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Abstract: Due to extreme weather, researchers are constantly putting their focus on prevention and 
mitigation for the impact of disasters in order to reduce the loss of life and property. The disaster 
associated with slope failures is among the most challenging ones due to the multiple driving factors 
and complicated mechanisms between them. In this study, a modern space remote sensing technol-
ogy, InSAR, was introduced as a direct observable for the slope dynamics. The InSAR-derived dis-
placement fields and other in situ geological and topographical factors were integrated, and their 
correlations with the landslide susceptibility were analyzed. Moreover, multiple machine learning 
approaches were applied with a goal to construct an optimal model between these complicated fac-
tors and landslide susceptibility. Two case studies were performed in the mountainous areas of 
Taiwan Island and the model performance was evaluated by a confusion matrix. The numerical 
results revealed that among different machine learning approaches, the Random Forest model out-
performed others, with an average accuracy higher than 80%. More importantly, the inclusion of 
the InSAR data resulted in an improved model accuracy in all training approaches, which is the first 
to be reported in all of the scientific literature. In other words, the proposed approach provides a 
novel integrated technique that enables a highly reliable analysis of the landslide susceptibility so 
that subsequent management or reinforcement can be better planned. 
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1. Introduction 
In Asian subtropical monsoon regions, July to September is a season of strong ty-

phoons. High rainfall intensity usually causes serious landslide events in mountainous 
areas [1]. It is necessary to predict landslide occurrence and behavior and adopt appro-
priate prevention policies and methods to improve disaster relief effectiveness and reduce 
casualties and property loss during and after disasters. Landslide prediction aims to pre-
dict the possibility of the occurrence of landslides in a specific area; available data are 
commonly used, including conditional factors and historical landslides. These data are 
collected from landslide inventories and static instruments, and their values are shown in 
spatial analysis [2]. However, traditional landslide prediction, such as mathematical eval-
uation models, lacks information about the temporal probability of landslides, i.e., time-
series landslide behavior. Landslide displacement time-series data can directly reflect 
ground surface deformation and stability characteristics. Therefore, they have been re-
cently used to develop landslide prediction models. Generally, these time-series data are 
collected from one-point survey equipment, such as surface extensometers and GPS de-
vices [3]. However, field GPS surveying projects, which depend on only one or two tem-
porarily installed reference stations, have many disadvantages [4]. In practice, steadily 
obtaining survey data using these single reference stations is often difficult because of 
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poor performance or failure. Therefore, the use of only the single-point method in land-
slide surveys would limit the cost-effectiveness. 

In recent years, remote sensing technology has effectively detected large-scale land-
slide-sensitive areas and generated landslide inventories, which are crucial for predicting 
landslides before they occur or recur, especially in far or barely accessible areas [5]. In 
daytime satellite images without shadows and clouds, landslide positions can be identi-
fied through noticeable radiometric contrasts between land cover types [6]. Optical sen-
sors cover the electromagnetic spectrum from 390 nm to 1 mm, including the visible and 
infrared bands. Such devices can measure the visual properties in the spectral character-
istics of the land surface, which can then be used to detect and map landslides. Research-
ers can also combine time-series satellite images with digital elevation models (DEMs) to 
acquire 3D terrain, which can be used to visually detect and predict potential landslides. 

However, affected by monsoons, typhoons, and thunderstorms, mountainous areas 
are usually shrouded in clouds at times; thus, the use of satellite images to monitor land-
slide disasters could be limited by weather conditions. Compared with optical sensors, 
synthetic aperture radar (SAR) sensors use a longer wavelength—microwaves; having all-
weather and all-day operational capability, SAR sensors can penetrate cloud cover and 
reduce the limitation imposed by the atmosphere to remotely evaluate the accurate range 
and severity of landslide disasters in almost real-time [7]. Although some particular me-
teorological situations, such as thick rain cells, may disturb the backscattering coefficient, 
SAR remains more powerful than optical sensors for long-term landslide observation [8]. 
Spaceborne SAR, such as Envisat, ALOS PALSAR, RADARSAT, TerraSAR-X, and Senti-
nel-1, provide high spatial resolutions and can clearly observe target objects in full-time 
and in almost all-weather conditions. 

Numerous applications of SAR data to ground displacement detection have demon-
strated their usefulness for landslide characterization and mapping [9]. Differential SAR 
interferometry (DInSAR) is a commonly used method of ground deformation measure-
ment, and it can efficiently generate or update landslide inventory [10], which is critical 
information about landslide behavior for landslide susceptibility assessment. DInSAR cal-
culates the phase variation of two SAR images acquired in the same region at different 
times. Long-term InSAR observations are calculated as the deformation-induced phase 
shift through the backscattered microwave signal between several coherent acquisitions. 
The landslide behavior of time-series information, which depends on the millimetric 
measurement accuracy and the metric spatial resolution, is obtained under most atmos-
pheric conditions [11]. 

Landslide prediction methods can be classified into three types: image analysis, 
mathematical evaluation models, and machine learning methods [12]. Image analysis uses 
geographic information systems, which can collect, store, manage, and analyze geograph-
ical data. The risk of landslides can be predicted by analyzing disaster data, such as history 
of landslides and land. The probability of landslides varies because it is based on the num-
ber of data layers used for analysis. Mathematical evaluation models use a single evalua-
tion equation that is combined with the physical concepts of mechanics and hydrographic 
data, such as rainfall, runoff, and infiltration data, for landslide susceptibility assessment 
[13]. The use of such models is easy for simulation and fits a wide range of environments. 
However, mathematical evaluation models require detailed data of the geotechnical engi-
neering and geological aspects of slope failure at sites [14], which makes these models 
costly and impractical for large-scale areas. 

In recent years, machine learning and data mining techniques, such as support vector 
machine, artificial neural network, and decision tree (DT) models, have been applied for 
landslide susceptibility modeling [15]. These methods incorporate different factors that 
might cause landslides to evaluate the probability of landslide occurrence. Machine learn-
ing algorithms enrich the quality and accuracy of generated susceptibility maps. Re-
searchers use and compare various machine learning models on the basis of different data 
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[16–19], integrate different machine learning models to improve accuracy [20–23], or de-
velop new algorithms that are based on traditional machine learning models to strengthen 
landslide prediction results [24–26]. These techniques perform better than do classical 
methods. Most machine learning techniques achieve overall success rates of 75% to 95% 
[27]. Although many applications have demonstrated the feasibility of data-driven mod-
els for capturing nonlinear relationships and modeling the dynamic processes of land-
slides on the basis of historical model data, certain limitations remain [28]. As shown, 
landslide behavior involves temporal dependencies. However, common machine learning 
models ignore this intrinsic temporal dependency, which involves the effect of preceding 
actions on present actions in the model [29,30]. The solution proposed by this study is to 
combine spatial-temporal data, including InSAR observables, as a landslide susceptibility 
factor with other traditional geological and land cover factors into a model that can im-
prove the prediction accuracy of potential landslides. To our knowledge, integrating In-
SAR observables and multiple geological factors for landslide susceptibility analysis is an 
effective and pioneered contribution for landslide potential prediction research. 

2. Methods 
This research method effectively estimates the landslide potential of slopes through 

four steps: (1) segmentation of slope units, (2) numerical indexing of related spatial fac-
tors, (3) correlation between spatial factors and slope landslides, and (4) use of machine 
learning methods. A displacement prediction analysis model was constructed following 
the above process. Finally, a confusion matrix was used to verify the results of the dis-
placement prediction analysis. The overall research method and procedure are shown in 
Figure 1. 

 
Figure 1. Flowchart of landslide susceptibility analysis based on the spatial factors with machine 
learning approach. 
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2.1. Segmentation of Slope Units 
This study used the slope unit as the basis of analysis to show the topographic char-

acteristics of each slope. These slope units serve as a framework for the subsequent geo-
graphical interpretation of environmental spatial factors. The method of slope unit seg-
mentation refers to the catchment overlap concept proposed by Xie et al. [31], as shown in 
Figure 2. First, the water catchment area in a DEM is identified through the hydrology 
module in the software ArcGIS, and the water line is turned into a ridge line by flipping 
the DEM, which is divided into two slope units (left and right). When the hydrology mod-
ule identifies small catchment areas, the default flow accumulation value is set to 500 as 
the threshold value for dividing the river area. Then, the slope units are cut out, and each 
area becomes less than 30 ha. With the aid of a shadow map, aspect map, slope map, river 
map, and satellite orthophoto overlay, the overlap between each slope unit is confirmed. 

 
Figure 2. Schematic of dividing the slope units with the overlap method of catchment areas (modi-
fied from [31]). 

2.2. Numerical Indexing of Related Spatial Factors 
In this study, the spatial factors were divided into four categories: terrain, location, 

geological, and driving. The terrain category represents the geometric changes in surface 
elevation and coverage distribution, including elevation, slope, aspect, terrain roughness, 
profile curvature, vegetation index, and the displacement velocity gradient of InSAR. The 
location category shows the distance of influencing factors, including roads, rivers, and 
geo-faults. The geological category reflects the strength, folds, and dip slopes of rock for-
mations. The driving category is the rainfall factor. The index calculations of these factors 
are described below. It should be mentioned that these spatial factors were first selected 
based on suggestions reported in the relevant studies in the literature [16–20]. A signifi-
cance test was then performed to identify the most influential factors that have the high 
correlation with the landslides in the study areas. The results and discussion on the sig-
nificance test of spatial factors are presented in Section 3.2. 
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2.2.1. Terrain Category 
 Elevation, slope, and aspect 

On the basis of the framework of the slope unit, the highest elevation in each unit 
was extracted and represented as the elevation factor, as shown in Equation (1). According 
to the height change caused by the horizontal movement distance, the slope factor is ex-
pressed by a tangent function on average, as indicated in Equation (2). The aspect factor 
refers to the direction of the maximum elevation change in the slope unit. It is calculated 
by the angle with the true north direction, as shown in Equation (3), where the true north 
direction is 0°, and the angle increases to 360° in the clockwise direction. 

max(Z )elevation iI =  (1) 

tanslope s
ZI
L

q
D

= =
D

  (2) 

( )1180 tan maxaspect sI q
p

- é ù= ë û   (3) 

where Zi is elevation, ZD  is the mean elevation difference, LD  is the mean horizontal 
distance, and sq  is the main slope angle. 

 Terrain roughness 
Terrain roughness represents the degree of height change. When the undulating ter-

rain faces the effect of large gravity, the smaller resistance force makes the slope have a 
higher possibility of landslide. The elevation standard deviation σ is used to describe the 
degree of elevation change in the slope unit (Equation (4)). 

2(Z Z)
1

σ
−

=
−

 i i

sn
  (4) 

where Z  is the average elevation in a slope unit, and ns is the number of grids in the 
slope unit. 
 Profile curvature 

The profile curvature is expressed as the slope steepness. This study used the spatial 
analysis module of the software ArcMap to calculate the profile curvature of each slope 
unit on the basis of a 3 × 3 moving grid, which is the default grid size in ArcMap. A nega-
tive (positive) value of the curvature represents a convex (concave) slope. 
 Vegetation index 

Plants can effectively stabilize the rock and soil on slopes, but the exposed soil area 
may suffer from repeated landslide and displacement problems. Hence, the vegetation 
index is defined as the proportion of vegetation area in the slope unit, as shown in (Equa-
tion 5). 

.
. = veg

veg
s

A
I

A
  (5) 

where Aveg. is the area of the vegetation and As is the area of the slope unit. 
 Annual displacement velocity gradient of InSAR 

InSAR technology calculates the phase difference to estimate the displacement of the 
ground through more than two periods of SAR observations. The InSAR-derived ground 
displacement can be regarded as a direct observation of ground stability and was thus 
proposed as an essential index for landslide susceptibility analysis in this study. However, 
the original displacements from InSAR observations suffer from various influencing fac-
tors, such as vegetation changes and orbital variations of SAR satellites. In order to reduce 
the periodical or systematic noises due to those uncontrollable factors and to extract a 



Appl. Sci. 2021, 11, 7289 6 of 21 
 

meaningful index for evaluating the ground stability, the annual velocity gradients de-
rived from InSAR displacement fields were used in this study. First, the annual displace-
ment information of InSAR is placed in the range from −1 to 1 by mean normalization, 
which is shown in Equation (6), to unify the scale and reduce the systematic error of InSAR 
data. 

( ) ( )
i

i
i i

S
s

s s

Z -
Z

max Z - min Z

μ
=   (6) 

where 
isZ  is the normalized InSAR displacement value, 

iSZ  is the annual displacement 

of InSAR, and μ is the average annual displacement. 
The annual displacement velocity of InSAR is obtained as the slope value in first-

order linear fitting (Equation (7)). These discrete observation points are interpolated with 
a regular grid size of 20 m to present the field of annual displacement velocity. For high-
lighting the displacement positions, the field gradient is calculated with a 3 × 3 moving 
window, the same as for computing the profile curvatures. The index calculation is ex-
pressed as Equation (8). 

isZ V t Z= Δ + Δ   (7) 

InSARI V (V)= ∇ f   (8) 

where V is the annual displacement speed of InSAR, tΔ  is annual observation time, and 
ZΔ  is the difference in annual displacement. 

2.2.2. Location Category 
Potential displacements are affected by the distances between slope units and loca-

tion factors. In this study, three location factors were selected for analysis, namely, the 
river distance, road distance, and fault distance. Through each shortest distance from the 
centroid of the slope units to the three location factors, the formula of the location factors 
Ilocation is expressed by Equation (9). 

( ) ( )2 2
min( ,  ,  )I X X Y Ylocation rivers roads s cfa t ll lu c

æ ö÷ç ÷ç= - + - ÷ç ÷ç ÷çè ø
  (9) 

where (Xc, Yc) is the centroid coordinates of slope units, and (Xl, Yl) is the coordinates of 
location factors (including rivers, roads, and faults). 

2.2.3. Geological Category 
 Rock Mass Strength 

Rock masses with weaker strength are prone to landslides due to their difficulty in 
resisting the disturbance of external forces. Franklin used the degree of rock structure 
fracture and single compressive strength to classify the rock mass strength into seven 
levels [32]. In this study, the slope unit was superimposed on the environmental geolog-
ical map produced by the Central Geological Survey of Taiwan, and the corresponding 
rock mass strength information was used as the rock mass strength index. 
 Folds 

When a rock is squeezed into curved folds, the fold layer becomes prone to land-
slides. In this study, the fold factor is defined as the number of folds in the slope unit, as 
shown in Equation (10). 

fold fI n=å   (10) 

where nf is the number of folds in a slope unit. 
 Dip Slopes 
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Dip slopes mean that a stratum has the same inclination as that of the slope; a slope 
landslide may be formed by sliding along the layer. In this study, the dip slope index is 
defined as the ratio of the dip slope area to the slope unit area, as shown in Equation (11). 

 
d

dip slope
s

A
I

A
=   (11) 

where Ad. is the area of the dip slope and As is the area of the slope unit. 

2.2.4. Driving Category (Rainfall) 
The density of rainfall data collected by rainfall stations is much lower in mountain-

ous areas than that in urban areas. Relevant studies have mostly used distance as an in-
terpolation reference to obtain the rainfall in a whole area through grid interpolation. This 
study considered the distance and elevation factors of rainfall stations and added the as-
pect factor to construct a rainfall interpolation model, as shown in Equation (12). In this 
model, the elevation parameter α, distance parameter β, and aspect parameter γ are ob-
tained through the least squares adjustment, and the parameter weight is shown in Equa-
tion (13). 

rain iH i iL i i i
iH iL i

I W R W R W Rq
q

a b g
æ ö æ ö æ ö÷ ÷ ÷ç ç ç÷ ÷ ÷= ⋅ + ⋅ + ⋅ç ç ç÷ ÷ ÷ç ç ç÷ ÷ ÷ç ç çè ø è ø è ø
å å å   (12) 

iH iL i2 2 2
1 1 1W ;  W ;  W
H L θ∝ ∝ ∝

Δ Δ Δθ
  (13) 

where rainI  is the rainfall index, iHW  is the elevation weight, iLW  is the distance 
weight, iW q  is the aspect weight, iR  is the rainfall observation at Station i, α is the ele-
vation parameter, β is the distance parameter, γ is the aspect parameter, HΔ  is the eleva-
tion difference, LΔ  is the distance difference, and Δθ  is the aspect difference. 

2.3. Correlation between Spatial Factors and Slope Landslides 
Significant factors were detected through the spatial factors and the displacement 

correlation score. The Spearman method was adopted to arrange the data in order of nu-
merical value, thereby improving the limitation of the normal distribution assumption in 
the correlation analysis. The correlation coefficient sγ  is distributed between 1 and −1; a 
positive (negative) value indicates a positive (negative) correlation. The closer the coeffi-
cient value to 0, the more unlikely it is to affect the displacement. Its sequential linear 
relationship is described in Equation (14). 

2
i

s 2

6
1

n(n 1)

Δ
γ = −

−
   (14) 

where sγ  is the correlation coefficient, Δ  is the difference between the spatial factor 
and displacement, and n is the number of samples. 

Finally, a significance test was conducted through the correlation coefficient to check 
the significance of each factor. This test is shown in Equation (15). 

s 0
2
s

t 1
1
n 2

γ − ρ
= −

− γ
−

  
(15) 

where 0ρ  is 0, and it is the null hypothesis (indicating no correlation). If the significance 
level t is greater than 0.99, the null hypothesis will be rejected; that is, the factor is corre-
lated with the displacement. 
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2.4. Use of Machine Learning Methods 
Machine learning is applied to establish prediction models, which are used in land-

slide potential and displacement prediction, by inputting the spatial factors and displace-
ment observations. Widely used machine learning algorithms for classification prediction 
include naive Bayes, DT, random forest, adaptive boosting (AdaBoost), and extreme gra-
dient boosting (XGBoost). 
 Naive Bayes 

As the probability model of naive Bayes assumes that the factors are independent of 
each other and conform to a Gaussian distribution, naive Bayes classification helps clarify 
a large number of complex classification problems. The early-stage spatial factors corre-
spond to the landslide and nonlandslide slope units, and they are regarded as training 
samples to establish a prediction model. The later-observed spatial factors are inputted 
into the model to determine the landslide probability of each slope unit. The naive Bayes 
prediction model is based on the probability density function of the Bayesian classification 
method [33], as shown in Equation (16). 

i i
i

P(x w )P(w ) j i
P(w x) ,

j 1, 2P(x)
≠

=  =   
(16) 

where iP(w x) is the probability of the classifying iw  occurring in the slope unit x, 

iP(x w )  is the probability of the slope unit x occurring in the classifying iw , iP(w )  is 
the probability of classifying iw , and P(x)  is the probability of the slope unit x. 

 DT 
A DT assumes that the factors are independent of each other, and the category prob-

ability of the DT path is defined by the factor characteristics [34]. This algorithm adopts a 
dichotomy method, which is similar to a double-forked tree branch, to calculate the Gini 
coefficient value at the node. Finally, the gain value in each path is summed, and the larg-
est accumulator will be predicted to belong to a category, as shown in Equation 17. 

( )2
i igain p 1 p= −    (17) 

where iP  is the probability. If the node has only one category, iP  will be 0. If the num-
bers of two categories are the same, iP  is 0.5. 

 Random forest 
Random forest is a collection of multiple DTs and adds the use of bagging. The ob-

servation data are taken out of the number of samples and trained as n types of classifiers. 
According to the sample difference in each DT, the random uncertainty of the data is con-
sidered. Under the same weight, the classifier uses the summed majority as the best clas-
sification tree to predict the classification [35]. Equation (18) represents the probability of 
the c-th factor in the t-th DT, and the average probability value gc of the category is ob-
tained according to the sum of multiple DTs. Finally, the category of the slope unit x is 
determined according to the maximum gc value (Equation (19)). 

( )( ) ( )( )
( )( )

i
i n 1

l il

P c v x
P c v x

P c v x
==


  (18) 

( )  ( )( )
t

c i
i 1

1g x P c v x
t =

=    (19) 

where P is the probability, c-th is the category, v is the node, l is the number of categories, 
t is the number of DTs, and gc is the average probability of the c-th category. 
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 AdaBoost 
Boosting increases the weight of wrong data in a classification model, and the wrong 

information is trained to strengthen the identification. The derived new classifier will re-
duce the chance of early error [36]. The iterative process of the AdaBoost calculation is 
extremely sensitive to noise and abnormal data; therefore, these should be reduced so that 
the process can focus on difficult-to-classify feature factors. AdaBoost analysis initially 
assumes that the sample weights are equal. After the k-th iteration, samples are selected 
on the basis of the weight Wk to train the classifier Ck, as expressed by Equation (20). 

{ }1 n
1 n

k

D= x , y , , x , y

1W (i) , i 1 , n
n




 = =





  (20) 

where D is the sample category, (xi, yi) is the sample information, n is the number of sam-
ples, and Wk is the weight distribution of all samples in the k-th iteration. 

The classification error Ek confirms the correctness of the classification and updates 
the weight Wk + 1, as shown in Equation (21). The iterative calculation of classification is 
completed when the error Ek is less than the preset threshold. 

k

k

k

k

1 E1 ln
2 E i

k ik
k 1 1 E1  lnk 2 E i

k i

e ,  if  y (x ) yW (i)W (i)
Z

e ,  if  y (x ) y

−−

+ −


 =← ×


≠

  (21) 

where Wk + 1 is the updated weight, Zk is the normalization coefficient, Ek is the error, and 
yk is the prediction category. 
 XGBoost 

The XGBoost function is composed of two components: the prediction error of boost-
ing and the complexity of DT. The feature factors are combined and branched into a DT, 
and a new boost function is learned from the previous calculation residuals [37]. In Equa-
tion (22), the first component calculates the error between the prediction and actual ob-
servation, and the other component indicates the complexity of the regularized DT, which 
covers the number of nodes and the node probability value. 

( )
i

n K
i k ki 1 k 1

f E(y , y ) f
= =

= + Ω    (22) 

where E is the error between the prediction and actual observation and ( )kfΩ  is the com-
plexity of the DT. 

3. Results 
The experiment based on the slope unit was conducted for the following two parts 

of test analysis. In the first part, the correlation analysis of the spatial factor and the land-
slide unit was adopted to detect the significant spatial factor. In the second part, the spatial 
factor indicators and landslide units observed from 2007 to 2009 were applied to run the 
machine learning models. Then, the 2010 spatial factors were inputted into those models, 
and the landslide slope units were estimated. The prediction was compared with the land-
slide location announced by the Central Geological Survey of Taiwan’s Ministry of Eco-
nomic Affairs (MOEA) through a confusion matrix to verify the feasibility of this study. 

3.1. Study Areas 
Experimental cases in Siaolin Village and the Putunpunas River area (Kaohsiung, 

Taiwan) were selected to verify this study method. Both areas continued to experience a 
large number of landslides after the typhoon Morakot in 2009. In the Siaolin Village area, 
there were 128 slope units (covering 15.81 km2), and Provincial Highway 29 is the main 
external traffic road. In the Putunpunas River area, there were 349 slope units (covering 
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61.21 km2), and the Southern Cross-Island Highway presents a north–south vertical, as 
shown in Figure 3. 

 
Figure 3. Geographical locations of experimental areas—(1) Siaolin village; (2) Putunpunas River. 

The observation time of the spatial factors ranged from hours to years. For establish-
ing a common timescale, a year was deemed the basis of unit time, and the observed data 
time was a total of four years (from 2007 to 2010). The 14 spatial factors used were the 
elevation, slope, aspect, terrain roughness, profile curvature, vegetation index, annual dis-
placement velocity gradient of InSAR, water distance, road distance, fault distance, rock 
mass strength, folds, dip slopes, and an annual rainfall, as shown in Figure 4. 

 

(a) elevation 

 
(b) slope 
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(c) aspect 

 

(d) terrain roughness 

 

(e) profile curvature 
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(f) vegetation index 

  

(g) annual displacement velocity gradient of InSAR 

 

(h) water distance 
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(i) road distance 

 

(j) fault distance 

 

(k) rock mass strength 
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(l) folds 

 

(m) dip slope 

(n) annual rainfall 

Figure 4. Fourteen spatial factors used in this study. These observations in 2017 are for Siaolin Vil-
lage (left) and Putunpunas River (right). 

3.2. Significance Test of Spatial Factors 
The factor scales were unified from 1 to −1 through numerical standardization to 

solve the inconsistency of the factor value distribution. Then, the correlation between the 
spatial factors and landslides based on the slope units was examined. The correlation co-
efficient values were expressed as positive or negative. As seen in Figure 5, the correlation 
coefficients of Siaolin Village (yellow bar) were between −0.47 and 0.43, and those of 
Putunpunas River (dark-blue bar) were between −0.42 and 0.36. Hypothesis significance 
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testing was performed, and the probability of obtaining the test resulted in the p-value, as 
shown in Table 1. Then, the significant spatial factors were screened on the basis of a 99% 
reliability as the test threshold. There were five significant spatial factors in the Siaolin 
Village area (rock mass strength, aspect, terrain roughness, slope, and dip slopes) and six 
significant spatial factors in the Putunpunas River area (rock mass strength, aspect, vege-
tation index, water distance, terrain roughness, and dip slopes). 

 
Figure 5. Histogram of correlation coefficient between landslides and the 14 spatial factors in the slope units. 

Table 1. Correlation coefficients and p-values, quantified according to the relationship between 
landslides and the 14 spatial factors in the slope units. 

Spatial Factor 
Siaolin Village Putunpunas River 

Correlation Co-
efficient 

p-Value 
Correlation Co-

efficient 
p-Value 

Rock mass strength −0.47 1.00 −0.30 1.00 
Aspect −0.25 1.00 −0.22 1.00 

Vegetation index −0.06 0.49 −0.42 1.00 
Water distance −0.04 0.37 −0.21 1.00 
Annual rainfall 0.13 0.85 −0.13 0.98 

Terrain roughness 0.31 1.00 0.17 1.00 
Slope 0.27 1.00 0.05 0.66 
Folds 0.07 0.57 −0.11 0.95 

Dip slopes 0.24 0.99 0.36 1.00 
Elevation 0.16 0.93 0.03 0.37 

Profile curvature 0.11 0.81 0.07 0.78 
Annual displacement 
velocity gradient of 

InSAR 
0.08 0.62 0.02 0.29 

Road distance 0.07 0.59 0.13 0.98 
Fault distance 0.02 0.28 0.01 0.23 
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3.3. ML Prediction and Verification 
According to the five machine learning methods used in this research, the relevant 

parameters were set as shown in Table 2. In these machine learning calculations, three 
years of spatial factor data (from 2007 to 2009) were used as input for learning, and the 
landslide prediction of the slope units was based on the 2010 spatial factors. Finally, the 
landslide location announced by the Central Geological Survey (MOEA, Taiwan) in 2010 
was used to verify the accuracy of slope unit prediction. 

Table 2. Parameters and settings required for the machine learning methods. 

ML Parameters Values 
Naive Bayes Smoothing 10−9 

DT 

Criterion 
The maximum of depth 

The minimum of samples split 
The minimum of samples leaf 

Gini 
20 
10 
5 

Random Forest 

Criterion 
The maximum of depth 

The minimum of samples split 
The minimum of samples leaf 

The number of estimators 

Gini 
20 
2 
5 

100 

AdaBoost 

Criterion 
The maximum of depth 

The minimum of samples split 
The minimum of samples leaf 

The number of estimators 
Algorithm 

Learning rate 

Gini 
20 
2 
5 

10 
SAMME 

0.1 

XGBoost 

The maximum of depth 
The number of estimators 

Learning rate 
The minimum of child weight 

Gamma number 
Subsample number 
Colsample bytree 
Objective binary 

nthread 

5 
1000 
0.1 
1 
0 

0.8 
0.8 

Logistic 
4 

The prediction accuracy of machine learning prediction is shown in Table 3. From 
the correct rate, the addition of the InSAR factor increased the accuracy of prediction by 
0% to 6%. For Siaolin Village, the random forest method had the highest prediction accu-
racy rate (82.95%), followed by XGBoost (79.31%), AdaBoost (78.49%), naive Bayes 
(70.93%), and DT (68.02%). Putunpunas River showed a similar trend; the best prediction 
was observed from the random forest method (80.51%), followed by XGBoost (78.80%), 
AdaBoost (75.64%), DT (68.19%), and naive Bayes (68.19%). 
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Table 3. Average prediction accuracies before and after including InSAR data in different ML meth-
ods. 

ML 
Siaolin Village Putunpunas River 

with InSAR 
(%) 

without InSAR 
(%) 

with InSAR (%) without InSAR 
(%) 

Naive Bayes 70.93 70.85 68.19 68.19 
DT 68.02 62.02 75.45 75.07 

Random Forest 82.95 79.84 80.52 78.79 
AdaBoost 78.49 77.52 75.64 75.64 
XGBoost 79.31 75.97 78.80 75.80 

The prediction results of the best learning method (random forest) were used to com-
pare and evaluate the predicted classification through confusion matrixes. In Figure 6, the 
correctly predicted landslide slope units are colored red, and the correctly predicted non-
collapsed slope units are colored cyan. In addition, the erroneously predicted landslide 
slope units are marked with green diagonal stripes, and the erroneously predicted non-
landslide slope units are marked with red diagonal stripes. 

 
Figure 6. Visual illustration of the landslide prediction results—left: Siaolin Village; right: Putunpu-
nas River area. 

The confusion matrixes of Siaolin Village and Putunpunas River are shown in Tables 
4 and 5. In Siaolin Village, the correct prediction rates of landslide and noncollapsed slope 
units were 78.72% and 94.30%, respectively; the average accuracy rate of the overall pre-
diction was 82.95%. In Putunpunas River, the correct prediction rates of landslide and 
noncollapsed slope units were 89.67% and 66.18%, respectively; the average accuracy rate 
of the overall prediction was 80.52%. 

Table 4. Confusion matrix for the case of the Siaolin Village analysis. 

Predictied
Actual Lanslide Nonlanslide  Average 

Lanslide 74 (TP) 2 (FN) - 
Nonlanslide 20 (FP) 33 (TN) - 

Correct rate (%) 78.72 94.30 82.95 
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Table 5. Confusion matrix for the case of the Putunpunas River analysis. 

Predictied
Actual Lanslide Nonlanslide  Average 

Lanslide 191 (TP) 46 (FN) - 
Nonlanslide 22 (FP) 90 (TN) - 

Correct rate (%) 89.67 66.18 80.52 

4. Discussion 
Throughout the time series, the relevant spatial observation data showed changes in 

slopes. This study used these environmental observation data to construct the spatial fac-
tor indicators on the basis of the slope unit conditions. Significant spatial factors were then 
determined from the correlation analysis. According to the spatial characteristics of the 
slope units, the machine learning methods were applied to construct the calculation mod-
els, and the landslide potential of the slope units was evaluated. 

This study was implemented with two experimental cases: Siaolin Village and Putun-
punas River (Kaohsiung City, Taiwan). The experiment collected four-year spatial data 
(topography, locations, geology, driving categories, and landslide locations) from 2007 to 
2010. Then, these data were used to construct the 14 spatial factors through indexed anal-
ysis. A common timescale (year) was established for the analysis to resolve the differences 
in timescales of the various spatial factors. The spatial factor datasets from 2007 to 2009 
served as the input for the correlation analysis and machine learning, and the 2010 spatial 
factor data were used to calculate the output of potential evaluation. In the Siaolin Village 
area, the significant spatial factors were the rock mass strength, aspect, terrain roughness, 
slope, and dip slopes; the significant spatial factors in the Putunpunas River area were the 
rock mass strength, aspect, vegetation index, water distance, terrain roughness, and dip 
slopes. These significant factors in both study areas were all in the geological category, 
including rock mass strength, terrain roughness, and dip slopes. Obviously, the geological 
conditions in these areas highly influence the landslide trend. 

The machine learning algorithms used in this research achieved accuracies of 60%–
80% in landslide classification. Among them, the random forest method exhibited the best 
calculation in Siaolin Village, where it yielded a prediction accuracy rate of 82.95%; its 
prediction accuracy rate in Putunpunas River was 80.50%. The random forest method ef-
fectively performed independent training for high-dimensional, multi-feature factors. In 
addition, the random forest algorithm exhibited strong anti-interference capabilities, such 
as an imbalance in the number of classifications and missing parts of the feature data, so 
it could avoid excessive parameter setting and reduce overfitting problems. Moreover, the 
addition of the InSAR factor increased the accuracy of prediction up to 6%. 

To further verify the proposed approach, the model established based on the training 
data from the two study areas was applied to another area in northern Taiwan. In Decem-
ber 2020, a landslide covering a slope area of around 4000 m2 and 10,000 m3 in earth vol-
ume occurred in this region. By feeding the local spatial factors into the model, the land-
slide susceptibility of each slope unit was obtained. Figure 7a,b illustrate the validation 
results from using 13 spatial factors (excluding InSAR data) and 14 spatial factors (includ-
ing InSAR data), respectively. It shows that a medium (50%~75%) landslide potential was 
obtained for the landslide area if only the geological factors were considered. However, 
when the InSAR data were included, the model gave a high (>75%) landslide potential for 
that slope unit. In other words, the InSAR data provided an essential contribution for im-
proving the prediction accuracy, as also revealed in the two study areas previously men-
tioned. Furthermore, it should be stressed that the model used here was established based 
on the training data in the two study areas in southern Taiwan, but it can still perform 
well in this validation case in northern Taiwan. This gives an encouraging indication that 
the model established based on the proposed methodology is valid not only in the study 
areas but could be also applicable elsewhere. 



Appl. Sci. 2021, 11, 7289 19 of 21 
 

 
(a)       (b) 

Figure 7. Landslide susceptibility analysis for the 2020 landslide case in northern Taiwan: (a) with InSAR data; (b) without 
InSAR data. 

Overall, this research reveals that InSAR observables and multiple geological factors 
should be integrated for landslide susceptibility analysis with machine learning technol-
ogy. Future studies can refine the current timescale of annual observations into months or 
days to enhance the calculation accuracy. Furthermore, mechanical factors, such as fluid 
shearing forces and soil slippage, can be considered to improve the prediction model. 

5. Conclusions 
Slope instability is affected by the topography and geological conditions, and artifi-

cial construction, such as tree cutting for planting cash crops and building roads, increases 
the vulnerability of the landform. The prevailing extreme climate now promotes the pos-
sibility of landslide disasters in the event of short-term heavy rainfall. This study intro-
duced the modern InSAR technology, terrain, geological, and rainfall observation data to 
construct spatial factors based on slope units. Through Spearman correlation analysis and 
verification, significant impact factors in the experimental areas were detected. More im-
portantly, machine learning was applied for the first time to construct prediction models 
combining spatial factors and landslide issues. Finally, two field experiments confirmed 
the feasibility of the landslide susceptibility prediction analysis proposed in this study. 
The results prove that a better-than-80% model accuracy can be achieved by the Random 
Forest algorithm, and the InSAR observable is able to increase the accuracy of prediction 
for all training models. Relevant management will be able to follow the potential landslide 
slope unit to provide vegetation restoration and slope reinforcement. Eventually, this 
novel strategy will provide the benefits of prevention and rescue for slope landslide dis-
asters in a forward-looking manner. Finally, it should be noted that this study only used 
the landslide cases in Taiwan as examples. Further studies can be conducted using the 
proposed methodology for the cases with various geological and climatic conditions 
around the world using the training data in that region. 
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