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Abstract 

PhenoAge and BioAge are two commonly used biological age (BA) measures. I here 

searched for gene-environment interactions (GxE) and gene-gene interactions (GxG) on 

PhenoAgeAccel (age-adjusted PhenoAge) and BioAgeAccel (age-adjusted BioAge) of 111,996 

Taiwan Biobank (TWB) participants, including a discovery set of 86,536 TWB2 individuals and 

a replication set of 25,460 TWB1 individuals. Searching for variance quantitative trait loci 

(vQTLs) provides a convenient way to evaluate GxE and GxG. A total of 4 nearly independent 

(linkage disequilibrium measure r2 < 0.01) PhenoAgeAccel-vQTLs were identified from 

5,303,039 autosomal TWB2 SNPs (p < 5E-8), whereas no vQTLs were found from 

BioAgeAccel. These 4 PhenoAgeAccel-vQTLs (rs35276921, rs141927875, rs10903013, and 

rs76038336) were further replicated by TWB1 (p < 5E-8). They were located in the OR51B5, 

FAM234A, and AXIN1 genes. All 4 PhenoAgeAccel-vQTLs were significantly associated with 

PhenoAgeAccel (p < 5E-8). A phylogenetic heat map of the GxE analyses showed that smoking 

exacerbated the PhenoAgeAccel-vQTLs’ aging effects, while higher educational attainment 

attenuated the PhenoAgeAccel-vQTLs’ aging effects. Body mass index, chronological age, 

alcohol consumption, and sex did not prominently modulate PhenoAgeAccel-vQTLs’ aging 

effects. Based on the vQTL results, I also detected rs141927875-rs35276921 interaction (p = 

4.7E-61) and rs76038336-rs10903013 interaction (p = 3.3E-116) on PhenoAgeAccel. 

Keywords: Biomarkers, longevity, genetics, scale test. 

1  Introduction 

Biological age (BA) measures can provide critical information for human health and 

physiological conditions 1. Biologically young individuals generally have longer lifespans and 
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healthier conditions than biologically old individuals 2. Slowing the rate of biological aging will 

help prevent various age-related disorders and cancers 3. However, there is no consensus on how 

to measure one’s BA. Recently, with the big health data collected by biobanks of some countries, 

BA can be estimated through phenotype data 4-9. 

Several phenotypes are highly related to one’s healthspan and lifespan 4-9. To be specific, 

BA is usually estimated by integration of multiple vital biomarkers such as C-reactive protein 

5,8,9, albumin 5,8,9, creatinine 8,9, total cholesterol 5,9, systolic blood pressure (SBP) 5,9, diastolic 

blood pressure 7, glycated hemoglobin (HbA1c) 5, estimated glomerular filtration rate 7, etc. 

Recently, BA was reported to be critically associated with indices in the following four 

domains: immunity, metabolic, and functions of the kidney and liver 10. Consistent with this 

viewpoint, Levine et al. 8 proposed a PhenoAge including 9 phenotypes and chronological age. 

These 9 biomarkers covered indices in these critical domains, including immunity: mean 

corpuscular volume (MCV), white blood cell count, red cell distribution width, and 

lymphocyte percent (4 biomarkers); metabolic condition: serum fasting glucose (1 biomarker); 

kidney function: creatinine (1 biomarker); liver function: albumin and alkaline phosphatase (2 

biomarkers); and inflammation: C-reactive protein (1 biomarker). 

The five clinical markers presented in bold font were measured by the Taiwan Biobank 

(TWB), whereas the other four were not. Although TWB did not collect all nine biomarkers, I 

calculated the PhenoAge of TWB participants by imputing it based on six markers (chronological 

age and the abovementioned five bold-font markers) 11. 

In addition to PhenoAge, BioAge is another commonly used BA measure that provides one 

of the most accurate mortality predictors 9. BioAge was estimated by chronological age and seven 

biomarkers in four domains, including metabolic condition: HbA1c, SBP, and total cholesterol 

(3 biomarkers); kidney function: creatinine (1 biomarker); liver function: albumin and alkaline 
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phosphatase (2 biomarkers); and inflammation: C-reactive protein (1 biomarker). 

TWB measured the abovementioned five bold-font markers, whereas the other two were not. 

Although TWB did not collect all seven biomarkers, I previously calculated the BioAge of TWB 

participants by imputing it based on six markers (chronological age and the abovementioned five 

bold-font markers) 4. Formulas of PhenoAge and BioAge aggregated essential health indicators. 

Therefore, they can reflect one’s health and physiological conditions 8. 

After measuring BA, BA acceleration (BAA) can be obtained through the residuals of 

regressing BA on chronological age, i.e., PhenoAgeAccel (age-adjusted PhenoAge) and 

BioAgeAccel (age-adjusted BioAge) 4,12. In this work, I explored gene-environment interactions 

(GxE) and gene-gene interactions (GxG) on PhenoAgeAccel and BioAgeAccel according to 

analyses of ~111,996 TWB participants. Through this, I investigated whether environmental 

factors or other genetic variants can modulate the effects of aging-associated genes. 

2  Experimental procedures 

2.1  Taiwan Biobank data 

Since October 2012, TWB has recruited Taiwan residents aged 30 to 70 and collected their 

genomic and lifestyle factors 13. After signing informed consent, community-based volunteers 

took physical examinations and provided blood and urine samples. TWB health professionals 

further collected lifestyle information through a face-to-face interview with each participant. 

TWB was approved by the Institutional Review Board on Biomedical Science 

Research/IRB-BM, Academia Sinica, and the Ethics and Governance Council of Taiwan 

Biobank, Taiwan. TWB approved my application to access the data on February 18, 2020 

(application number: TWBR10810-07). The current work further received approval from the 



5 

Research Ethics Committee of the National Taiwan University Hospital (NTUH-REC no. 

201805050RINB). 

As of March 2022, 27,719 and 103,332 individuals (aged 30-70 years) have been whole-

genome genotyped by the TWB 1.0 and TWB 2.0 genotyping arrays, respectively. The TWB 1.0 

array was designed for Taiwan’s Han Chinese, running on the Axiom Genome-Wide Array Plate 

System (Affymetrix, Santa Clara, CA). The TWB 2.0 array was developed according to the 

experience of designing the TWB 1.0 array and the next-generation sequencing of ~1,000 TWB 

individuals. These two arrays were released in April 2013 and August 2018, respectively. 

Individuals genotyped by the TWB 1.0 and TWB 2.0 arrays formed a discovery set (called “the 

TWB1 cohort”) and a replication set (called “the TWB2 cohort”), separately.  

A total of 1,462 individuals were genotyped by both arrays. To ensure that the replication set 

was independent of the discovery set, I removed these 1,462 individuals from the TWB2 cohort. I 

also tried to exclude individuals with more than 10% missing in their genotype calls, where 10% 

is a commonly adopted cutoff in quality control 14. Nonetheless, no individuals were removed 

according to this criterion. 

To assess cryptic relatedness, I calculated PI-HAT = Probability(IBD = 2) + 0.5

Probability(IBD = 1) by PLINK 1.9 15, where IBD is the genome-wide identity by descent 

sharing coefficients between any two TWB individuals. I removed one individual from each pair 

with PI-HAT ≥ 0.2, a cutoff value commonly chosen by some studies 16,17 and our previous 

works 4,18,19. After this step, the TWB1 and TWB2 cohorts comprised 25,460 and 86,536 

individuals, respectively. 

TWB 1.0 and TWB 2.0 arrays covered 632,172 and 648,611 autosomal SNPs, respectively. I 

removed 6,900 SNPs with Hardy-Weinberg test p values < 5.7×10−7 20 and 27,628 SNPs with 

genotyping rates < 95% from the TWB1 cohort and excluded 17,419 SNPs with Hardy-Weinberg 



6 

test p-values < 5.7×10−7 20 and 22,614 SNPs with genotyping rates < 95% from the TWB2 

cohort. The remaining 597,644 TWB1 SNPs and 608,578 TWB2 SNPs were used to construct 

ancestry principal components (PCs). A total of 92,021 SNPs overlapped across the two SNP sets 

(597,644 TWB1 SNPs and 608,578 TWB2 SNPs). 

The Michigan Imputation Server (https://imputationserver.sph.umich.edu/index.html) was 

further used to impute genotypes. The East Asian population from the 1000 Genomes Phase 3 v5 

was set as the reference panel. I removed SNPs with low imputation information scores (R-

square < 0.8), with imputation rates < 95%, or with Hardy-Weinberg test p-values < 5.7×10−7 20. 

The TWB1 and TWB2 individuals were finally genotyped (or imputed) on 7,433,014 and 

6,546,183 autosomal SNPs, respectively. I analyzed the 5,303,039 SNPs overlapping the two 

SNP sets (7,433,014 TWB1 SNPs and 6,546,183 TWB2 SNPs). 

2.2  Principles of the scale test  

Let G be the number of minor alleles at an SNP (the assumption of “additive allelic effects” 

is used here to simplify the conceptual derivation); E be the environmental factor that can be 

continuous or dichotomous. Without loss of generality, modeling a phenotype (denoted as “Y”) 

with an SNP (G) and an environmental factor (E) can be expressed as follows, 

𝑌 = 𝛽0 + 𝛽𝐺𝐺 + 𝛽𝐸𝐸 + 𝛽𝐼𝑁𝑇𝐺 × 𝐸 + 𝜀 ,                    (1) 

where 𝜀 is the random error term. By assuming G and E are independent of each other, Pare et 

al. derived the variance of Y conditional on the genotype as 21 

𝑉𝑎𝑟(𝑌|𝐺 = 𝑔) = 𝑉𝑎𝑟(𝛽0 + 𝛽𝐺𝐺 + 𝛽𝐸𝐸 + 𝛽𝐼𝑁𝑇𝐺 × 𝐸 + 𝜀|𝐺 = 𝑔) 

= 𝑉𝑎𝑟(𝛽0) + 𝑉𝑎𝑟(𝛽𝐺𝐺|𝐺 = 𝑔) + 𝑉𝑎𝑟(𝛽𝐸𝐸) + 𝑉𝑎𝑟(𝛽𝐼𝑁𝑇𝐺 × 𝐸|𝐺 = 𝑔)

+ 2𝐶𝑜𝑣(𝛽𝐸𝐸, 𝛽𝐼𝑁𝑇𝐺 × 𝐸|𝐺 = 𝑔) + 𝑉𝑎𝑟(𝜀) 

= 0 + 0 + 𝛽𝐸
2𝑉𝑎𝑟(𝐸) + 𝛽𝐼𝑁𝑇

2 𝑔2𝑉𝑎𝑟(𝐸) + 2𝛽𝐸𝛽𝐼𝑁𝑇𝑔𝑉𝑎𝑟(𝐸) + 𝑉𝑎𝑟(𝜀) 

https://imputationserver.sph.umich.edu/index.html
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= (𝛽𝐸 + 𝛽𝐼𝑁𝑇𝑔)2𝑉𝑎𝑟(𝐸) + 𝑉𝑎𝑟(𝜀)                          (2) 

I obtained 𝑉𝑎𝑟(𝑌|𝐺 = 𝑔) = (𝛽𝐸 + 𝛽𝐼𝑁𝑇𝑔)2𝑉𝑎𝑟(𝐸) + 𝑉𝑎𝑟(𝜀). In the absence of GxE, 

𝛽𝐼𝑁𝑇 = 0 and 𝑉𝑎𝑟(𝑌|𝐺 = 𝑔) = 𝛽𝐸
2𝑉𝑎𝑟(𝐸) + 𝑉𝑎𝑟(𝜀), representing the variance of Y remains 

constant across the three genotypes (𝑔 = 0, 1, and 2). Therefore, I investigated GxE by testing 

equal variance (homoscedasticity) of BAA (PhenoAgeAccel and BioAgeAccel) across the three 

genotype groups. Likewise, E in equation (1) can be substituted with another genetic variant 

“G2”. Non-constant phenotypic variance can result from GxE or GxG. 

2.3  Statistical Analysis 

2.3.1  Genome-wide variance quantitative trait loci (vQTL) search for BAA 

Soave and Sun proposed a two-stage regression framework to perform the vQTL search 

while adjusting for covariates 22. To provide results robust to outliers and the distributions of 

BAA, I performed the “rank-based inverse normal transformation” (RINT) 23 on BAA 

(PhenoAgeAccel and BioAgeAccel) prior to the analysis. With this step, RINT-BAA was 

normally distributed, and therefore, I could obtain “genotypes-and-covariates adjusted RINT-

BAA” through the residuals of regressing RINT-BAA on genotypes and covariates. For each 

SNP, I first adjusted RINT-BAA with genotype effects (as two dummy variables, without 

assuming “additive allelic effects”) and covariates, including sex (male vs. female), chronological 

age (in years), BMI (in kg/m2), performing regular exercise (yes vs. no), educational attainment 

(an integer from 1 to 10), smoking status (yes vs. no), drinking status (yes vs. no), and the first 10 

ancestry PCs. These profile or lifestyle factors were associated with PhenoAgeAccel and 

BioAgeAccel (Table 2 of my previous work 11), and therefore they were chosen as covariates. 

This model was called the “larger model” because more covariates were adjusted. The definition 



8 

of each covariate was described under Table 1. 

Through the above step, I obtained the “genotypes-and-covariates adjusted RINT-BAA”, 

denoted as “𝑒𝑖” for the ith individual. The dispersion of 𝑒𝑖 was then calculated by 

𝐷𝑖 = (𝑒𝑖 − �̃�)2, where �̃� was the sample median of 𝑒𝑖 across all n individuals (the sample 

median is more robust than the sample mean). Subsequently, I regressed RINT-𝐷𝑖 on the two 

dummy variables for genotype coding to check whether the dispersion of 𝑒𝑖 was dependent on 

different genotypes. The significance of the F-statistic of this regression model meant that the 

dispersion of “genotypes-and-covariates adjusted RINT-BAA” (𝑒𝑖) varied with different 

genotypes, which was a clue of GxE or GxG according to the derivation of equation (2). This F-

statistic is called the “scale test”, which is a right-tailed test 24,25. 

To avoid potential collider bias, I also considered a “smaller model”, where only sex (male 

vs. female), chronological age (in years), and the first 10 ancestry PCs were adjusted. I analyzed 

the 5,303,039 SNPs overlapping the TWB1 and TWB2 SNP sets. P-values of the scale test < 5E-

8 (the commonly used genome-wide significance level 26) in both the smaller and larger models 

were considered significant. Significant SNPs identified from the TWB2 cohort (n = 86,536) 

were further analyzed using the TWB1 cohort (n = 25,460). SNPs with P-values of the scale test 

< 5E-8 in the TWB1 cohort were considered successfully replicated. These SNPs were called 

vQTLs. All analyses were performed using the statistical software R (version 4.2.2). 

2.3.2  GxE analysis for vQTLs 

Subsequently, I combined the TWB1 and TWB2 cohorts to investigate which E enriched the 

GxE signal (n = 25,460 + 86,536 = 111,996). For each vQTL, RINT-BAA was regressed on the 

number of aging alleles (0, 1, or 2), sex (male vs. female), chronological age (in years), BMI (in 

kg/m2), performing regular exercise (yes vs. no), educational attainment (an integer from 1 to 10), 
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smoking status (yes vs. no), drinking status (yes vs. no), and the first 10 ancestry PCs. In this 

regression model, I added the interaction term of the number of aging alleles and one of the seven 

Es: sex, chronological age, BMI, performing regular exercise, educational attainment, smoking 

status, and drinking status. I used a phylogenetic heat map to present the interaction two-sided p-

values and the GxE directions (i.e., synergistic interactions or antagonistic interactions). A 

positive interaction effect indicates that the E exacerbates the vQTL’s aging effect, while a 

negative interaction effect suggests that the E attenuates the vQTL’s aging effect. 

2.3.3  GxG analysis for nearly independent vQTLs 

By aggregating the TWB1 and TWB2 cohorts (n = 25,460 + 86,536 = 111,996), I also 

investigated which vQTL modulated the effects of other vQTLs. A GxG search requires more 

than one vQTL to be put into a regression model. To prevent the collinearity problem, I looked 

for nearly independent vQTLs with the linkage disequilibrium measure r2 < 0.01 using the 

PLINK clumping procedure 15. Subsequently, RINT-BAA was regressed on the numbers of aging 

alleles (0, 1, or 2) for any two nearly independent vQTLs and their interaction term (i.e., product 

term) while controlling the covariates mentioned in the larger model. Two-sided p-values of the 

interaction term < 3.6E-15 [ 0.05/C(5303039, 2) ] were considered significant, where C(n, r) was 

the combination notation, and 5303039 was the number of SNPs analyzed in this study. 

[Table 1 is approximately here] 

3  Results 

3.1  Characteristics of the TWB1 and TWB2 participants 

Table 1 presents the characteristics of the TWB1 and TWB2 participants stratified by sex. 



10 

The TWB1 and TWB2 participants had similar characteristics. Compared with female 

participants, male participants had higher percentages of drinking alcoholic beverages, cigarette 

smoking, and performing regular exercise. Moreover, males had higher body mass index (BMI) 

and educational attainment than females. Except for total cholesterol, males had higher mean 

levels in the other seven biomarkers (albumin, creatinine, fasting glucose, MCV, white blood cell 

count, HbA1c, and systolic blood pressure) than females. 

The top row of Figure S1 (in the supporting information) shows the boxplots of BAA 

(PhenoAgeAccel and BioAgeAccel). The numbers shown under each plot mark the range of 

PhenoAgeAccel and BioAgeAccel (minimum ~ maximum). Because PhenoAgeAccel (or 

BioAgeAccel) was obtained from the residuals of regressing PhenoAge (or BioAge) on 

chronological age, PhenoAgeAccel and BioAgeAccel centered around 0 behaving like residuals. 

However, both the two measures of BAA were skewed to the right. To generate results robust to 

outliers and the distributions of BAA, I performed the RINT transformation 23 on BAA before the 

analysis. RINT-PhenoAgeAccel and RINT-BioAgeAccel were normally distributed, as shown in 

the bottom row of Figure S1.  

Figure S2 presents the Pearson’s correlation coefficients between PhenoAge, BioAge, 

chronological age, and the eight biomarkers constituting PhenoAge or BioAge. The correlation 

plots were stratified by the discovery (TWB2)/replication (TWB1) cohorts and sex. Both 

PhenoAge and BioAge were highly correlated with chronological age (correlation > 0.9). The 

correlations between biomarkers were consistent across the two cohorts (TWB1 and TWB2). 

3.2  Tests of scale and location 

Typical genome-wide association studies (GWAS) investigate mean phenotypic differences 

between genotypes, while vQTL searches assess phenotypic variability across genotypes. 
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Inspired by Soave et al. 24 and Staley et al. 25, examining phenotypic mean and variance can be 

termed “location” and “scale” tests, respectively. The results of these two tests for RINT-BAA 

were presented as follows. 

[Figure 1 is approximately here] 

[Scale test] Figure 1 shows the quantile-quantile (Q-Q) plots and histograms of the vQTLs’ 

p-values. I detected stronger signals of vQTLs from PhenoAgeAccel (Figure 1) than from 

BioAgeAccel (Figure S3). A total of 154 PhenoAgeAccel-vQTL SNPs were identified from 

5,303,039 SNPs (p < 5E-8 in TWB2’s and TWB1’s smaller and larger models, Supplementary 

Table S1 columns J-M), whereas no vQTLs were found from BioAgeAccel. They were located in 

the OR51B5 (on chromosome [chr.] 11), LUC7L (on chr. 16), FAM234A (on chr. 16), RGS11 (on 

chr. 16), AXIN1 (on chr. 16), MRPL28 (on chr. 16), and RAB11FIP3 (on chr. 16) genes, 

respectively (Figure 2 and Supplementary Table S1).  

[Figure 2 is approximately here] 

I also performed the scale test on the eight biomarkers constituting PhenoAgeAccel (MCV, 

white blood cell count, serum fasting glucose, creatinine, and albumin) and BioAgeAccel 

(HbA1c, SBP, and total cholesterol), respectively. A total of 155 MCV-vQTL SNPs were 

identified from 5,303,039 SNPs (p < 5E-8 in TWB2’s and TWB1’s smaller and larger models). 

They were located in or around the PhenoAgeAccel-vQTL genes (OR51B5, LUC7L, FAM234A, 

RGS11, AXIN1, MRPL28, and RAB11FIP3). Supplementary Table S2 columns J-M present the 

scale p-values of the 154 PhenoAgeAccel-vQTL SNPs when the phenotype is RINT-MCV. The 

scale p < 5E-8 for all TWB2’s smaller and larger models (Table S2 columns J-K), and the scale p 

< 2E-5 for all TWB1’s smaller and larger models (Table S2 columns L-M). On the contrary, no 

vQTLs were found from the other seven biomarkers. The 154 PhenoAgeAccel-vQTL SNPs were 

mainly detected through the signals of MCV. 
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[Location test] All the 154 PhenoAgeAccel-vQTL SNPs were associated with 

PhenoAgeAccel. When regressing RINT-PhenoAgeAccel on these 154 PhenoAgeAccel-vQTL 

SNPs (coded as 0, 1, or 2, representing the number of aging alleles) while adjusting for the 

covariates (sex, chronological age, BMI, performing regular exercise, educational attainment, 

smoking status, drinking status, and the first 10 ancestry PCs), the genetic main effects (Table S1 

column H) of all the 154 SNPs were significant (location p < 5E-8, Table S1 column I). For each 

of the 154 PhenoAgeAccel-vQTL SNPs, Supplementary Table S1 lists the aging allele that was 

positively associated with PhenoAgeAccel (Table S1 column E) together with its frequency 

(Table S1 column G) and the other allele (negatively associated with PhenoAgeAccel, Table S1 

column F). 

[Figure 3 is approximately here] 

3.3  Analysis results of GxE 

Figures 3 and 4 show the phylogenetic heat maps of the GxE analyses for PhenoAgeAccel 

and MCV, respectively. Smoking exacerbated PhenoAgeAccel-vQTLs’ aging effects (Figure 3, 

red color), while higher educational attainment attenuated the PhenoAgeAccel-vQTLs’ aging 

effects (Figure 3, blue color). BMI, chronological age, alcohol consumption, and sex did not 

prominently modulate PhenoAgeAccel-vQTLs’ aging effects (Figure 3). Chronological age 

exacerbated MCV-vQTLs’ genetic effects (Figure 4, red color), while higher educational 

attainment and larger BMI attenuated the MCV-vQTLs’ genetic effects (Figure 4, blue color). 

[Figures 4-5 are approximately here] 

3.4  Analysis results of GxG 

The GxG analysis could not be performed on all 154 PhenoAgeAccel-vQTL SNPs because 

most of them were highly correlated. To address this issue, I first used the PLINK clumping 



13 

procedure 15 to find 4 nearly independent vQTLs (out of the 154 PhenoAgeAccel-vQTL SNPs) 

with linkage disequilibrium measure r2 < 0.01, including rs35276921 (near the OR51B5 gene on 

chr. 11), rs141927875 (in the OR51B5 gene on chr. 11), rs10903013 (in the FAM234A gene on 

chr. 16), and rs76038336 (in the AXIN1 gene on chr. 16). Among the 4 independent 

PhenoAgeAccel-vQTLs, rs76038336 has been reported as PhenoAgeAccel-QTL in my previous 

work 11. Using rs141927875 and rs76038336 as examples, Figure 5 demonstrates a visual 

representation of how the vQTLs (i.e., increased RINT-PhenoAgeAccel variance with more “T” 

or “C” alleles) and QTLs appear (i.e., decreased RINT-PhenoAgeAccel mean with more “T” or 

“C” alleles). 

[Table 2 is approximately here] 

RINT-BAA was regressed on the numbers of aging alleles (0, 1, or 2) for any two 

independent vQTLs and their interaction term (i.e., product term) while controlling the covariates 

including sex (male vs. female), chronological age (in years), BMI (in kg/m2), performing regular 

exercise (yes vs. no), educational attainment (an integer from 1 to 10), smoking status (yes vs. 

no), drinking status (yes vs. no), and the first 10 ancestry PCs. Table 2 shows the GxG p-values 

among the 4 nearly independent PhenoAgeAccel-vQTLs. rs141927875-rs35276921 and 

rs76038336-rs10903013 interactions were significant with p-values < 3.6E-15 = 0.05/C(5303039, 

2), where C(n, r) was the combination notation, and 5303039 was the number of SNPs analyzed 

in this study. No multicollinearity problems have been detected in the 6 GxG regression models. 

The variance inflation factors (VIFs) were all controlled under 2. Figure 6 presents the mean 

RINT-PhenoAgeAccel of each genotype combination, in which clear evidence of GxG can be 

seen. I also performed the GxG analysis on the eight biomarkers constituting PhenoAgeAccel 

(MCV, white blood cell count, serum fasting glucose, creatinine, and albumin) and BioAgeAccel 

(HbA1c, SBP, and total cholesterol). Like the GxE results, MCV was the main indicator 
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responsible for the significant GxG finding for PhenoAgeAccel. 

[Figure 6 is approximately here] 

4  Discussion 

GxE has received much attention because this topic is related to how lifestyle factors modify 

the effects of hereditary materials 27. Not only GxE but GxG can also lead to the “non-constant 

variance” (heteroscedasticity) of a phenotype across different genotypes of an SNP 28. The scale 

test aims to explore biologically interesting SNPs (with GxE or GxG) without specifying any Es 

(or other Gs), which can alleviate the harsh penalty on multiple testing. 

The results herein indicated that PhenoAgeAccel and its component (MCV) demonstrated 

evidence of GxE and GxG. Some studies have found that cigarette smoking shortens human life 

expectancy 29,30. Figure 3 shows that smoking exacerbates PhenoAgeAccel-vQTLs’ aging effects 

(red color). Moreover, well-educated individuals are more likely to live longer. Data from the 

United States revealed that the remaining life expectancy at age 25 is approximately 10 years 

longer for people with a college degree than those without a high school degree 31. Consistently, 

Figure 3 demonstrates that higher educational attainment attenuates the PhenoAgeAccel-vQTLs’ 

aging effects (blue color). 

MCV measures the average volume of a red blood cell (RBC), which is calculated as 

10×hematocrit/RBC. High MCV (or macrocytosis) is associated with a deficiency in folic acid 

and vitamin B12, a pathologic condition of older people due to decreased absorption 32. 

Moreover, a high MCV is linked to increased cancer mortality and all-cause mortality 33. Figure 4 

shows that chronological age exacerbates MCV-vQTLs’ genetic effects (red color). Furthermore, 

higher educational attainment and larger BMI are usually related to a higher income and better 
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nutritional intake 34. Figure 4 demonstrates that these two factors attenuate the MCV-vQTLs’ 

genetic effects (blue color). 

Although the genetic associations for the two measures of BAA (PhenoAgeAccel and 

BioAgeAccel) have been investigated in individuals of European 12 and Asian 11 ancestries, no 

studies have discussed how Es modulate the effects of aging alleles till now. This work has 

shown that some non-genetic factors (i.e., smoking and education) can modify the impact of 

aging-associated genes. 

Through the era of GWAS, “missing heritability” remains an unsolved problem 35. Genetic 

variants identified from GWAS cannot fully explain the heritability of most complex diseases 36. 

An explanation for missing heritability is that genetic variants may present differential effects on 

humans according to other genetic factors, the so-called GxG. In a GWAS, the “SNP heritability” 

quantifies the proportion of phenotypic variance explained by all measured SNPs 37. The SNP 

heritability of PhenoAgeAccel was estimated at 14.45% and 14.03% from the UK Biobank 12 and 

the TWB individuals 11 , respectively. As a tiny part of millions of SNPs, the 11 previously 

published QTLs explained 3.21% variability of PhenoAgeAccel 11, whereas the 4 vQTLs 

identified in this work explained 2.65% variability of PhenoAgeAccel. Moreover, according to 

the significant GxG results, if I included the product terms of rs141927875 * rs35276921 and 

rs76038336 * rs10903013 in addition to the 4 vQTLs (i.e., 6 explanatory variables), the total R2 

explained could be increased to 3.22%. To sum up, the vQTL search facilitates the discoveries of 

GxE and GxG for PhenoAgeAccel, which can help predict the aging rate. 

5  Conclusion 

154 PhenoAgeAccel-vQTL SNPs were identified from TWB2 and replicated by TWB1 (p < 
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5E-8 in both cohorts’ smaller and larger models). Four were nearly independent with the linkage 

disequilibrium measure r2 < 0.01, including rs35276921, rs141927875, rs10903013, and 

rs76038336. These 4 vQTLs were located in or near the OR51B5, FAM234A, and AXIN1 genes 

(Supplementary Table S1). The subsequent GxE analysis showed that smoking exacerbated the 

vQTLs’ aging effects, while higher educational attainment attenuated the vQTLs’ aging effects. 

Body mass index, chronological age, alcohol consumption, and sex did not significantly 

modulate PhenoAgeAccel-vQTLs’ aging effects. Moreover, rs141927875-rs35276921 (both on 

chr. 11) and rs76038336- rs10903013 (both on chr. 16) interactions on PhenoAgeAccel were 

discovered (Table 2). Synergistic interactions among the PhenoAgeAccel-vQTLs on the same 

chromosome were observed (Figure 6). The combined effects of biological-age-deceleration 

(BAD) alleles were greater than that predicted by their respective impacts. 
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Acknowledgments 

The author would like to thank the Editor-in-Chief, Prof. Monty Montano, and the anonymous 

reviewers for their insightful and constructive comments, as well as the Taiwan Biobank for 

approving my application to access the data. This study was supported by the National Science 

and Technology Council of Taiwan (grant numbers 112-2628-B-002-024-MY3 and 111-2314-B-

002-099) and the National Taiwan University (grant number NTU-CDP-112L7776). 

Conflict of Interest 

The author declares no conflict of interest. 



17 

Data availability statement 

The individual-level Taiwan Biobank data supporting the findings in this study are available upon 

application to Taiwan Biobank (https://www.twbiobank.org.tw/new_web/). Taiwan Biobank 

approved my application to access the data on February 18, 2020 (application number: 

TWBR10810-07; principal investigator: Wan-Yu Lin). 

References 

1. Crimmins, E.M., Thyagarajan, B., Kim, J.K., Weir, D., and Faul, J. (2021). Quest for a 

summary measure of biological age: the health and retirement study. Geroscience 43, 

395-408. 10.1007/s11357-021-00325-1. 

2. Jackson, S.H., Weale, M.R., and Weale, R.A. (2003). Biological age--what is it and can it be 

measured? Arch Gerontol Geriatr 36, 103-115. 10.1016/s0167-4943(02)00060-2. 

3. Li, Z., Zhang, Z., Ren, Y., Wang, Y., Fang, J., Yue, H., Ma, S., and Guan, F. (2021). Aging and 

age-related diseases: from mechanisms to therapeutic strategies. Biogerontology 22, 

165-187. 10.1007/s10522-021-09910-5. 

4. Lin, W.Y. (2021). Lifestyle factors and genetic variants on two biological age measures: 

evidence from 94,443 Taiwan Biobank participants. J Gerontol A Biol Sci Med Sci. [Online 

ahead of print]. 10.1093/gerona/glab251. 

5. Levine, M.E., and Crimmins, E.M. (2018). Is 60 the New 50? Examining Changes in 

Biological Age Over the Past Two Decades. Demography 55, 387-402. 10.1007/s13524-

017-0644-5. 

6. Jia, L., Zhang, W., and Chen, X. (2017). Common methods of biological age estimation. 

Clin Interv Aging 12, 759-772. 10.2147/CIA.S134921. 

7. Zhong, X., Lu, Y., Gao, Q., Nyunt, M.S.Z., Fulop, T., Monterola, C.P., Tong, J.C., Larbi, A., 

and Ng, T.P. (2020). Estimating Biological Age in the Singapore Longitudinal Aging Study. J 

Gerontol A Biol Sci Med Sci 75, 1913-1920. 10.1093/gerona/glz146. 

8. Levine, M.E., Lu, A.T., Quach, A., Chen, B.H., Assimes, T.L., Bandinelli, S., Hou, L., 

Baccarelli, A.A., Stewart, J.D., Li, Y., et al. (2018). An epigenetic biomarker of aging for 

lifespan and healthspan. Aging (Albany NY) 10, 573-591. 10.18632/aging.101414. 

9. Levine, M.E. (2013). Modeling the Rate of Senescence: Can Estimated Biological Age 

Predict Mortality More Accurately Than Chronological Age? J Gerontol a-Biol 68, 667-

https://www.twbiobank.org.tw/new_web/


18 

674. 10.1093/gerona/gls233. 

10. Ahadi, S., Zhou, W., Schussler-Fiorenza Rose, S.M., Sailani, M.R., Contrepois, K., Avina, 

M., Ashland, M., Brunet, A., and Snyder, M. (2020). Personal aging markers and 

ageotypes revealed by deep longitudinal profiling. Nat Med 26, 83-90. 10.1038/s41591-

019-0719-5. 

11. Lin, W.Y. (2022). Lifestyle Factors and Genetic Variants on 2 Biological Age Measures: 

Evidence From 94 443 Taiwan Biobank Participants. J Gerontol A Biol Sci Med Sci 77, 

1189-1198. 10.1093/gerona/glab251. 

12. Kuo, C.L., Pilling, L.C., Liu, Z., Atkins, J.L., and Levine, M.E. (2021). Genetic associations for 

two biological age measures point to distinct aging phenotypes. Aging Cell 20, e13376. 

10.1101/2020.07.10.20150797. 

13. Chen, C.H., Yang, J.H., Chiang, C.W.K., Hsiung, C.N., Wu, P.E., Chang, L.C., Chu, H.W., 

Chang, J., Song, I.W., Yang, S.L., et al. (2016). Population structure of Han Chinese in the 

modern Taiwanese population based on 10,000 participants in the Taiwan Biobank 

project. Human Molecular Genetics 25, 5321-5331. 

14. Band, G., Le, Q.S., Clarke, G.M., Kivinen, K., Hubbart, C., Jeffreys, A.E., Rowlands, K., 

Leffler, E.M., Jallow, M., Conway, D.J., et al. (2019). Insights into malaria susceptibility 

using genome-wide data on 17,000 individuals from Africa, Asia and Oceania. Nature 

Communications 10. ARTN 5732 

10.1038/s41467-019-13480-z. 

15. Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M.A., Bender, D., Maller, J., 

Sklar, P., de Bakker, P.I., Daly, M.J., and Sham, P.C. (2007). PLINK: a tool set for whole-

genome association and population-based linkage analyses. American journal of human 

genetics 81, 559-575. 

16. An, J.Y., Gharahkhani, P., Law, M.H., Ong, J.S., Han, X.K., Olsen, C.M., Neale, R.E., Lai, J., 

Vaughan, T.L., Bohmer, A.C., et al. (2019). Gastroesophageal reflux GWAS identifies risk 

loci that also associate with subsequent severe esophageal diseases. Nature 

Communications 10. ARTN 4219 

10.1038/s41467-019-11968-2. 

17. Calabro, M., Drago, A., Sidoti, A., Serretti, A., and Crisafulli, C. (2015). Genes involved in 

pruning and inflammation are enriched in a large mega-sample of patients affected by 

Schizophrenia and Bipolar Disorder and controls. Psychiatry Res 228, 945-949. 

10.1016/j.psychres.2015.06.013. 

18. Lin, W.Y., Liu, Y.L., Yang, A.C., Tsai, S.J., and Kuo, P.H. (2020). Active Cigarette Smoking Is 

Associated With an Exacerbation of Genetic Susceptibility to Diabetes. Diabetes 69, 

2819-2829. 10.2337/db20-0156. 



19 

19. Lin, W.-Y. (2021). Genome-wide association study for four measures of epigenetic age 

acceleration and two epigenetic surrogate markers using DNA methylation data from 

Taiwan Biobank. Human Molecular Genetics (in press). 

20. WTCCC (2007). Genome-wide association study of 14,000 cases of seven common 

diseases and 3,000 shared controls. Nature 447, 661-678. 

21. Pare, G., Cook, N.R., Ridker, P.M., and Chasman, D.I. (2010). On the Use of Variance per 

Genotype as a Tool to Identify Quantitative Trait Interaction Effects: A Report from the 

Women's Genome Health Study. Plos Genet 6, e1000981. ARTN e1000981 

10.1371/journal.pgen.1000981. 

22. Soave, D., and Sun, L. (2017). A generalized Levene's scale test for variance heterogeneity 

in the presence of sample correlation and group uncertainty. Biometrics 73, 960-971. 

10.1111/biom.12651. 

23. McCaw, Z.R., Lane, J.M., Saxena, R., Redline, S., and Lin, X. (2020). Operating 

characteristics of the rank-based inverse normal transformation for quantitative trait 

analysis in genome-wide association studies. Biometrics 76, 1262-1272. 

10.1111/biom.13214. 

24. Soave, D., Corvol, H., Panjwani, N., Gong, J., Li, W., Boelle, P.Y., Durie, P.R., Paterson, A.D., 

Rommens, J.M., Strug, L.J., and Sun, L. (2015). A Joint Location-Scale Test Improves 

Power to Detect Associated SNPs, Gene Sets, and Pathways. Am J Hum Genet 97, 125-

138. 10.1016/j.ajhg.2015.05.015. 

25. Staley, J.R., Windmeijer, F., Suderman, M., Lyon, M.S., Davey Smith, G., and Tilling, K. 

(2022). A robust mean and variance test with application to high-dimensional 

phenotypes. Eur J Epidemiol 37, 377-387. 10.1007/s10654-021-00805-w. 

26. Liang, X.Y., Wang, Z.C., Sha, Q.Y., and Zhang, S.L. (2016). An Adaptive Fisher's Combination 

Method for Joint Analysis of Multiple Phenotypes in Association Studies. Sci Rep-Uk 6, 

34323. ARTN 34323 

10.1038/srep34323. 

27. Ottman, R. (1996). Gene-environment interaction: definitions and study designs. Prev 

Med 25, 764-770. 

28. Struchalin, M.V., Dehghan, A., Witteman, J.C., van Duijn, C., and Aulchenko, Y.S. (2010). 

Variance heterogeneity analysis for detection of potentially interacting genetic loci: 

method and its limitations. BMC genetics 11, 92. 10.1186/1471-2156-11-92. 

29. Tian, X., Tang, Z., Jiang, J., Fang, X., Wu, X., Han, W., Guan, S., Liu, H., Diao, L., and Sun, F. 

(2011). Effects of smoking and smoking cessation on life expectancy in an elderly 

population in Beijing, China, 1992-2000: an 8-year follow-up study. J Epidemiol 21, 376-

384. 10.2188/jea.JE20110001. 



20 

30. Prescott, E., Osler, M., Hein, H.O., Borch-Johnsen, K., Schnohr, P., and Vestbo, J. (1998). 

Life expectancy in Danish women and men related to smoking habits: smoking may affect 

women more. J Epidemiol Community Health 52, 131-132. 10.1136/jech.52.2.131. 

31. Hummer, R.A., and Hernandez, E.M. (2013). The Effect of Educational Attainment on 

Adult Mortality in the United States. Popul Bull 68, 1-16. 

32. Kwon, H., and Park, B. (2020). Borderline-High Mean Corpuscular Volume Levels Are 

Associated with Arterial Stiffness among the Apparently Healthy Korean Individuals. 

Korean J Fam Med 41, 387-391. 10.4082/kjfm.19.0061. 

33. Yoon, H.J., Kim, K., Nam, Y.S., Yun, J.M., and Park, M. (2016). Mean corpuscular volume 

levels and all-cause and liver cancer mortality. Clin Chem Lab Med 54, 1247-1257. 

10.1515/cclm-2015-0786. 

34. Rippin, H.L., Hutchinson, J., Greenwood, D.C., Jewell, J., Breda, J.J., Martin, A., Rippin, 

D.M., Schindler, K., Rust, P., Fagt, S., et al. (2020). Inequalities in education and national 

income are associated with poorer diet: Pooled analysis of individual participant data 

across 12 European countries. PLoS One 15, e0232447. 10.1371/journal.pone.0232447. 

35. Manolio, T.A., Collins, F.S., Cox, N.J., Goldstein, D.B., Hindorff, L.A., Hunter, D.J., McCarthy, 

M.I., Ramos, E.M., Cardon, L.R., Chakravarti, A., et al. (2009). Finding the missing 

heritability of complex diseases. Nature 461, 747-753. 

36. Sandoval-Motta, S., Aldana, M., Martinez-Romero, E., and Frank, A. (2017). The Human 

Microbiome and the Missing Heritability Problem. Front Genet 8, 80. 

10.3389/fgene.2017.00080. 

37. Zhu, H., and Zhou, X. (2020). Statistical methods for SNP heritability estimation and 

partition: A review. Comput Struct Biotechnol J 18, 1557-1568. 

10.1016/j.csbj.2020.06.011. 

 

 



21 

Tables 

 Male participants Female participants 

 TWB2 

(discovery) 

TWB1 

(replication) 

TWB2 

(discovery) 

TWB1 

(replication) 

Total 29,453 12,800 57,083 12,660 

Chronological age (years) 50.1±11.3 48.9±11.1 49.8±10.5 48.9±11.0 

PhenoAge (years) 45.3±12.9 44.8±12.6 42.3±11.3 42.0±11.7 

BioAge (years) 49.3±10.9 47.8±10.8 47.8±10.6 46.6±11.2 

Body mass index (kg/m2) 25.5±3.6 25.2±3.5 23.6±3.8 23.4±3.7 

Drinking (yes or no) 1 3,916 (13.3%) 1,584 (12.4%) 1,138 (2.0%) 215 (1.7%) 

Smoking (yes or no) 2 6,072 (20.6%) 2,647 (20.7%) 1,829 (3.2%) 358 (2.8%) 

Regular exercise (yes or no) 3 12,258 (41.6%) 5,384 (42.1%) 22,153 (38.8%) 5,039 (39.8%) 

Educational attainment (1~7) 4 5.75±0.88 5.67±0.90 5.45±0.97 5.33±1.01 

Albumin (g/L) 45.8±2.3 46.2±2.4 44.7±2.2 45.0±2.3 

Creatinine (μmol/L) 80.7±30.2 80.0±33.7 54.7±18.8 54.2±19.2 

Fasting glucose (mmol/L) 5.52±1.29 5.51±1.30 5.23±1.05 5.19±0.99 

Mean corpuscular volume (fL) 87.9±6.8 90.3±8.0 87.2±8.0 89.5±8.5 

White blood cell count (1000 

cells/μL) 

5.9±1.6 6.1±1.6 5.7±1.6 5.8±1.6 

HbA1c (%) 5.87±0.91 5.79±0.88 5.73±0.74 5.67±0.71 

Systolic blood pressure 

(mmHg) 

126.8±16.6 122.9±16.2 116.8±17.9 113.8±17.5 

Total cholesterol (mg/dL) 192.3±35.3 191.8±34.6 198.3±36.2 195.3±36.0 
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Table 1.  Basic characteristics of the TWB1 and TWB2 participants 

Data are presented in n (%) or mean±SD. 

1 Drinking was defined as a person who had a weekly intake of more than 150 mL of alcoholic beverages for at 

least 6 months and had not stopped drinking when participating in TWB. 

2 Smoking was defined as a person who had smoked cigarettes for at least 6 months and had not quit smoking 

when participating in TWB. 

3 Regular exercise was defined as performing exercise for 30 min thrice a week”. ‘Exercise’ included leisure-

time activities such as swimming, jogging, cycling, mountain climbing, dancing, weight training, etc. 

4 Educational attainment was recorded as a number ranging from 1 to 7, with 1 indicating “illiterate”, 2 “no 

formal education but literate”, 3 “primary school graduate”, 4 “junior high school graduate”, 5 “senior high 

school graduate”, 6 “college graduate”, and 7 “Master’s or higher degree”. 
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GxG p-value rs35276921 rs141927875 rs10903013 rs76038336 

rs35276921 --- 4.7E-61 0.65 3.5E-4 

rs141927875 --- --- 0.91 0.35 

rs10903013 --- --- --- 3.3E-116 

rs76038336 --- --- --- --- 

 

Table 2.  GxG p-values of the 4 nearly independent PhenoAgeAccel-vQTLs 

RINT-BAA was regressed on the numbers of aging alleles (0, 1, or 2) for any two independent vQTLs and their 

interaction term (i.e., product term) while controlling the covariates mentioned in the larger model. P-values 

less than 3.6E-15 [ 0.05/C(5303039, 2) ] were highlighted in bold, where C(n, r) was the combination notation, 

and 5303039 was the number of SNPs analyzed in this study. 
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Figure legends 

 
 

Figure 1.  The quantile-quantile (Q-Q) plots and histograms of the vQTLs’ p-values. In the Q-Q plots, the 

red lines depict that the observed p-values (of the scale test) correspond to the expected p-values (of the scale 

test). The discovery (TWB2) and replication (TWB1) cohorts comprised 86,536 and 25,460 individuals, 

respectively. The histograms at the right of the Q-Q plots demonstrate the distributions of the original scale of p-

values. 
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Figure 2.  The Miami plots for the vQTL analyses. The left and right columns show the results from the 

smaller and larger models, respectively. The top and bottom rows present the results from the discovery (TWB2, 

n = 86,536) and replication (TWB1, n = 25,460) cohorts. The horizontal red and blue lines mark the genome-

wide significance level (5E-8) and the suggestive significance level (1E-5). 
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Figure 3.  The phylogenetic heat map of the gene-environment interaction analyses for PhenoAgeAccel. 

The magnitude of the value represents –log10(two-sided p-value of the SNP-E interaction), which is always 

positive. However, I deliberately added a positive/negative sign in front of the magnitude. A positive sign 

indicates that the environmental factor (E) exacerbates the PhenoAgeAccel-vQTLs’ aging effects. In contrast, a 

negative sign suggests that the E attenuates the PhenoAgeAccel-vQTLs’ aging effects (detailed values listed in 

Table S1 columns N-T). The x-axis lists the 7 Es, including SEX (female vs. male), DRK (alcohol consumption, 

yes vs. no), BMI (in kg/m2), AGE (chronological age, in years), EDU (educational attainment, an integer from 1 

to 7), SPO (performing regular exercise, yes vs. no), and SMK (cigarette smoking status, yes vs. no). The total 
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sample size was n = 25,460 + 86,536 = 111,996. 

 

Figure 4.  The phylogenetic heat map of the gene-environment interaction analyses for mean 
corpuscular volume (MCV). The magnitude of the value represents –log10(two-sided p-value of the SNP-E 

interaction), which is always positive. However, I deliberately added a positive/negative sign in front of the 

magnitude. A positive sign indicates that the environmental factor (E) exacerbates the MCV-vQTLs’ effects. In 

contrast, a negative sign suggests that the E attenuates the MCV-vQTLs’ effects (detailed values listed in Table 

S2 columns N-T). The x-axis lists the 7 Es, including SEX (female vs. male), DRK (alcohol consumption, yes 

vs. no), BMI (in kg/m2), AGE (chronological age, in years), EDU (educational attainment, an integer from 1 to 
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7), SPO (performing regular exercise, yes vs. no), and SMK (cigarette smoking status, yes vs. no). The total 

sample size was n = 25,460 + 86,536 = 111,996. 

 
Figure 5.  The violin plots (combining box plots and kernel density plots) of RINT-PhenoAgeAccel 

according to the genotypes of rs141927875 and rs76038336. The red triangles mark the mean RINT-

PhenoAgeAccel of each genotype group, whereas the black segments inside the boxes are the medians of RINT-

PhenoAgeAccel of each genotype group. The numbers at the bottom of the figure are the sample sizes of the 

three genotypes. The total sample size was n = 25,460 + 86,536 = 111,996. 
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Figure 6.  rs141927875-rs35276921 and rs76038336-rs10903013 interaction plots. Each point is the mean 

RINT-PhenoAgeAccel of a genotype combination. The blue numbers shown around points are the sample sizes 

of the genotype combinations. The total sample size was n = 25,460 + 86,536 = 111,996. 

 

 


