chronological age (years) 36.4324  4.3211  [27.9590,  44.9057]  1.5518  3.4E-16*** 

Sex (female vs. male) -1227.8125  103.1327  [-1430.0486,  -1025.5764]  1.8009  9.8E-31*** 

BMI (kg/𝑚2) 76.2614  13.8109  [49.1793,  103.3436]  1.7454  1.4E-07*** 

WHR 1969.7495  783.5495  [433.2635,  3506.2356]  1.9005  1.6E-02* 

CD8+ T cells (%) -7210.6949  946.2652  [-9066.2550,  -5355.1348]  1.1329  1.9E-13*** 

Natural killer cells (%) -3156.9640  861.0496  [-4845.4223,  -1468.5056]  1.2326  5.1E-04*** 

B lymphocytes (%) -7049.4816  1533.4944  [-10056.5573,  -4042.4059]  1.1341  1.1E-05*** 

Monocytes (%) 4858.5363  1848.9684  [1232.8381,  8484.2345]  1.0991  1.2E-02* 

SBP (mmHg) 3.9715  2.6354  [-1.1965,  9.1394]  1.4139  1.3E-01 

HbA1c (%) 293.6134  94.1388  [109.0137,  478.2130]  3.2110  3.3E-03** 

Fasting glucose (mg/dL) 8.7013  3.4118  [2.0109,  15.3916]  3.1472  1.5E-02* 

Triglyceride (mg/dL) 1.9987  0.4234  [1.1685,  2.8290]  1.3717  6.4E-06*** 

HDL-C (mg/dL) -9.4294  3.5275  [-16.3465,  -2.5122]  1.5842  1.1E-02* 
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GGT (U/L) 4.4551  1.1889  [2.1238,  6.7864]  1.1445  3.8E-04*** 

Uric acid (mg/dL) 189.0567  34.8675  [120.6840,  257.4294]  1.7299  2.1E-07*** 

Smoking (yes vs. no) 701.5314  128.5739  [449.4070,  953.6558]  1.1346  1.8E-07*** 

 

Abbreviations: VIF, variance inflation factor; FDR, false discovery rate; BMI, body mass index; WHR, waist-hip 

ratio; HbA1c, hemoglobin A1c; HDL-C, high-density lipoprotein cholesterol; GGT, gamma-glutamyl transferase. 

FDR a: Statistical significance is marked with *, **, and ***, representing an FDR less than 0.05, 0.01, and 0.001, 

respectively. 
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Figure legends 
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Figure 1.  The phylogenetic heat map of the factor-EAA associations  

This figure summarizes the results from Table 2 and Supplementary Table S4. The magnitude of 

the value represents –log10(FDR), which is always positive. Moreover, we deliberately added a 

positive/negative sign before the magnitude. A positive/negative sign indicates that the 

regression coefficient (𝛽) is positive/negative. Statistical significance is marked with *, **, and 

***, representing an FDR less than 0.05, 0.01, and 0.001, respectively. 

 
 
 


