Association between cord blood IgE and genetic polymorphisms of interleukin-4, the β-subunit of the high-affinity receptor for IgE, lymphotoxin-α, and tumor Necrosis factor-α

Wen HJ, Lin YC, Lee YL, Guo YL. Association between cord blood IgE and genetic polymorphisms of interleukin-4, the β-subunit of the high-affinity receptor for IgE, lymphotoxin-α, and tumor Necrosis factor-α.

© 2006 The Authors
Journal compilation © 2006 Blackwell Munksgaard

High cord blood immunoglobulin E (cbIgE) is known to be associated with increased risks of atopic diseases in childhood. The relationship between genetic polymorphisms and high cbIgE has not been well documented. A cross-sectional study was conducted to assess the association between cbIgE and genetic polymorphisms of interleukin (IL)-4 -590C/T, the β-subunit of the high-affinity receptor for IgE (FcεRI-β) E237G, lymphotoxin (LT)-α NcoI alleles, and tumor necrosis factor (TNF)-α -308G/A. A total of 320 mother–neonate pairs were recruited from four maternity hospitals from different locations of Taiwan. Cord blood was obtained and assayed for cbIgE. Polymerase chain reaction followed by restriction fragment length polymorphism was used to assess the genotypes. Three hundred pairs of mothers and neonates were included in the final analysis. Infants with IL-4 -590 C allele were found to have higher risk of elevated cbIgE (≥0.35 IU/ml, 24.3%) (p = 0.004). After adjusting for gender, birth order, maternal age, and history of allergic disease in maternal and paternal families, odds ratios for CC and CT genotypes were 4.41 and 3.16 (95% confidence interval 0.78–22.67, and 1.66–6.13), respectively, using TT genotype as reference. The genotypes of FcεRI-β, LT-α, and TNF-α were not associated with cbIgE before or after the adjustment. Our finding suggested a significant association of cbIgE with genetic polymorphism of IL-4 -590C/T, but not with the genotypes of FcεRI-β, LT-α, and TNF-α.

The prevalence of atopic diseases, such as asthma, allergic rhinitis, and atop dermatitis has increased in the past decades in many countries, including Taiwan (1). Environmental and genetic factors are both important determinants in the development of atopic diseases (2).

Elevated cord blood immunoglobulin E (cbIgE) was found associated with an increased risk of atopic diseases in later childhood (3). Several candidate genes are reported to have influence on the development of atopic disease. Chromosome 5q31–33 comprises of numerous candidate genes that may affect IgE synthesis, such as cytokine gene cluster (IL-3, IL-4, IL-5, IL-9, and IL-13) and granulocyte-macrophage colony stimulating factor (GM-CSF) gene (4). Interleukin (IL)-4 plays an important role in IgE synthesis by activating pre-T helper cells to become Th2 cells that in turn trigger isotype switching from IgM/IgG to IgE in B cells (5). The IL-4 promoter polymorphism, a C to T change at position -590, has been associated with atopy and asthma (6). In some studies, IL-4 -590T allele was associated with higher risk of
developing atopy, asthma, and rhinitis in infants (7) as well as with higher total serum IgE (8). However, other studies did not show association between IL-4 -590C/T genotypes and atopic diseases (9). The effect of IL-4 -590C/T on cbIgE is not well documented.

FcεRI-β, a high-affinity IgE receptor, is found on the surface of mast cells and basophiles. The genetic variants of this receptor on chromosome 11q13 were associated with atopy and total IgE levels (10, 11). An amino acid substitution of FcεRI-β E237G alters the hydrophilic nature of the C-terminus of FcεRI-β and affects the intracellular signal transduction. This variant is associated with elevated total IgE and specific IgE and with the onset of childhood asthma (12).

Tumor necrosis factors (TNFs) are potent pro-inflammatory cytokines in asthmatic airway and lavage fluid from asthmatic lung (13). The gene for TNF is located on chromosome 6p21.1–21.3 and forms the TNF cluster with the two-lymphotoxin (LT) genes (LT-α and LT-β) (14). LT-α plays an important role in B cell proliferation and IgE synthesis. The EcoI alleles of LT-α was associated with atopy and increasing total IgE levels (15). The promoter polymorphism of TNF-α -308 G to A has influence on severity of asthma and on the development of childhood asthma (16). The LT-α EcoI alleles and TNF-α are in linkage disequilibrium. Some studies showed that the LT-α EcoI*1 and TNF-α -308A haplotype played a potential role in asthma (17).

According to previous studies, the genotypes of IL-4 -590C/T, FcεRI-β E237G, TNF-α -308G/A, and LT-α EcoI alleles would affect the synthesis of IgE, which might cause the development of atopic diseases in childhood. However, it is unclear that whether these genetic polymorphisms influence the synthesis of cbIgE. We conducted a hospital-based birth cohort study in general population to investigate the association between cbIgE levels and the genetic polymorphisms.

Materials and methods

Subects

Four private maternity hospitals were randomly selected at four locations of Taiwan, Annan (Tainan city), Singying (Tainan country), Hsin-Juang (Taipei country), and Taitung (Taitung city). Pregnant women at their third trimester were recruited to participate in this study, and informed consent was obtained. Mother was interviewed for medical and allergic history, and their peripheral blood was collected during the third trimester, and the neonate's cord blood was collected at delivery after mother’s informed consent. Failure of collecting any of this would result in exclusion of the pair in this study. Mothers of foreign nationality were also excluded. Serum and lymphocytes were aliquoted and stored in liquid nitrogen tank till analysis.

Questionnaire

Mothers were asked to complete a questionnaire at 1 month before the calculated due day. Demographic data and histories of atopic diseases (asthma, allergic rhinitis, and atopic dermatitis) in maternal and paternal families were collected by mother's report. Neonatal data of birth weight, height, and head circumference, gender, and gestational age were recorded by nurses.

IgE measurement

The Pharmacia UniCap IgE assay system (CAP system; Pharmacia Diagnostics, Sweden) was applied to determine the levels of cbIgE. The detected range was 0.35–100 IU/ml for CAP system. CbIgE ≥ 0.35 IU/ml was regarded as high (18).

IgA measurement

IgA levels of cord blood were also analyzed by enzyme-linked immunosorbent assay (ELISA) to determine the subjects whose cord blood may be contaminated by maternal blood. Neonates with IgA concentration above the 95th percentile of IgA (10 ng/ml) distribution were considered contaminated by maternal blood and were excluded from the analysis.

Genetic polymorphisms

Genomic DNA was extracted from cord blood by standard genomic DNA extraction methods. Screening for genetic polymorphisms of IL-4 -590C/T, LT-α EcoI alleles, and TNF-α -308G/A were performed by polymerase chain reaction–restriction fragment length polymorphism (PCR–RFLP) with adequate restriction enzyme, as described in previous studies (17, 19). The PCR amplification of FcεRI-β 237E/G was performed by the following experimental procedure and primers. The upstream primer was 5'-GTCCTTGGAGCGGAGCTTCTA-3', and the downstream primer was 5'-CTTATAAT-CATTGGGAGGAAACA-3'. The total volume of 25-μl PCR product contains 2.5 μl of
had elevated cbIgE (‡). Approximately one-quarter of neonates were 75.7%, 6.0%, 12.3%, and 6.0%, respectively. The frequencies of cbIgE levels was underdetected (<0.35 IU/ml) to 0.35–0.5, 0.5–1.0, and ≥1.0 IU/ml. The range of cbIgE from Taitung (Taitung city), the four areas, the frequencies of cbIgE ≥0.35 IU/ml were not significantly different (p = 0.71) (data not shown). The mean age of mothers was not different between infants with elevated cbIgE and those with normal cbIgE. Boys had increasing frequency in cbIgE ≥0.35 IU/ml than girls (p = 0.04) (Table 2). Neonates with maternal family history of atopic diseases had higher cbIgE levels (p < 0.001).

Results

A total of 320 mother–neonate pairs were recruited from July 2001 to February 2003. Among them, 20 neonates had elevated cord serum IgA and were excluded from further analysis. As a result, 300 pairs of mothers and neonates were included in the final analysis, including 55 pairs from Annan (Tainan city), 81 pairs from Singying (Tainan country), 56 pairs from Hsin-Juang (Taipei country), and 108 pairs from Taitung (Taitung city). The range of cbIgE levels was undetected (<0.35 IU/ml) to 4.27 IU/ml. The frequencies of cbIgE levels below 0.35, 0.35–0.5, 0.5–1.0, and ≥1.0 IU/ml were 75.7%, 6.0%, 12.3%, and 6.0%, respectively. Approximately one-quarter of neonates had elevated cbIgE (≥0.35 IU/ml, Table 1). In

The genotypes of FcεRI-β 237E/G resulted from a 23-bp band, a 148-bp band for E/E, a 23-bp band, and a 171-bp band for E/G, or two 171-bp bands for G/G.

Statistical analysis

Data analysis was done with JMP version 5.0.1 (SAS Institute Inc., Cary, NC, USA). The Pearson chi-square test and Fisher’s exact test were used to determine the association between categorical data and cbIgE. For continuous data, Mann-Whitney U-test was used. As multiple comparisons were done for genotype effects on cbIgE, the p value was adjusted. Therefore, p value ≤ 0.0125 (0.05 divided by 4) was considered statistically significant.

To determine the association between genetic polymorphism and cbIgE, multiple logistic regression analysis was applied. Neonatal gender, maternal age, maternal and paternal family histories of atopic diseases were adjusted in the logistic regression model. Adjusted odds ratio (OR) for elevated cbIgE was calculated for each genetic variant.

<table>
<thead>
<tr>
<th>Variables</th>
<th>n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total n</td>
<td>300</td>
</tr>
<tr>
<td>Maternal age at delivery (yr)</td>
<td>27.9 (4.83)†</td>
</tr>
</tbody>
</table>
Table 2. Relationship between parental factors, neonates’ genetic polymorphisms, and cord blood immunoglobulin E (cbIgE)

<table>
<thead>
<tr>
<th>Genotypes</th>
<th>cbIgE (IU/ml)</th>
<th>≥0.35</th>
<th><0.35</th>
<th>p-value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maternal age at delivery (yr)</td>
<td>27.0 (0.56)*</td>
<td>28.2 (0.32)*</td>
<td>0.09*</td>
<td></td>
</tr>
<tr>
<td>Paternal family history of atopic diseases</td>
<td>18 (46.2)</td>
<td>21 (53.8)</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>Neonatal gender (%)</td>
<td>Boys 47 (29.0)</td>
<td>115 (71.0)</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>Interleukin-4 -590C/T</td>
<td>C/C 3 (33.3)</td>
<td>6 (66.7)</td>
<td>0.004</td>
<td></td>
</tr>
<tr>
<td>Lymphotoxin-α NcoI alleles</td>
<td>1/1 12 (19.1)</td>
<td>51 (80.9)</td>
<td>0.31</td>
<td></td>
</tr>
<tr>
<td>Tumor necrosis factor-α -308G/A</td>
<td>G/G 9 (17.3)</td>
<td>43 (82.7)</td>
<td>0.19</td>
<td></td>
</tr>
</tbody>
</table>

All results are shown as n (%).
*Mean (s.d.).
†p-value was calculated by chi-squared test.
‡p-value was calculated by Mann-Whitney U-test.

To be cautious, we try to avoid classifying or dichotomizing the genotypes, and took an approach of using the homozygous genotype with higher percentage as the reference. Therefore, IL-4 promoter -590 CC and CT were individually compared with TT by logistic regression (Table 3). Similar approach was taken for LT-α NcoI polymorphism. As for TNF-α -308G/A and FceRI-β E307G, owing to low prevalence of homozygous variant genotype, this genotype was grouped together with the heterozygous genotype for the logistic regression. To obtain the adjusted OR of these four genotypes, baby gender, birth order, mother’s delivery age, maternal and paternal family histories of atopic diseases were included in the multiple logistic regression analysis (Table 3). After adjustment, IL-4 -590CT had higher OR of 3.16 (95% confidence interval, CI = 1.66–6.13) of having elevated cbIgE as compared with TT. Although there is no statistical significance, IL-4 -590CC also had higher OR than TT of elevated cbIgE levels (OR [95% CI] = 4.41 [0.78–22.67]). The genotypes of FceRI-β 237E/G, TNF-α -308GG/GA, and LT-α NcoI alleles were not related to elevated cbIgE.

Table 3. The association between neonatal genotypes and cord blood immunoglobulin E (cbIgE) levels as shown by odds ratio (OR) estimated by multiple logistic regression analysis

<table>
<thead>
<tr>
<th>Genotypes</th>
<th>cbIgE (IU/ml)</th>
<th>≥0.35</th>
<th><0.35</th>
<th>OR [95% CI]*</th>
<th>AOR [95% CI‡]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interleukin-4 -590C/T</td>
<td>C/C 3 (33.3)</td>
<td>6 (66.7)</td>
<td>2.35 (0.48–9.45)</td>
<td>4.41 (0.78–22.67)</td>
<td></td>
</tr>
<tr>
<td>T/T 31 (17.5)</td>
<td>146 (82.5)</td>
<td>1.0 1.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FceRI-β 237E/G</td>
<td>E/G; G/G 20 (21.3)</td>
<td>74 (78.7)</td>
<td>0.78 (0.43–1.38)</td>
<td>0.62 (0.31–1.22)</td>
<td></td>
</tr>
<tr>
<td>Lymphotoxin-α NcoI alleles</td>
<td>2/2 12 (19.1)</td>
<td>51 (80.9)</td>
<td>1.15 (0.50–2.71)</td>
<td>0.63 (0.24–1.70)</td>
<td></td>
</tr>
<tr>
<td>Tumor necrosis factor-α -308G/A</td>
<td>G/A; A/A 9 (17.3)</td>
<td>43 (82.7)</td>
<td>0.60 (0.26–1.25)</td>
<td>0.44 (0.16–1.05)</td>
<td></td>
</tr>
</tbody>
</table>

*OR (95% CI): adjusted odds ratio (95% confidence interval).
‡AOR (95%): adjusted odds ratio (95% confidence interval).
*Adjusted by neonatal gender, birth order, maternal age at delivery, maternal family history of atopic diseases, and paternal history of atopic diseases.

Discussion

To the best of our knowledge, this was the first study conducted to investigate the association between genotypes and cbIgE. We found that elevated cbIgE was associated with IL-4 -590C allele but not associated with genotypes of FceRI-β 237E/G, TNF-α -308G/A, and LT-α NcoI alleles.

Using the CAP system for cord IgE measurement, the detection limit is 0.35 IU/ml. We therefore used this value as a cut-off point. Alternatively, this value can be treated as continuous. We examined the effects of genotypes on the value of cbIgE, and substituted a half (0.175 IU/ml) of the detection limit for those under detection. Only IL-4 genotype was statistically related to cbIgE (p = 0.0062 by ANOVA comparing those of CC, CT, and TT, data not shown). Such a result is similar to the findings shown in Table 3.

Our data also showed that maternal family history of atopic diseases was related to cbIgE. The prevalence of cbIgE ≥0.35 IU/ml was higher in neonates with maternal atopy. This was consistent with previous studies. A Belgian study on newborn described that maternal atopy was associated with elevated cbIgE (20). Johnson et al. (21) also reported an association between maternal history of atopic disease and cbIgE concentration.

In the present study, the IL-4 -590CC/CT increased the risk of elevated cbIgE. This result
was different from previous studies, which have been reported that the IL-4 -590T was associated with increased risk of allergic diseases, higher total serum IgE levels, and higher IL-4 gene promoter activity as compared with the C allele (7). The IL-5 and -13 genes were also recognized as strongly risk factors for IgE production and located in the same gene cluster (4). A study in Asia reported that genotypes of IL-13 were genetically linked with the genotypes of IL-4 gene promoter (22). A study in China indicated that the IL-13 Arg130Gln genotype was associated with high specific IgE production (23). Although genotypes of IL-13 were not determined in the present study, it was possible that the IL-4 -590C allele was genetically linked with IL-13 Arg130Gln genotype or other candidate genes like IL-5 response for IgE production. The immune mechanism by which IL-4 -590T allele or haplotypes regulate cbIgE production warrants further investigation.

Moreover, the frequencies of genotypes in IL-4 -590C/T are in racial difference (6, 19, 22, 24). Walley and Cookson (25) indicated that the frequencies of IL-4 -590C to T allele were 31% and 27% in Oxon participants and in Busselton families, respectively. In contrast, Kawashima et al. (6) reported that the frequencies of T alleles were 70% and 77% in control and atopic dermatitis offspring of Japanese. In the present study, we observed that the prevalence of T allele was 78.0%. Although the frequency of IL-4 -590T allele was similar to that of Kawashima’s study, our finding was inconsistent with his finding that T allele homozygotes were associated with atopic dermatitis. The difference might have been caused by ethnic difference or different study outcomes.

Th2-skewed immunity response is strongly associated with allergic disease. Environmental allergens could cross the placenta and cause Th2 immune response in fetus (26). Hagendorens et al. (27) found that prenatal exposure to house dust mite allergen (Der p 1) had influences on cord blood T lymphocytes. Our data showed that mothers sensitized to dust mite, cat dander, dog dander, and cockroach (specific IgE ≥0.7 IU/ml) might increase the risk of infants with cbIgE ≥0.35 IU/ml (data not shown). Atopic reactions are complex and involve both environmental and genetic components. Our finding that IL-4 -590C/T was related to cbIgE might be because of environment–gene interaction, and requires further investigation.

The associations between the other three genes and IgE production remain inconsistent among studies from different countries (7, 22). Previous studies have identified the genes of FcεRI-β on chromosome 11q13 as markers for atopy and elevated IgE response (10). In Australian population, Hill et al. (11) found that the genetic variants of FcεRI-β were associated with atopy and bronchial hyperresponsiveness. FcεRI-β E237G was reported to associate with total IgE, specific IgE to allergens, and childhood asthmatic response. However, this result was not found in Japanese children and Canadian infants (8). TNFs are important candidate genes of atopic disease. The linkage between LT-α NcoI 2/2 genotype and an increase of IgE levels had been detected in Italian women (28). Previous studies showed the association between LT-α Ncol*2 allele and asthma in Australian and British population (29). Moffatt et al. (30) indicated that LT-α NcoI alleles and TNF-α -308G/A genotypes were associated with asthma but not with IgE levels. TNF-α -308G/A polymorphism was associated with severe asthma and bronchial hyperreactivity (16). In combination, LT-α Ncol*2/TNF-α -308A was shown as a significant risk factor for asthma and atopy (17, 29). Our study demonstrated that FcεRI-β 237E/G, LT-α NcoI alleles, and TNF-α -308G/A were not associated with elevated cbIgE concentration. The mechanism of cbIgE production remains unclear. Ethnic variation in genetic background, strategies for participants’ collection, and immune response and regulation for cbIgE production by different environmental exposures could partially explain such lack of association. Further follow-up of our population will be needed to determine whether cbIgE predicts occurrence of atopic diseases in this birth cohort.

One strength of this study is the birth cohort design. All participants were recruited form general population and enrolled when pregnant women were at their third trimesters. Besides, genotypes and cbIgE were measured by standard methods, therefore minimizing misclassification of these measurements. Therefore, neither selection bias nor information bias seemed to be a problem in this present study.

In conclusion, this study suggests that the IL-4 -590C allele was associated with elevated cbIgE. Confirmation in a larger population and assessment of the gene–gene and gene–environmental interactions are warranted.

Acknowledgment
We thank all the pairs of neonates and mothers, and the staff, nurses, and gynecologists from the cooperative maternity hospitals who participated in this study, and the fieldworkers who supported data collection. This research was supported by grant # NSC-89-2314-B-006-148 from the National Science Council in Taiwan.

8. ROSENWASSER LJ, BORISH L. Genetics of atopy and asthma: the rationale behind promoter-based candidate gene studies (IL-4 and IL-10). Am J Respir Crit Care Med 1997; 156: S152–5.

References