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The accurate estimation of reinforcement tensile loads is crucial for the evaluation of the internal stabil-
ities of geosynthetic-reinforced soil (GRS) structures. This study developed an evolutionary metaheuristic
intelligence model for efficiently and accurately estimating reinforcement loads. The proposed model
improves the prediction capability of the firefly algorithm (FA) by integrating intelligent components,
namely, a chaotic map, an adaptive inertia weight, and a Lévy flight. The enhanced FA is then used to opti-
mise the hyperparameters for a least squares support vector regression model. The proposed model was
validated using a database of 15 wall case studies (94 data points in total) via a cross-validation algo-
rithm. The method was then compared with conventional prediction methods in terms of the accuracy
for predicting the reinforcement tensile loads of GRS structures. The cross-validation results demon-
strated that the proposed model has a superior accuracy and mean absolute percentage errors lower than
10%. Moreover, a comparison with the baseline models and empirical methods indicate that the evolu-
tionary metaheuristic intelligence model provides a significant improvement in terms of the root mean
square errors (by 63.61–92.30%). This study validates the effectiveness of the proposed model for predict-
ing reinforcement tensile loads and its feasibility for facilitating early designs of GRS structures.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Since the 1970s, the use of mechanical stabilised earth (MSE)
structures has increased in various construction projects world-
wide, especially in transportation projects such as bridge abut-
ment, dam, highway, residential, retaining wall, and slope
stabilisation projects. The preferential use of MSE walls reflects
the multiple advantages of this structure, including the rapid con-
struction, cost effectiveness, aesthetics, reliability, simple con-
struction techniques, superior seismic performance, and a
striking ability to withstand large deformations without structural
distress, which account for the high desirability of MSE structures
[1].

MSE walls can be categorised according to the composition of
the reinforcement materials used. Geosynthetics (e.g., geogrids
and geotextiles) and metallic reinforcements (e.g., metal strips,
grids, and mats) are the most common types of reinforcement used
in MSE walls. This study focuses specifically on MSE retaining
structures that use geosynthetic reinforcements, i.e., geosyn-
thetic-reinforced soil (GRS) structures. Fig. 1 schematically illus-
trates a GRS structure.

The three primary agencies responsible for establishing recent
MSE structure design specifications in North America are the
American Association of State Highway and Transportation Offi-
cials (AASHTO) [2], the Federal Highway Administration (FHWA)
[3], and the National Concrete Masonry Association (NCMA) [4].
In these design guidelines, the design of the MSE retaining struc-
tures is the result of a synergistic approach; the wall system is ana-
lysed for its internal, external, global, and seismic stability as well
as deformability. The MSE structures must meet certain factors of
safety, FS, in all failure models.

Several current design guidelines [2–6] use the earth pressure
method to measure the stability of GRS structures. Fig. 1 illustrates
how the method is used to predict the maximum mobilised rein-
forcement load, Tmax, of each reinforcement layer of a GRS struc-
ture. The design rationale assumes that the tensile forces
developed in the reinforcement are in local equilibrium with the
lateral earth pressure generated in the MSE walls.

The FHWA design guidelines recommend using the following
equation to predict the Tmax of each reinforcement layer:
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Nomenclature

AASHTO American Association of State Highway and Transporta-
tion Officials

AI artificial intelligence
ASTMD American Society for Testing and Materials – D

standards
CART classification and regression tree
DM data mining
FA firefly algorithm
FEM finite element method
FHWA federal highway administration
GA genetic algorithm
GP genetic programming
GLR generalised linear regression
GRS geosynthetic-reinforced soil
LSSVM least squares support vector machine
LSSVR least squares support vector regression
MAE mean absolute error (kN/m)
MAPE mean absolute percentage error (%)
NCMA National Concrete Masonry Association
PP polypropylene
R linear correlation coefficient
RBF radial basis function
RMSE root mean square error (kN/m)
SVM support vector machine
SVR support vector regression
SFA-LSSVR smart firefly algorithm-least squares support vector

regression
USCS unified soil classification system
b bias term of SVR
C regularisation parameter
c backfill cohesion (kN/m2)
gj(x) set of nonlinear transformations from the input space in

SVR
H wall height (m)
J reinforcement tensile stiffness (kN/m)

Lðx;/Þ loss function
kr lateral earth pressure coefficient inside a GRS structure

(dimensionless)
Ka active earth pressure coefficient (dimensionless)
K0 at-rest earth pressure coefficient (dimensionless)
kr/Ka normalised lateral earth pressure coefficient (dimen-

sionless)
q uniformly distributed surcharge pressure (kN/m2)
Sv vertical spacing of a reinforcement layer (m)
Tmax maximum tensile load of each reinforcement layer (kN/

m)
w weight vector
yk sigmoid or logistic transfer function
Zk parameter of the chaotic map for the initial location
z depth below the top of structure (m)
zn normalised depth (m)
emax peak reinforcement tensile strain (%)
U influence factor = Ug �Ulocal �Ufs �Ufb (dimension-

less)
Ufb facing batter factor (dimensionless)
Ufs facing stiffness factor (dimensionless)
Ug global stiffness factor (dimensionless)
Ulocal local stiffness factor (dimensionless)
Uc soil cohesion factor (dimensionless)
r sigma parameter for the RBF kernel
x wall face batter from vertical (�)
kxk2 complexity term of the SVR
c unit weight of soil (kN/m3)
b Lévy parameter of the Lévy flight for movement
/ soil friction angle (�)
/tx soil peak friction angle under triaxial compression (�)
/ps soil peak friction angle under plane strain (�)
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Tmax ¼
kr

Ka

� �
Kaðczþ qÞSv ð1Þ
where Tmax is the maximum reinforcement load of each reinforce-
ment layer; kr/Ka is normalised lateral earth pressure coefficient;
Ka is theoretical Rankine (adopted by AASHTO and FHWA) or Cou-
lomb (adopted by NCMA considering both the face inclination and
the soil-facing friction) active earth pressure coefficient; c is backfill
unit weight; z is depth below the top of the structure, q is surcharge,
Sv is tributary area (equivalent to the vertical spacing of the rein-
forcement when analyses are conducted per unit length of wall).
The kr/Ka depends on the type of reinforcement; for flexible MSE
or GRS walls, the kr/Ka has a value of 1.0 and remains constant
across the depth of the wall.

Therefore, for flexible MSE or GRS walls, the horizontal move-
ment that occurs during construction is sufficient for the soil to
reach an active stress state and generate an active earth pressure.
The forces on the reinforcement must be calculated to select a rein-
forcement with an adequate long-term strength (resistance to
breakage), to determine the length required to resist pullout within
a stable soil zone (resistance to pullout), and to calculate the
required connection strength at the wall face (against connection
failure). Hence, Tmax must be calculated to estimate the internal
stability of a GRS structure.

The prediction methods for the reinforcement loads within GRS
structures currently in use for research and in practice can be cat-
egorised into two approaches: the force-equilibrium approach (i.e.,
the use of the earth pressure method and limit equilibrium (LE)
method) and the deformation-based approach (i.e., the use of the
K-stiffness method [7–9] and the finite element (FE) method).

Yang et al. [10] reviewed each prediction method and discussed
their advantages and disadvantages for predicting reinforcement
tensile loads. Yang et al. [10] also examined the accuracy of each
method by comparing the predicted Tmax with the measured Tmax

from a full-scale (3.6 m high) and carefully instrumented GRS wall.
Yang et al. [10] further concluded that, out of all of the prediction
methods, the earth pressure method based on the Rankine theory
produced the largest overestimate of Tmax. On average, the pre-
dicted loads for the GRS wall were three times greater than the
measured values for the full-scale instrumented walls. The finite
element method had the highest prediction accuracy under work-
ing stress conditions because it can capture the deformation (i.e.,
the strain compatibility) in GRS structures.

In addition to the force-equilibrium and deformation-based
approaches, the use of artificial intelligence (AI) is increasing, par-
ticularly for modelling the complex behaviour of geotechnical
engineering materials and structures. Artificial intelligence has
shown superior predictive ability compared to conventional meth-
ods [11]. Regarding geotechnical engineering, data mining (DM)
approaches are a good alternative for establishing models with
good prediction accuracy. According to the literature, applications
of data mining in geotechnical engineering problems have been
successfully accomplished and produced satisfactory results [11–
13]. Based on these reports, this study applied several popular
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Fig. 1. Design model of a GRS structure.
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numerical predictors from regressions-based models, i.e., general-
ised linear regression (GLR), support vector regression (SVR), clas-
sification and regression tree (CART), in IBM SPSS Modeler [14] to
demonstrate the excellence of DM.

In advanced data mining applications, evolutionary techniques
can enhance prediction accuracy [15–17]. In this research, the pro-
posed evolutionary metaheuristic intelligence technique (i.e.,
smart firefly algorithm–based least squares SVR) is developed to
predict reinforcement loads within GRS structures. The prediction
model has three novel features: first, the smart components are
employed to minimise the drawbacks of the standard firefly algo-
rithm (FA); second, the improved FA, named the smart firefly algo-
rithm (SFA), is used to optimise the least squares SVR (LSSVR)
hyperparameters; finally, the optimised LSSVR is applied to esti-
mate the reinforcement loads. The modelling systems are then val-
idated using a k-fold cross-validation algorithm and a database of
15 wall case studies (94 data points in total) [8]. A synthesised
index was developed to compare performance measures between
the proposed model and those of conventional models.

The remainder of this paper is organised as follows. First, the
related literature is reviewed, including studies of reinforcement-
load prediction and a description of well-known predictive tech-
niques that employ computational models suitable for geotechni-
cal studies. The research methodology and experimental settings
sections then describe the research methodology, evaluation meth-
ods, and experimental settings of the proposed models. The com-
parison of models and empirical methods section discusses the
analytical results and compares the model performances, whilst
the conclusions and recommendations section summarises the
findings and recommends future studies.
2. Literature review

In the past decade, numerous studies have successfully applied
AI within the field of geotechnical engineering. For example, the
complex and uncertain behaviour of foundations (deep and shal-
low) in soils has encouraged several researchers to use AI tech-
niques to discover and generalise structural patterns in
geotechnical areas [18]. Recently, Abuel-Naga and Bouzza applied
a numerical experiment-AI approach to develop empirical equa-
tions for predicting leakage rates [19]. Choi and Lee employed
CART to develop an appropriate retaining wall selection systems
[20]. Tinoco et al. employed SVM to predict the uniaxial compres-
sive strength (UCS) of jet grouting and obtained a promising result
[21]. Pal and Deswal used SVR to model the shear strengths of deep
beams [22]. Samui and Karthikeyan predicted liquefaction by using
least squares SVM (LSSVM) to find sufficient parameters to achieve
the optimal result [23].

Another recent research direction in the field of geotechnical
engineering is the use of advanced, hybrid AI models. Liquefaction
during earthquakes is a very dangerous ground failure phenomenon
that can severely damage civil engineering structures. However,
although the mechanism of liquefaction is well known, methods of
predicting liquefaction potential are very complex [24]. Therefore,
a number of researchers have investigated the potential use of a
hybrid optimisation model combined with baseline DM techniques,
especially using regression division techniques, including SVR
[12,13,21,25], CART [26,27] and GLR [28,29]. The excellent results
obtained by these methods confirm that hybrid DM systems provide
a valuable option for forecasting analyses.

Studies of the relationship between AI and retaining structures
[11] were reviewed before selecting the input variables for the
present research, but no studies have discussed the use of geosyn-
thetic materials in retaining structures. Goh and Kulhawy pro-
posed an SVR approach for solving the reliability assessment of
the serviceability performance of braced retaining walls [30]. Kung
et al. used the same approach with five input parameters to esti-
mate the deflection in a diaphragm wall [31]. An SVR approach
was also used to predict lateral earth pressures in rigid retaining
walls and to calculate the total lateral thrust and its point of appli-
cation to six parameters, and reported to be a powerful tool [32].

The literature in this research area indicates that SVR is
amongst the most common and effective DM techniques. Despite
its proven effectiveness for solving prediction problems, it still
has major drawbacks. The accuracy of an SVR model depends on
the SVR architecture. During the training process, the user may
select a kernel function (i.e., linear, polynomial, radial basis, or sig-
moid) to enable the SVR to identify support vectors along the func-
tion surface. One of these functions is the Gaussian function, which
maps the sample set from the input space into a high-dimensional
feature space. The Gaussian function effectively represents the
complex nonlinear relationship between the input and output
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samples. The literature suggests that the Gaussian function is gen-
erally a reasonable first choice [33].
Output
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Fig. 2. Architecture of a regression machine constructed by a support vector
algorithm.
3. Methodology

3.1. Regression-based models

3.1.1. Classification and regression tree
The classification and regression tree (CART) is a decision tree

method for constructing a classification or regression tree accord-
ing to its dependent variable type, which may be categorical or
numerical [34]. The same predictor field may be used several times
across multiple tree levels. Surrogate splitting optimises the use of
data with missing values. A CART has the flexibility to consider
misclassification costs as it grows and to specify the prior probabil-
ity distribution in a classification problem. Additionally, the logic
rules of decision tree methods are markedly superior to those of
other modelling techniques [35].

Depending on the target field, three impurity measurements
can be used to define splits for CART models. For instance, Gini is
typically applied in symbolic target fields, whilst the least-squared
deviation method automatically selects continuous targets without
explaining the selections. In a CART, the Gini index g(t) at a node t
is defined by Eq. (2)

gðtÞ ¼
X
j–i

pðjjtÞpðijtÞ ð2Þ

where i and j are target field categories

pðjjtÞ ¼ pðj; tÞ
pðtÞ ; pðjtÞ ¼ pðjÞNjðtÞ

Nj
; and pðtÞ ¼

X
j

pðj; tÞ ð3Þ

where p(j) is the prior probability value for category j; Nj(t) is the
number of records in category j of node t; and Nj is the number of
records of category j in the root node. Notably, when the Gini index
is used to find the improvement after a split during tree growth,
only node t records and root node records that have valid values
for the split-predictor are used to compute Nj(t) and Nj, respectively.

3.1.2. Generalised linear regression
The generalised linear regression (GLR) model developed by

Nelder and Wedderburn [36] can be used to analyse different prob-
ability distributions (i.e., normal, binomial, Poisson and gamma) for
a dependent variable by using a link function as a mathematical
model to specify the relationship between linear predictors and
the mean distribution function. Compared to simple regression,
the GLR model is more flexible and produces a more realistic rela-
tionship. The assumed distribution pattern of data points and the
relationship between X and Y are defined in Eq. (4)

g ¼ gðEðYÞÞ ¼ Xibi þ O;Y � F ð4Þ

where g is the linear predictor; O is an offset variable; Xi is an inde-
pendent variable; bi is the slope coefficient; and F is the distribution
of Y.

The three components of the GLR model are an outcome vari-
able Y with a specific random distribution with an expected value
l and a variance of r2 (E(Y) = l); a link function g(�) that connects
the expected value (l) of Y to transform predicted values of
g[g = g(l)]; and a linear structural model.

3.1.3. Support vector regression
Support vector regression (SVR) first uses a fixed mapping pro-

cedure to map input onto an n-dimensional feature space [37].
Nonlinear kernel functions are then fitted to the high-dimensional
feature space to increase the separation amongst the input data
compared to the original input space. The linear model in the fea-
ture space, f(x, w), can be expressed by Eq. (5).

f ðx;wÞ ¼
Xn

j¼1

wjgjðxÞ þ b ð5Þ

where gj(x) is a set of nonlinear transformations from the input
space; b is a bias term; and w denotes the weight vector estimated
by minimising the regularised risk function that includes the empir-
ical risk and a complexity term kxk2. Moreover, estimation quality
is measured by a loss function, Lðx;/Þ [38], defined as

Le ¼ ½y; f ðx;xÞ� ¼
0 if jy� f ðx;xÞj 6 e

jy� f ðx;xÞj otherwise

�
ð6Þ

The most interesting feature of the SVR is its use of an e-insen-
sitive loss function to compute a linear regression function for the
new higher dimensional feature space whilst simultaneously
decreasing the model complexity by minimising kxk2. This func-
tion is introduced by including the nonnegative slack variables ni

and ni
⁄ for the data points outside the tube, where i = 1, . . .,n is used

to identify training samples from the e-insensitive zone. The SVR
can thus be formulated as a minimised version of the following
quadratic function:

min
x;b;n;n�

1
2
kxk2 þ C

Xn

i¼1

ðni þ n�i Þ ð7Þ

subject to

yi � f ðxi;xÞ 6 eþ n�i
f ðxi;xÞ � yi 6 eþ ni

ni; n
�
i P 0; i ¼ 1; . . . ;n

8>>><
>>>:

This optimisation problem can be transformed into a dual prob-
lem, which is solved by

f ðxÞ ¼
Xn

i¼1

ðai � a�i ÞKðxi; xÞ subject to 0 6 a�i 6 C;0 6 ai 6 C ð8Þ

where n is the number of support vectors. The kernel function is

Kðx; xiÞ ¼
Xn

i¼1

giðxÞgiðxiÞ ð9Þ

The training process for the SVR requires the selection of kernel
functions (i.e., linear, radial basis, polynomial, or sigmoid func-
tions) to identify support vectors along the function surface.
Default values of kernel parameters are highly dependent on their
type and on the software implemented. Software applications typ-
ically treat SVR parameters as user-defined inputs [38]. Fig. 2
shows the general structure of the steps of the regression process.
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The proposed regression model performs a least squares sup-
port vector regression (LSSVR) to minimise the computational cost
[39]. The e-SVR model requires the user to specify two parameters
(C and e) that are required for the model to perform various tasks.
However, the hyperparameter e can be eliminated when a least
squares loss function is used instead of the original e-insensitive
loss function [40,41].

In the LSSVR for function estimation, given a training dataset
fxk; ykg

N
k¼1, the optimisation problem is formulated as

min
x;b;e

Jðx; eÞ ¼ 1
2
kxk2 þ 1

2
C
XN

k¼1

e2
k ; subject to

yk ¼ hx;uðxkÞi þ bþ ek; k ¼ 1; . . . N ð10Þ

where ek 2 R are error variables and C P 0 is a regularisation con-
stant that specifies the constant representing the trade-off between
the empirical error and the flatness of the function.

The resulting LSSVR model for function estimation is

f ðxÞ ¼
XN

k¼1

akKðx; xkÞ þ b ð11Þ

where ak; b are the Lagrange multiplier and the ‘‘bias’’ term,
respectively.

Selecting the kernel function is an important step in establish-
ing the model. Recent studies suggest that the radial basis function
(RBF) is useful for solving nonlinear problems [42–44]. In the
LSSVR, two major hyperparameters must be set appropriately
because of their large impact on the prediction accuracy: the reg-
ularisation parameter (C), which represents the tradeoff between
the model complexity and training error; and the kernel parameter
(r), which controls the kernel width used to fit the training data.
These tuning parameters must be set appropriately to obtain a pre-
diction model that performs well [41]. Therefore, an RBF is used as
follows to construct the kernel function in the LSSVR, where the
kernel function is denoted as Kðx; xkÞ and r is the RBF kernel
parameter.

Kðx; xkÞ ¼ exp
�kx� xkk2

2r2

 !
ð12Þ
3.1.4. Ensemble regression models
The ensemble approach ranks a set of the above-described

models based on their performances and then combines the best-
performing models into an ensemble model [45]. The ensemble
approach can be expressed mathematically as g : Rd ! R with a
d-dimensional predictor variable X and a one-dimensional
response Y. In each procedure, a specified algorithm yields one
estimated function, ĝð�Þ. The estimation by an ensemble-based
function, ĝenð�Þ, is obtained by the following linear combination
of individual functions:

ĝenð�Þ ¼
XN

j¼1

cj � ĝð�Þ ð13Þ

where cj comprises the linear combination coefficients, which are
simply the average values of the weights.

Generally, the predictions obtained by this approach are more
accurate than predictions by experts or by conventional models
[46]. In predictive models, generalisation can be enhanced by
ensemble building or model averaging.

3.2. Evolutionary metaheuristic regression model

This section describes the novel smart firefly algorithm–based
least squares support vector regression (SFA-LSSVR) method and
its components. The objective was to use evolutionary metaheuris-
tic intelligence to enhance the performance of the standard FA and
to optimise the LSSVR parameters in a hybrid system. The novel
smart firefly algorithm (SFA) uses three standard terms in a firefly
algorithm (FA) (initial population, attractiveness coefficient, and
movement). The terms are then adjusted by supplementary ele-
ments, including a chaotic map, an adaptive inertia weight, and a
Lévy flight. This combination effectively optimises the LSSVR
parameters in the proposed predictive technique.

3.2.1. Firefly algorithm
The firefly algorithm developed by Yang, which is one of the

most successful swarm intelligence methods, is based on the flash-
ing patterns and behaviour of tropical fireflies [47]. The literature is
in agreement in that, for solving a number of optimisation prob-
lems, the FA is more efficient than existing algorithms, such as
genetic algorithms and particle swarm optimisation [48,49]. For
example, this stochastic, nature-inspired, and metaheuristic algo-
rithm can find both the global optima and the local optima simul-
taneously and effectively.

In a minimisation problem, the brightness can simply be set as
an inverse proportion of the value of the objective function. Other
forms of brightness can be defined similarly to the fitness function
in a genetic algorithm. In its simplest form, the light intensity I(r)
varies according to the inverse square law

IðrÞ ¼ Is

r2 ð14Þ

where Is is the intensity at the source. For a given medium with a
fixed light absorption coefficient c, the light intensity I varies with
the distance r, i.e.,

I ¼ I0e�cr ð15Þ

where I0 is the original light intensity. The combined effect of both
the inverse square law and absorption can be approximated as the
following Gaussian form

IðrÞ ¼ I0e�cr2 ð16Þ

As the attractiveness of a firefly is proportional to the light
intensity seen by adjacent fireflies, the attractiveness b of a firefly
is defined as

b ¼ b0e�cr2 ð17Þ

The movement of the ith firefly, when attracted to another more
attractive (brighter) jth firefly, at xi and xj, respectively, is

xi ¼ xi þ b0e�cr2
ij ðxj � xiÞ þ ðrand� 0:5Þ ð18Þ

However, a continuing challenge is designing tuning parame-
ters that improve convergence in the FA. Because these factors
are problem-dependent, solutions for some problems require test
runs to tune these values. The parameter settings for an FA are
optimal if they balance exploitation (local search) and exploration
(global search) [50]. To improve the balance between exploration
and exploitation, the proposed model modifies the equation used
in a conventional FA. The proposed algorithm mainly modifies
the quality of the initial population and randomisation parameters.
These parameters are then used to develop an elitist firefly algo-
rithm by integrating smart components.

3.2.2. Smart components
3.2.2.1. Chaotic map. Recent theoretical advances and applications
of nonlinear dynamics, especially in chaos theory, have attracted
attention in numerous fields. One application of chaos theory is
in optimisation algorithms [51]. Although different chaotic maps
have been proposed as alternatives to pseudorandom sequences,
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comparisons show that the Gauss/Mouse map is the best chaotic
map for tuning the attractive parameters (b) in the original FA
[52,53]. Moreover, the diversity of the initial population is essential
for preventing premature phenomena when using an FA in an opti-
misation algorithm. Logistic mapping, which is the simplest cha-
otic mapping operator, provides more diversity compared to
randomly selected initial populations and decreases the probabil-
ity of premature occurrence [53]. Here, the above-described cha-
otic mapping operators are used instead of the random
parameters used in the standard FA, as given by Eqs. (19) and (20).

Gauss=Mouse map : Zkþ1 ¼
0 Zk ¼ 0
1=Zkmodð1Þ otherwise

�
ð19Þ

Logistic map : Zkþ1 ¼ a � Zkð1� ZkÞ ð20Þ

where Zk is the kth chaotic number; k indicates the iteration num-
ber; Z 2 (0, 1) and Z0 R {0.0;0.25;0.50;0.75;1.0}; a = 4 is used for the
experiments.

3.2.2.2. Adaptive inertia weight. The inertia weight has important
effects on the convergence of the optimal solution to the optimal
value and on the execution time of the simulation. The inertia
weight determines the local and global exploration capabilities of
a swarm algorithm. Because this study uses the adaptive inertia
weight to tune the a parameter, distances are reduced to maintain
a within a reasonable range [54].

a ¼ a0h
t ð21Þ

where a0 is the initial attractive coefficient; 0 < h < 1 is the control-
ling parameter; and t is the number of iterations or time steps. In
this implementation, the selected value for h is 0.9, t 2 [0, Tmax];
where Tmax is the maximum number of iterations.

3.2.2.3. Lévy flight. Random walk theory plays a central role in
modern metaheuristic algorithms and in stochastic optimisation.
A Lévy flight is a random walk in which the step length is a Lévy
distribution LðsÞ � jsj�1�b; where 0 < b 6 2 is an index; s is a
power-law distribution; and L(s) is a Lévy distribution with an
index b. Lévy flights are defined such that each jump, regardless
of size, takes one unit of time [55]. A Lévy distribution is a distribu-
tion of a sum of N identically and independently distributed ran-
dom variables for which the Fourier transformation takes the
form of FNðkÞ ¼ expð�NjkjbÞ. The variant of such a power-law dis-
Table 1
Numerical benchmark functions.

No. Benchmark function

1 Bukin function No. 6

f 1ðx; yÞ ¼ 100
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jy� 0:01x2j

p
þ 0:01jxþ 10j

x = [�15;�5]; y = [�3,3]; Minimum f2(�10,1) = 0

2 Four peak function

f 2ðx; yÞ ¼ �e�ðx�4Þ2�ðy�4Þ2 þ e�ðxþ4Þ2�ðy�4Þ2 � 2½e�x2�ðyþ4Þ2 þ 2e�x2�y2 �
x = [�5;5]; y = [�5,5]; Minimum f3(0,0) = �4

3 Ackley’s function

f 3ðx; yÞ ¼ �20e�0:2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:5�ðx2þy2Þ
p

� e0:5�ðcosð2pxÞþcosð2pyÞÞ þ 20þ e
x = [�5;5]; y = [�5,5]; Minimum f4(0,0) = 0
x = [�600;600]; y = [�600,600]; Minimum f7(100,100) = 0

4 Rastrigin function
f 4ðx; yÞ ¼ ðx2 � 10 cosð2pxÞ þ 10Þ þ ðy2 � 10 cosð2pyÞ þ 10Þ
x = [�5.12;5.12]; y = [�5.12,5.12]; Minimum f8(0,0) = 0

5 Rosenbrock function

f 5ðx; yÞ ¼ 100ðy� x2Þ2 þ ðx� 1Þ2

x = [�50;50]; y = [�50,50]; Minimum f9(1,1) = 0
tribution is infinite for 0 < b 6 2. The following relationship has
several special cases:

r2ðtÞ �
t2 if 0 < b < 1;

t3�b if 1 < b < 2;

t if b P 2

8><
>: ð22Þ

A value of b = 1 results in a Cauchy distribution in which
r2ðtÞ � t2= ln t when the target sites are randomly and sparsely dis-
tributed. A Lévy walk generates new solutions around the best
solution obtained thus far, which increase the speed of the local
search. Promising applications of the Lévy walk include optimisa-
tion and optimal searching. Eq. (18) is revised as shown below

xi ¼ xi þ be�cr2
ij ðxj � xiÞ þ a � sign½rand� 0:5� � L�evy ð23Þ

where the second term is the attraction and the third term is the
randomisation determined by Lévy flights for which a is the ran-
domisation parameter. The product � indicates entry-wise multi-
plications [56]. The term sign[rand � 0.5] with rand 2 ½0;1�
provides a random sign or direction, whilst the random step length
is drawn from a Lévy distribution.

3.2.3. Smart firefly algorithm for optimisation of the support vector
regression

The regression model in this study uses an SVR with a least
squares cost function (LSSVR) embedded in the MATLAB software.
This study applied the radial basis function (RBF) kernel in the
LSSVR because, in highly non-linear spaces, the RBF usually yields
more promising results compared to other kernels, as reported in
the literature [42]. For maximum accuracy in solving complex
problems, the LSSVR parameters optimised in this study included
(1) the regularisation parameter (C), which determines the trade-
off cost between minimising the training error and minimising
the model complexity, and (2) the sigma parameter (r) of the
RBF kernel function, which defines the non-linear mapping from
the input space to a high-dimensional feature space.

The selection of the parameter optimisation mechanism is
another critical issue in machine learning [43]. This issue is well
recognised by scholars in widely varying disciplines. In practice,
the identification of the best set of model parameters is an optimi-
sation problem. Therefore, this study developed a fast and efficient
advanced prediction model that combines smart FA and LSSVR
(SFA-LSSVR) in a novel hybrid intelligence system.
Hypothesis testing result

Mean of optimum Standard deviation p-value (%)

6.94E�03 9.78E�03 47.99

�4.00E+00 2.53E�06 37.50

5.16E�03 1.15E�01 65.57

4.97E�02 2.17E�01 2.40

1.82E�02 9.58E�02 6.03
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The optimisation process (OP) is automated by using an SFA to
simultaneously optimise all of the LSSVR parameters. The LSSVR
mainly addresses learning and curve fitting, whereas the SFA opti-
mises parameters C and r to minimise prediction errors. The pro-
posed hybrid algorithm was coded in MATLAB R2012a on a PC with
a Pentium CORE 2 Quad processor, 2 GB of RAM, and Windows 7
OS. The fitness function of the SFA-LSSVR was as follows:

Minimise : f ðmÞ ¼ RMSEOP
Training-data þ RMSEOP

Validation-data ð24Þ

Table 1 shows the benchmark functions [57] conventionally
used to evaluate the performance of simulation experiments. The
five described functions contain the global optimum and multiple
local optima. The table also shows the values used for two
Testing optimal LSSV

10 fold cross-
validation

Evaluating fitness

Setting parameters

LSSVR model

Training LSSVR 
with (C, σ)

Output result

Performance evaluation of 
prediction results

(R, RMSE, MAPE & MAE)

Test set
Training
validatio

Prediction mo

Fig. 3. Framework of the SFA-L
dimensions of these functions: the range of the corresponding ini-
tial position of the firefly and the goal for each function performed
by the algorithms. The analytical results demonstrate satisfactory
solutions for these benchmark functions.

Fig. 3 is a flowchart of the SFA-LSSVR model construction, and
the LSSVR calls the SFA as a subroutine for optimising its hyperpa-
rameters. Historical data were classified as training data, validation
data, and test data. The training and validation data are used in the
SFA optimisation process. In this process, the training data are used
to build a set of models and the validation data are used to evaluate
the performance of these models to identify the best model in the
set. At the end of optimisation process, the best model with the
optimal parameters is determined. Then, the test data set is used
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to evaluate the performance of the optimised LSSVR model. Nota-
bly, to mitigate over-fitting, the hyperparameters were repetitively
generated by a 10-fold cross validation method with an SFA, which
is discussed below.

3.3. Prediction performance and evaluation methods

3.3.1. Cross validation
The k-fold cross-validation algorithm is widely used because it

minimises the bias associated with random sampling of training
and holdout data samples. Kohavi further confirmed that the 10-
fold validation testing is optimal in terms of the computation time
and variance [58]. Thus, the models in this work were assessed by a
stratified 10-fold cross-validation approach. In this method, a fixed
number of data samples are randomly categorised into mutually
exclusive ten subsets. The model with the remaining nine data
subsets is trained, and the validation subset is used to prove model
accuracy. The algorithm accuracy is then expressed as the mean
accuracy acquired for the ten validation rounds.

3.3.2. Performance measures
The following performance measures [59] were used to evalu-

ate the prediction accuracy of each of the proposed models and
prior works.

	 Linear correlation coefficient (R)

R ¼ n
P

y:y0 � ð
P

yÞð
P

y0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nð
P

y2Þ � ð
P

yÞ2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nð
P

y02Þ � ð
P

y0Þ2
q ð25Þ

where y0 is the predicted value; y is the actual value; and n is the
number of data samples.

	 Root mean square error

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

i¼1
ðy0 � yÞ2

r
ð26Þ

	 Mean absolute error

MAE ¼ 1
n

Xn

i¼1

jy� y0j ð27Þ

	 Mean absolute percentage error

MAPE ¼ 1
n

Xn

i¼1

y� y0

y

����
���� ð28Þ

To provide a comprehensive performance measure, four statis-
tical measures (1 � R, RMSE, MAE, and MAPE) were combined into
the following synthesis index (SI) [59]:

SI ¼ 1
m

Xm

i¼1

Pi � Pmin;i

Pmax;i � Pmin;i

� �
ð29Þ

where m is the number of performance measures; and Pi is the ith
performance measure. The SI is a relative performance measure
for the single, ensemble and hybrid models. By normalising the pre-
diction performance, the models can be compared with each other
using the same baseline. The SI range is 0–1; an SI value close to 0
indicates a highly accurate predictive model.

4. Experimental settings

4.1. Data description and pre-processing

The efficacy of the prediction model was assessed using a data-
base of 15 wall case studies, which contained 94 measurements of
maximum reinforcement load [8]. The data were compiled from a
portion of the database used to develop the K-stiffness method [7–
9]. Three predictive techniques (i.e., CART, GLR and SVR) were used
as baseline models when using the experimental datasets for per-
formance comparisons of the AI models. Table 2 lists the datasets
obtained from various GRS wall case studies [8].

Table 3 describes the statistical attributes of the GRS structure
dataset. The response/target (output) is the maximum reinforce-
ment load (Tmax), and the predictor variables (input) are the
remaining attributes.

4.2. Model construction

Table 4 shows the default settings of the modelling parameters
for the experimental comparison of DM techniques to establish a
baseline for the comparison of the outcome.

Both the proposed single and ensemble models were con-
structed by performing the following steps in the IBM SPSS Mod-
eler software.

	 Step 1: Input phase: add data to the source node based on the
cross-validation algorithm.
	 Step 2: Training model: use the numerical predictor node to

train data.
	 Step 3: Testing model: use the nugget node to validate testing

data.
	 Step 4: Combine models via the ensemble node.
	 Step 5: Output phase: assess analytical results through table

and analysis nodes.

Fig. 4 shows the modelling stream of these five steps. Analyses
were performed using a cross-validation algorithm, i.e., for each
experimental model; one fold of the original dataset was used to
evaluate the models and to identify the best model for each DM
method. The training dataset (remaining folds) was used for model
training in each DM method. Single models were then combined
into an ensemble model.

The novel SFA-LSSVR algorithm was constructed and run in
the MATLAB environment (R2012a version). The first stage of
the analysis is optimisation, in which parameters C and r are
optimised for the RBF kernel in the LSSVR model. Because
SFA-LSSVR is a complex algorithm, Fig. 5 shows the MATLAB
flowchart and partial algorithms to illustrate the analytical pro-
cess for this model.

The SFA-LSSVR is performed in the following steps:

	 Step 1: Normalise the dataset. Subdivide the data into k subsets
of training, validation, and test data.
	 Step 2: Initialise the search parameters via the chaotic map

operator (logistic map). For each stage, set the initial population,
number of generations, and boundaries of optimised parameters.
	 Step 3: Optimisation stage via SFA. (a) Generate the ‘AlphaNew’

function (a ¼ a0 � 0:9t); (b) use a chaotic Gauss/Mouse map to
compute the ‘BetaNew’ function (b); (c) use the ‘EvaluateSFA’
function to evaluate the quality of the solution by the fitness
function f(m); (d) use the ‘SortSFA’ function to sort the firefly
population by the fitness value and to select the best individual
in the population; (e) use ‘MoveSFA’ to move the firefly toward
more attractive individuals via Lévy flights in search space; (f)
use ‘MaxGEN’ for a firefly search to generate the maximum
number of fitness functions.
	 Step 4: LSSVR function. Set the kernel (RBF) and cost function

(least squares) parameters. Train the model with (C, r) using
the training data. Evaluate the fitness functions in terms of their
RMSEs for both the training and validation sets.



Table 2
Sources of datasets reported in the literature [8].

Wall
code
number

Wall name Wall geometry Soil Reinforcement Number
of data
points

Face
batter
angle xa

(�)

Wall
height
H (m)

Equivalent
surcharge height
q/cb (m)

Facing
typec

Unit
weight c
(kN/m3)

Peak
friction
angle /ps

(�)

Stiffness
J2%

(kN/m)

Measured maximum
reinforcement load in wall
Tmax (kN/m)

(GW5) Tanque Verde
Wall

0.0 4.7 0.0 1 19.6 53 340 1.12 3

(GW7) Oslo, Norway,
Section J & N

27 4.8 1.75 2 17 46 350 3.25 13

(GW8) Algonquin Wall 0.0 6.1 0.0 1 20.4 43 500 3.80 5
(GW9) Algonquin Wall 2.9 6.1 1.2 3 20.4 43 200 1.26 10
(GW10) Algonquin Wall 0 5.9 0.0 2 20.4 43 180 3.50 5
(GW11) RMC Geogrid

Panel
0 2.9 0.6 2 17.6 55 105–110 2.79 4

(GW12) RMC Full-
Height Plywood
Panel

0 3.0 0.0 1 18 55 550 2.48 8

(GW13) RMC
Incremental
Panel

0 3.0 0.0 1 18 55 530 3.68 8

(GW14) RMC Full-
Height
Aluminium
Panel

0 3.0 0.0 1 18 55 90–95 1.67 8

(GW15) RMC
Incremental
Aluminium
Panel

0 3.0 0.0 1 18 55 87–93 1.87 8

(GW16) Rainier Avenue
wall

3 12.6 0.0 2 21.1 54 120–
1000

6.19 8

(GW18) Fredericton,
New Brunswick
Wall

0 6.1 0.0 1 24 45 500 2.50 2

(GW19) St Remy Wall 0 6.4 0.0 1 16.4 39 7400 12.90 8
(GW20) Vicenza, Italy

Wall Section 1
0 4.0 0.0 2 21.1 57 300 4.43 2

(GW20) Vicenza, Italy
Wall Section 2

0 4.0 0.0 2 21.1 57 90–100 2.5 2

a A face batter angle x = 0 means the wall is in the vertical direction.
b A surcharge q = 0 means there is no surcharge.
c 3 Facing types: (1) panel face; (2) wrapped face and (3) block face.

Table 3
Statistical attributes of the GRS dataset.

Variable Attribute Notation Unit Min Max

Input Face batter angle x (�) 0.00 27
Wall height H (m) 2.85 12.6
Equivalent surcharge height q/c (m) 0.00 2.7
Unit weight c (kN/m3) 16.4 24
Peak friction angle / (�) 31 57
Facing type – – 1a 3a

Reinforcement stiffness J (kN/m) 110 7400
Reinforcement location (depth) z (m) 0.4 11.5
Reinforcement vertical spacing Sv (m) 0.3 1.6

Output Maximum reinforcement load Tmax (kN/m) 0.04 12.9

a 3 Facing types: (1) concrete panel face; (2) wrapped around face and (3) modular block face.

J.-S. Chou et al. / Computers and Geotechnics 66 (2015) 1–15 9
	 Step 5: Stopping condition. End the optimisation process if the
generation number (MaxGEN) has achieved the maximum
number of fitness functions f(m) with the minimum RMSE val-
ues; otherwise, return to step 3.
	 Step 6: Stop the looping condition when the parameters are

optimised. Provisionally store these optimal sets of tuned
parameters for use as a knowledge package for training new
data patterns.
	 Step 7: Output phase. Calculate the performance measures (i.e.,

R, RMSE, MAE, MAPE, and SI) to find the prediction accuracy
using the test set. Evaluate the post-process results and perform
a final visualisation.
Finally, find the optimal set of tuned parameters based on the
initial settings for the SFA-LSSVR algorithm, which were defined
at the beginning of the analysis. For each parameter, Table 5 lists
the initial values used to improve the model accuracy.

5. Comparison of models and conventional methods

Based on the experimental results, this section compares the
performance of three single models, four ensemble models, and a
hybrid technique. The performance measures reported in the liter-
ature for conventional models were used to evaluate the perfor-
mance of the selected models.



Table 4
Default parameter settings of the baseline models.

Model Parameter Value

CART Levels below root 5
Mode Simple
Maximum surrogates 5
Minimum change in impurity 0.0001
Impurity measure for categorical targets Gini
Minimum records in parent branch (%) 2
Minimum records in child branch (%) 1

GLR Singularity tolerance 1.0E�4
Probability entry 0.05
Probability removal 0.1
F value entry 3.84
F value removal 2.71

SVR Stopping criteria 1.0E�3
Regularisation parameter (C) 10
Regression precision (e) 0.1
Kernel type RBF
RBF sigma (r) 0.1

Fig. 4. Flowchart of the modelling stream f
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5.1. Analytical results

Table 6 presents the performance measures for the various DM
models. Eqs. (25)–(29) were used to evaluate the accuracy of the
predictive DM techniques. This table summarises the cross-fold
modelling performance for the dataset during the validation per-
iod. The SVR had the best results out of all of the single models.
However, the overall performance (SI) for the ensemble regression
models was no better than that for the SVR model.

Notably, the accuracy of the tensile load prediction is signifi-
cantly improved by the proposed SFA-LSSVR model. The validation
outcome (Table 6) of this hybrid model exhibited superior perfor-
mance. The lowest MAPE was 9.55%, and the lowest RMSE was
0.27 kN/m; both values were superior to those of the other models.
Fig. 6 presents a detailed comparison of the performance measures,
demonstrating the superior performance of the SFA-LSSVR model.
This hybrid model is characterised by an excellent performance
in terms of the correlation between the predicted output and the
Determine:
The best single and 
ensemble models     

or the baseline and ensemble models.
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Sim_SVR
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LSSVR
call

load

ObjFuncSVR
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Fig. 5. The SFA-LSSVR scheme and partial algorithms.

Table 5
Parameter settings for the SFA-LSSVR algorithm.

Algorithm/model Parameter Initial setting Detail

SFA Alpha 0.2 Randomness 0–1
Gamma 1 Absorption coefficient
Search max flag 0 Search maximum flag
Plot fitness function flag 0 Plotting flag
Number of fireflies 50 Number of fireflies
Maximum generation 25 Number of interactions
dx, dy 0.1 Searching step sizes
Xmin, Xmax, Ymin, Ymax – Searching range
Chaotic mapping operators rand(0, 1) Initial location
Initial attractive coefficient 0.9 Control exploration
b Lévy distribution 1.5 Initial coefficient

LSSVR (RBF) Regularisation parameter (C) – Trade-off training error and model flatness
Sigma parameter (r) – Defines the non-linear mapping

Table 6
Summary of the cross-fold modelling performance for the baseline, ensemble and hybrid models.

Category Predictive model Test dataset

R RMSE (kN/m) MAE (kN/m) MAPE (%) SI

Single CART 0.76 0.77 0.67 41.71 0.81

GLR 0.68 0.95 0.77 43.75 1.00
SVR 0.81 0.79 0.64 32.36 0.70 (2)

Ensemble CART + GLR 0.74 0.96 0.76 39.53 0.91
CART + SVR 0.79 0.78 0.64 34.13 0.72 (3)
GLR + SVR 0.73 0.95 0.74 40.88 0.92
CART + GLR + SVR 0.77 0.91 0.73 40.10 0.86

Hybrid SFA-LSSVR 0.99 0.27 0.16 9.55 0.00 (1)

Note: The best performance measure in each category is given in bold and underlined; the overall performance ranking is indicated by an asterisk (�).
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Fig. 6. Modelling performance comparison.
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Table 7
Optimal values of C and r for ten folds.

SFA-LSSVR C r

Fold 1 2.04E+10 9.82E+03
Fold 2 2.74E+11 1.00E+04
Fold 3 3.65E+10 9.80E+03
Fold 4 1.38E+10 9.99E+03
Fold 5 4.28E+10 9.69E+03
Fold 6 2.49E+12 8.84E+03
Fold 7 3.21E+13 3.51E+01
Fold 8 6.44E+10 1.00E+04
Fold 9 8.27E+10 1.00E+04
Fold 10 8.92E+09 4.96E+03
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real values and the overall accuracy. These results confirm that the
hybrid model is superior to the single and ensemble models.

It is further concluded that, without the inclusion of the fine-
tuning parameters in the RBF kernel function, the SVR performs
poorly, with an MAPE of 32.36%. That is, proper tuning in the
parameter optimisation stage is essential when applying the SVR.
For example, in the SFA-LSSVR model, the optimisation for the
parameters C and r can substantially improve the predictive capa-
bility of the LSSVR. After the defined maximum number of itera-
tions (stopping criteria) is achieved, the firefly with the highest
light intensity is defined as the best solution.

Table 7 provides the optimal parameters of C and r for ten folds
of this dataset. For predicting reinforcement loads in GRS struc-
tures, the ranges of C and r obtained by the evolutionary model
were 8.92E+9–3.21E+13 and 3.51E+1–1.00E+4, respectively, from
the cross-fold validation. Therefore, for users who prefer not to
employ an optimisation algorithm, the possible default setting
for the LSSVR can be applied using the optimal range of values rec-
ommended in Table 7.
5.2. Discussion

After the validation and testing process, the evolutionary meta-
heuristic intelligence model developed to predict Tmax was exam-
ined through a comparison of the Tmax measured from a carefully
instrumented full-scale GRS wall conducted by Bathurst et al.
[60]. These new sample data for Tmax, which were not included
in the previous compiled database, were used to assess the accu-
racy of the proposed model in comparison with several conven-
tional prediction methods currently in use for research and in
practice to predict the reinforcement tensile loads within GRS
structures. The GRS wall was 3.6 m high and constructed using
six reinforcement layers at a spacing of Sv = 0.6 m and with a
wrapped around facing slope of x = 8�. The backfill, named RMC
(Royal Military College) sand, was a clean, uniform graded, beach
sand classified as poor sand according to the USCS. The backfill soil
had a unit weight of c = 16.7 kN/m3, a soil peak friction angle of
/tx = 39� (according to triaxial compression tests), and a /ps = 42�
(according to plane strain tests). The reinforcement was a
Table 8
Performance measures and improvements achieved by the proposed model.

Best AI models and empirical methods Performance measure

RMSE (kN/m) MAE (kN/m)

Rankine [10] 5.27 5.00
Coulomb [10] 2.79 2.64
Limit equilibrium [10] 1.12 0.81
K-stiffness [10] 1.11 1.05
SVR 2.47 0.73
CART + SVR 1.74 1.51
SFA-LSSVR 0.41 0.39
polypropylene (PP) geogrid with a total length of 2.52 m, measured
from the front wall face. The ultimate tensile strength was
Tult = 13 kN/m according to a wide-width strip tensile test (AST-
MD4595). Under these wall test conditions, the isochronous
load–strain responses of the reinforcement at 1000 h was
Tult = 7.7 kN/m and the stiffness at a 2% strain was J2% = 100 kN/m.

After the construction of the wall was completed, uniform sur-
charges were applied in increments of 10 kPa to a final loading of
80 kPa. The wall was extensively instrumented to measure its per-
formance at the end of the construction and during the staged, uni-
form surcharging; for instance, strain gauges and extensometers
were attached to the reinforcements to measure the reinforcement
strain in each layer. The measured maximum reinforcement strain
of each reinforcement layer was then multiplied by the reinforce-
ment secant stiffness (Tmax = J(e) � e), which was determined from
the isochronous load–strain response at the same strain level, to
estimate the reinforcement load. A total of 3 data points of Tmax

obtained from the third reinforcement layer under various sur-
charge levels (i.e., after construction, traffic loading, and large load-
ing) was selected for comparison. Notably, the third reinforcement
layer had the highest load, i.e., the maximum Tmax of all the rein-
forcement layers. The accurate prediction of the maximum of the
Tmax value is required because this value is conventionally used
to determine the reinforcement tensile strength against reinforce-
ment breakage for the internal design of the GRS wall.

Table 8 shows the results for the performance measures for the
new sample data and summarises the improvements achieved by
the proposed model across the reinforcement loads datasets.
Fig. 7 presents a performance comparison of the SFA-LSSVR model
and prior empirical methods used for predicting the maximum
reinforcement tensile load under three selected loading conditions,
including no surcharge (q = 0 kPa), traffic loading (q = 10 kPa), and
large-loading conditions (q = 50 kPa). The error bars in Fig. 7 repre-
sent ±1 standard deviation of the estimated Tmax to account for the
uncertainties of the strain measurements and the reinforcement
stiffness interpretation. All of the Tmax values for the current pre-
diction methods were reported by Yang et al. [10]. Notably, there
were no FE results reported by Yang et al. [10] for q > 40 kPa
because of numerical instability (i.e., the convergence problem)
in the computation. Therefore, FE data are not available for large-
loading conditions (q = 50 kPa).

The results in both Table 8 and Fig. 7 suggest that the SFA-LSSVR
model is characterised by the best prediction performance com-
pared to the individual models used in this study and the conven-
tional methods reported in the literature. The SFA-LSSVR model is
also capable of predicting Tmax accurately under large-loading con-
ditions, whilst the FE method failed to predict the Tmax under such
loading conditions. This comparison suggests the SFA-LSSVR is
superior to the FE method for large-loading conditions. Regarding
the comparison of the prediction performance of reinforcement
loads presented in Table 8, the magnitude of the improvement
attributed to the use of the SFA-LSSVR (in terms of the error rates,
i.e., RMSE) ranged from 63.61% to 92.30% and; thus, the SFA-LSSVR
Improvement by the SFA-LSSVR (%)

MAPE (%) RMSE MAE MAPE

157.81 92.30 92.18 91.45
82.98 85.48 85.17 83.74
21.44 63.74 51.62 37.08
32.91 63.61 62.72 59.02
18.25 83.58 46.19 26.07
44.49 76.65 74.07 69.68
13.49 – – –
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Fig. 7. SFA-LSSVR model and prior methods for predicting the Tmax under three selected loading conditions.
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performs better than reported for previously developed models
and the other models adopted in this study. The superior values
for the SFA-LSSVR confirm the efficacy and superiority of this evo-
lutionary metaheuristic regression model.
6. Conclusions and recommendations

This study evaluated the use of single prediction models (CART,
GLR, and SVR), their ensembles (CART + GLR, CART + SVR,
GLR + SVR, and CART + GLR + SVR), and an evolutionary metaheu-
ristic regression model (SFA-LSSVR) to analyse complex data for
reinforcement loads in GRS structures. The evolutionary methodol-
ogy developed in this study achieved a robust prediction model for
reinforcement loads with a high prediction accuracy. The evaluated
models were examined using a reliable database reported in the
literature.

Experiments further demonstrated that the SFA optimiser can
concurrently search and identify suitable parameters for the
LSSVR. The purpose of the SFA is to optimise the learning process
of the LSSVR to establish the regression function. This evolutionary
model is effectively operated by using smart components (i.e., a
chaotic map, an adaptive inertia weight and a Lévy flight) to tune
the standard FA parameters. The integration of the SFA and LSSVR
enhances the efficiency of the machine learner for solving complex
problems.

The accuracy of the proposed method was evaluated by com-
paring the measurements and prediction results to those for geo-
technical empirical methods. The analytical results demonstrate
that the SFA-LSSVR is superior and outperforms the other models
(Table 6) in terms of the values of R (0.99), RMSE (0.27 kN/m),
MAE (0.16 kN/m), and MAPE (9.55%). Notably, when including
additional collected data samples, the SFA-LSSVR model was char-
acterised by RMSE = 0.41 kN/m, MAE = 0.39 kN/m, and
MAPE = 13.49% (Table 8). The RMSE, MAE, and MAPE of the pro-
posed model were significantly better than those of the previous
models (with maximum improvements of 92.30%, 92.18%, and
91.45%, respectively).

Moreover, compared with the other regression models, the pro-
posed model provided a superior generalisation by applying a
cross-validation. The proposed hybrid approach can capture and
extract knowledge from historical data whenever the new data
are provided. Because of its high accuracy and robust output, deci-
sion-makers can use the approach to forecast undesirable perfor-
mance deviations or early warning of potential problems. The
proposed hybrid metaheuristic model can be used as an alternative
tool for obtaining fast and accurate predictions of the reinforce-
ment loads in GRS structures.
The applicability of the developed model is limited to GRS
structures with features within the ranges of the parameters for
the database of the case histories compiled in this study (Tables
2 and 3). For example, the developed model can only be applied
for GRS structures with a relatively simple geometry and backfilled
with granular soil, but the model is not valid for GRS structures
that having multi-tier configurations or are backfilled with fine-
grained cohesive soil.

Although an excellent prediction accuracy was achieved in this
study, several limitations can be considered as potential opportu-
nities for future improvements. First, the fine-tunings of the
parameters in each smart component of SFA were sub-optimal. A
proper search algorithm is required to determine an appropriate
range of the initial settings for the GRS data. Second, the computa-
tion time of the SFA was long and should be reduced by improving
the efficiency of the method. Third, the SFA was validated via five
benchmark functions in this study. Further research can calibrate
a greater number of benchmark functions (over 50 functions) by
expanding their dimensions to generalise the global optimisation
capability of the SFA

Regarding the implementation and use of the SFA-LSSVR model
practice, future studies can focus on the development of an evolu-
tionary metaheuristic expert system with a Windows or browser
interface to increase the ease of use by practitioners and to facili-
tate the application of the developed model to the design of GRS
structures.
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