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Abstract: The accuracy of prior theoretical and empirical models for predicting the shear strength of fiber-reinforced soil (FRS) is ques-
tionable because of the difficulty of using these simplified models to describe the complex mechanism of soil-fiber interaction. This study
compiled a large database of available high quality triaxial and direct shear tests on FRS documented in the literature from 1983 to 2015. The
database includes information on the properties of sand, fibers, soil-fiber interface, and stress parameters. After data preprocessing, data mining
technologies were employed to identify factors influencing shear strength and to predict the peak friction angle of FRS. The analysis techniques
included (1) classification and regression methods, i.e., linear regression (REG) analysis, classification and regression tree (CART) analysis,
a generalized linear (GENLIN) model, and chi-squared automatic interaction detection (CHAID); (2) machine learners, i.e., artificial neural
network (ANN) and support vector machine (SVM) and support vector regression (SVR); and (3) metaensemble models, i.e., voting, bagging,
stacking, and tiering. The analytical results indicated that fiber content, fiber aspect ratio, soil friction angle, and stress parameter had major
effects on FRS shear strength. The optimal model obtained after further model training, cross-validation, and testing was the Tiering
SVM-(SVR/SVR) method. The correlation coefficient (R) of the prediction values with the measured values in the database was 0.89, in-
dicating a strong association. The mean absolute percentage error (MAPE) was 3.27%, root mean square error (RMSE) was 1.98°, and mean
absolute error (MAE) was 1.07°. The overall improvement in performance measures was 9.31–79.50%, which was comparable to that of other
models reported in the literature. This study contributes to the domain knowledge by developing an effective artificial intelligence (AI) model
for predicting the peak friction angle of FRS. DOI: 10.1061/(ASCE)CP.1943-5487.0000595. © 2016 American Society of Civil Engineers.

Author keywords: Fiber-reinforced soil (FRS); Geosynthetics; Soil-fiber interaction; Peak shear strength; Data mining; Machine learning;
Metaheuristic computation.

Introduction

Natural earth materials (i.e., soils and rocks) are often combined
with artificial synthetic materials (or geosynthetics), such as geo-
textiles, geogrids, geomembranes, and geocomposites (Gray and
Ohashi 1983), to enhance the mechanical and hydraulic perfor-
mance of soil in geotechnical and geoenvironmental applications.
Soil reinforcement technology using geosynthetics is an attractive
and cost-effective means and has been widely applied to numer-
ous geotechnical projects in the past decades. In conventional
soil reinforcement techniques, continuous planar reinforcement
(e.g., geogrids and geotextiles) is oriented in a preferred direction,

usually perpendicular to the loading direction, to help stabilize
reinforced structures.

Reinforcement of soil by mixing it with randomly distributed
fibers is a promising alternative in projects involving stabilizing
thin soil veneers; repairing locally failed slope; improving the bear-
ing capacity of soft ground; strengthening soil in footings, pave-
ment, and earth retaining walls; enhancing soil piping resistance
in waterfront structures; increasing dynamic resistance to lique-
faction; reducing surficial soil erosion; or mitigating desiccation
cracking of compacted clay systems. Compared with planar rein-
forcement, fiber reinforcement is superior because fibers are not
easily damaged during construction. Additionally, a preferential
plane of weakness does not develop along the soil-planar rein-
forcement interface because the fibers are uniformly mixed with
soil.

Other advantages of using fibers for soil reinforcement include
the following: (1) fibers can be easily mixed with soil (Hejazi et al.
2012; Li et al. 2014); (2) incorporating the fiber affects the soil
behavior physically (not chemically), thus causing little negative
effect on the environment (Chauhan et al. 2008); (3) the fiber pro-
vides an isotropic shear strength increase (peak shear strength is
increased and post-peak shear strength loss is reduced) (Hejazi et al.
2012; Li et al. 2014; Maher and Gray 1990); and (4) the fiber in-
creases soil tensile strength, rendering soil desiccation cracking less
susceptible to weather influences (Hejazi et al. 2012).

Previous studies have investigated the mechanical behavior
of fiber-reinforced soil (FRS) (Kumar and Tabor 2003; Maher
and Gray 1990; Michalowski and Čermák 2003; Michalowski and
Zhao 1996; Mortazavian and Fatemi 2015; Ranjan et al. 1994;
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Shao et al. 2014; Yetimoglu and Salbas 2003) and proposed
theoretical and empirical models for estimating the shear strength
properties of FRS (Consoli et al. 1998; Michalowski and Čermák
2003).

Although these models are very convenient, their accuracy
is questionable because simplified models do not adequately
describe complex mechanisms of soil-fiber interaction. Specifi-
cally, simplified models do not consider soil-fiber interaction
factors and their nonlinear relationships with the shear strength
properties of FRS (Najjar et al. 2013). The preceding discussion
has prompted the current study in which an alternative to predict
the shear strength properties of FRS was proposed using data
mining techniques for constructing an artificial intelligence
(AI) model, thereby providing valid and reliable prediction
results.

AI-based approaches have attracted a great deal of scientific at-
tention and have been widely used in civil engineering (Alkroosh
and Nikraz 2011; Cao et al. 2015; Chou and Lin 2013; Chou et al.
2016; Chou and Pham 2013, 2015; Chou and Tsai 2012; Das 2012;
Park and Kim 2011; Samui 2013; Tinoco et al. 2014). Various
supervised AI techniques [e.g., artificial neural network (ANN),
classification and regression tree (CART), chi-squared automatic
interaction detector (CHAID), linear regression (REG), generalized
linear (GENLIN) models, and support vector machine (SVM)]
are typically used individually to construct single models as the
benchmark models (Wu et al. 2008). The AI-based approaches
have been confirmed as the potential solutions for solving real-
world engineering problems (Cao et al. 2015; Chou and Lin 2013;
Chou et al. 2016; Chou and Pham 2013, 2015; Chou et al. 2015;
Wei et al. 2008).

To demonstrate the applicability of AI models and their meta-
ensembles in geotechnical engineering, this study compiled avail-
able high quality data for triaxial and direct shear tests of FRS that
were documented in the literature during 1983–2015. The database
included the following: soil parameters (soil type, soil classifica-
tion, mean particle size, dry unit weight, and soil friction angle),
fiber parameters (fiber type, fiber dimension, gravimetric and
volumetric fiber content, and specific gravity), soil-fiber interface
parameter (soil-fiber interface friction angle or soil-fiber interface
coefficient) and stress parameters (confining pressure and normal
stress).

Data mining, which is an effective data-driven process, was
performed in the compiled database by using the recommended
AI techniques, such as ANN, CART, CHAID, REG, GENLIN,
and SVM models. The prediction performance of the proposed
model was also enhanced by incorporating an optimal ensemble
method that applied a series of metaheuristic-mining technolo-
gies, i.e., voting, bagging, stacking, and tiering. The prediction
accuracy of the theoretical and empirical models and AI mod-
els was evaluated and compared. By validating the effective-
ness and accuracy of the proposed AI models for predicting
the peak shear strength properties of FRS, this study facilitates
the use of fiber reinforcement in widely varying geotechnical
projects.

The rest of this paper is organized as follows. This paper first
reviews the functional mechanisms of FRS and methods used to
estimate its shear strength. Then the research and evaluation meth-
odologies are presented, and the data collection process and the
compiled database are described. After data preparation, this study
demonstrates the streamflow of the implemented AI models. The
prediction results of the models are compared with those of theo-
retical and empirical methods reported in the literature. Finally, the
concluding remarks and recommendations are provided in the last
section.

Literature Review

Functional Mechanism of FRS

Fiber reinforcement is a technique in which randomly distributed
natural or synthetic fibers are mixed with soil as uniformly as pos-
sible to improve the mechanical behavior of soil. Essentially, ran-
dom discrete flexible fibers provide reinforcement by mimicking
the behavior of plant roots holding the soil.

The many advantages of natural fibers (e.g., reed, coconut, sisal,
palm, jute, flax, bamboo, straw, and vine) are their low cost, bio-
degradable nature, limited environmental effect, lightness, and
favorable interface characteristics (e.g., roughness and angles).
Natural FRS is believed to play a key ecology–composite role in
civil engineering (Hejazi et al. 2012). However, the disadvantages
of natural fibers are that their quality and durability depend on the
natural environment and that the hydrophilic characteristic of these
fibers can reduce the reinforcing effects.

The advantages of commonly used synthetic fibers, such as
polypropylene (PP), polyester (PE), polyethylene terephthalate
(PET), polyvinyl alcohol (PVA), nylon, glass, and steel, are their
high strength, high durability, easily controllable quantity and qual-
ity, and chemical, environmental, and climate resistance (Hejazi
et al. 2012). Synthetic fibers are resistant to biodecomposition and
chemical corrosion. These fibers prevent soil shrinkage and are less
susceptible to weather and chemical changes. The most widely
used synthetic fiber is PP.

An analysis of the mechanical behavior of FRS by Santoni et al.
indicated that reed fibers are superior to glass fibers because natural
fibers such as reed fibers have favorable interface characteristics
(e.g., roughness and angles) (Santoni et al. 2001). Al-Refeai also
indicated that PP fiber was superior to glass fiber and that the
optimal length for fiber reinforcement was approximately 76 mm
(Al-Refeai 1991). Because natural fibers decompose easily, Ahmad
et al. used a waterproof coating containing coir, fly ash, and fibers
to reinforce silty sand (Ahmad et al. 2010). They concluded that the
mechanical characteristics of the waterproofed fibers were superior
to those of the fibers without the waterproof coating.

Sivakumar Babu et al. also reported that coir fiber reinforcement
increased the friction angle of reinforced soil (Sivakumar Babu et al.
2008). Anggraini et al. used tensile and unconfined compression
tests to study the effects of adding coir fiber and lime to soft soil
and showed that the reinforcing effects of fiber and lime depended
considerably on the optimal moisture content (Anggraini et al.
2015). Anggraini et al. also reported that a fiber content of 1% in-
creased the friction angle of the soil.

However, Gray and Al-Refeai argued that fiber does not affect
the behavior of soil with a fiber content >2% (Gray and Al-Refeai
1986). Kumer and Tabor determined that, when nylon fiber is used,
the increase in residual shear strength is greater than the increase
in peak shear strength (Kumar and Tabor 2003). Consoli et al. per-
formed triaxial tests of PP fiber–reinforced cement sand. The tests
revealed that the PP fiber enhanced peak shear strength and
changed the mechanical behavior of the cement sand (Consoli et al.
2004). In Michalowski and Zhao, triaxial tests of soil reinforced
with steel fiber showed that steel fiber enhanced the peak shear
strength of the soil (Michalowski and Zhao 1996).

Mortazavian and Fatemi further reviewed studies of fatigue
behavior in short synthetic fibers and reported that the fatigue
behavior of fibers is primarily affected by moisture content and
temperature and that fiber fatigue increases with its aspect ratio
(Mortazavian and Fatemi 2015). In addition to discrete fibers,
the effect of continuous fibers on soil shear strength improvement
has also been investigated (Chen et al. 2011). The test results

© ASCE 04016036-2 J. Comput. Civ. Eng.

 J. Comput. Civ. Eng., 04016036 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

N
at

io
na

l T
ai

w
an

 U
ni

ve
rs

ity
 o

f 
Sc

i a
nd

 T
ec

h 
on

 0
6/

07
/1

6.
 C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.



showed that, like discrete fibers, continuous fibers improve the
shear strength of soil in both peak and residual states. The orien-
tation of continuous fiber appears to have significant influence on
the reinforcing effect.

In summary, the discrete characteristics of fibers facilitate uni-
form mixing of soil with fibers, provide an isotopic increase in
shear strength to soil-fiber composite, and avoid or delay formation
of localized shear plane. Hence, fibers enhance the stability of geo-
technical structures.

Methods of Estimating FRS Shear Strength

Peak shear strength values obtained in laboratory tests of FRS or
predicted by theoretical or empirical models were used to design
geotechnical structures involving FRS. In the industry, however, the
need for testing FRS specimens has discouraged the development
and implementation of fiber reinforcement because geosynthetics
manufacturers have to deal with the properties of composite soil
materials rather than focus on the properties of fiber products,
which prevents the proper characterization of the fibers’ contribu-
tion and the optimization of fiber products (Zornberg 2002). As a
result, the theoretical or empirical models, considering the soil and
fiber separately, gain more popularity in FRS peak shear strength
prediction for design.

Michalowski and Čermák (2003) and Zornberg (2002) proposed
two different models for predicting the peak shear strength of FRS
as a function of the fiber properties, the peak shear strength of soil,
and the shear strength of the fiber-soil interface. These models are
considered the best available approaches and offer the engineers a
simplified and straightforward method to predict the shear strength
of FRS. In addition, although FRS could fail attributable to the
fiber-slip and fiber-rupture, depending on fiber properties and soil
stresses, the fiber-slip is considered as the governing failure mode
for FRS in the stress range for most engineering practical applica-
tions. Therefore, the present study including the theoretical or
empirical models introduced next and the proposed AI models dis-
cussed subsequently focuses on the shear strength prediction for
FRS in the fiber-slip range.

Michalowski and Čermák proposed a theoretical model based
on the concept of energy dissipation to estimate the peak friction
angle of discrete randomly distributed FRS under axisymmetric
loading conditions (Michalowski and Čermák 2003). Based on
the approaches used to develop the model relationships, the
Michalowski and Čermák model is referred to as the energy-based
model. The model calculates a macroscopic internal friction angle,
which is equivalent to the peak friction angle of FRS (ϕFRS)

ϕFRS ¼ 2tan−1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XfηfM tan δ þ 6Kp

6 − XfηfM tan δ

s
− π
2

ð1aÞ

where

M∶Kp sin θo ð1bÞ

Kp∶tan2
�
45þ ϕ

2

�
ð1cÞ

θo∶tan−1
ffiffiffiffiffiffi
Kp

2

r
ð1dÞ

where ϕFRS = peak friction angle of FRS; Xf = volumetric fiber
content; ηf = fiber aspect ratio; ϕ = friction angle of soil; and
δ = interface friction angle between the sand and fiber.

Zornberg developed a semiempirical model that considered the
bilinear shear strength envelope of FRS (Zornberg 2002). In the
Zornberg model, the fiber-induced tensile force on failure surface
is added to the soil shear strength. The Zornberg model is renowned
as a discrete model. For the cases in which fiber-slip mode domi-
nates, the ϕFRS is calculated as

ϕFRS ¼ tan−1½ð1þ α · ηf · Xf · ci;φÞ · tanϕ� ð2Þ
where ηf = fiber aspect ratio; Xf = volumetric fiber content; ci;ϕ =
coefficient of interaction for the friction angle component
(tan δ= tanϕ , where δ = sand-fiber interface friction angle); and
α = empirical coefficient that accounts for the orientation and
efficiency of mixing of the fibers. If the fibers are uniformly dis-
tributed and 100% efficient, then α is equal to 1; otherwise, α < 1.0;
ϕ = friction angle of soil.

Najjar et al. performed a statistical analysis to quantify uncer-
tainies in models for predicting the shear strength of fiber-
reinforced sand (Najjar et al. 2013). The previously discussed
models for predicting sand-fiber shear strength were evaluated.
Statistical results showed that the energy-based model underesti-
mated the measured friction angle by an average of approximately
10% whereas the discrete model overestimated the friction coeffi-
cient by 6%, with associated coefficients of variation on bias values
of 0.20 and 0.17, respectively. Najjar et al. reported that the discrep-
ancy occurs because some factors (e.g., fiber-grain scale effect and
sand grain size) known to affect the behavior of FRS are not
included in the previously discussed models. Additionally, these
models do not consider the nonlinear relationship between the
shear strength properties of FRS and the fiber contents. The accu-
racy of these two models is also evaluated using the database com-
piled in this study. Their accuracy is then compared with that of the
proposed AI models.

Artificial Intelligence in Geotechnical Engineering

AI technology has recently been used to solve geotechnical engi-
neering problems in various contexts. For instance, Goh applied
values for standard penetration tests and the parameters of soil
and earthquakes in ANNs for investigating the conditions of soil
liquefaction potential and the relationship between soil parameters
and earthquakes and showed fine sand content and standard pen-
etration test values to be the key soil parameters (Goh 1994). Samui
used a multivariate regression model to analyze slope stability
(Samui 2013). Park and Kim adopted ANNs to predict the strength
of lightweight reinforced soil and showed that the major influenc-
ing factors were cement content, moisture content, and air content
(Park and Kim 2011).

Alkroosh and Nikraz simulated the subsidence of pile founda-
tions under loading in cone penetration tests (Alkroosh and Nikraz
2011). Experimental applications of ANN for predicting the axial
settlement of pile foundations embedded in sand showed that the
models accurately predicted the nonlinear behaviors of soil under
loading. Tsompanakis et al. used ANN to simulate the nonlinear
response of a levee under seismic loadings to reduce the engineering
costs of predicting earthquakes on a massive scale (Tsompanakis
et al. 2009). Benardos and Kaliampakos used ANN to obtain the
advance speed and related parameters of a tunnel-boring method
(Benardos and Kaliampakos 2004). The obtained data were then
used to facililate completion of the engineering project.

In Goh et al., a Bayesian neural network used to analyze the
undrained side resistance of drilled shafts showed that the model
not only made accurate predictions, it also provided information
on the characteristic prediction errors related to uncertainty among
the parameters of the data (Goh et al. 2005). Alkroosh and Nikraz
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used a gene-expression-programming (GEP) model to investigate
the correlation between pile axial capacity and data obtained in
cone penetration tests. Simulations obtained a maximal coeffi-
cient R value of 0.96 between the pile axial capacity predicted
by the GEP model and the actual pile capacity (Alkroosh and
Nikraz 2011).

With advancement of technology and increasing requirements
for precision in geotechnical engineering, experts and scholars
have attempted to optimize AI models and have proposed related
optimizing technologies. For example, Armaghani et al. used a
hybrid model that combined particle swarm optimization and
ANN (PSO-ANN) to determine a related index for rock (Jahed
Armaghani et al. 2014). The model obtained a maximal correlation
value of 0.944 between the predicted and actual values of rock
shear parameters. In Yu et al., an ANN model was combined with
an evolutionary algorithm (Yu et al. 2007). An intelligent displace-
ment back-analysis method was then used to explore earth-rockfill
dams, demonstrating that the new method could replace the finite
element analysis method in solving large-scale nonlinear engineer-
ing problems.

Chou et al. combined a smart firefly algorithm, based on swarm
intelligence, and least squares support vector regression (SVR) to
simulate the reinforcement tensile loads of geosynthetic-reinforced
soil retaining walls. This metaheuristic optimized regression model
accurately predicted the mobilize reinforcement tensile loads under
working stress and under severe deformation. The analysis results
revealed that the prediction accuracy of this model was superior to
that of the single and composite models: the maximal coefficient R
between the predicted and actual tensile loads achieved 0.99,
whereas the mean absolute percentage error (MAPE) was lower
than 10% (Chou et al. 2015).

In summary, AI has great potential use as a prediction tool in
geotechnical engineering. The following section summarizes cur-
rent prediction methods and describes the innovative technology
used in this study to create metaensembles that improve accuracy
in predicting FRS shear strength.

Research Method

The AI technologies used in this study included classification and
regression methods, machine learning, and metaensemble models.
Next, prediction techniques, validation and evaluation methods are
discussed in detail.

Classification and Regression Methods

REG
The minimum square function of REG model (IBM 2009) estab-
lishes relationships between one or more explanatory variables and
the dependent variables. That is, it explains the correlation among
the varaibles and the prediction problems (Sykes 1993). In practice,
changes in the dependent variable Y are often affected by the char-
acteristic variable X. A general equation is as follows:

Yi ¼ β0 þ β1X1i þ β2X2iþ · · · þβpXpi þ ei ð3Þ
where Yi = dependent variable; X1i;X2i; : : : ;Xpi = explanatory
variables; β0 = constant variable; and β1; β2; : : : ; βp = regression
coefficients; and ei is the error term.

CART
The CART is a simple and highly efficient prediction model based
on empirical learning. If the target variable is a categorical variable,
then the model is called a classification tree; if the target variable is

a continuous variable, then the model is called a regression tree.
The model is presented in a tree structure. Each internal (nonleaf)
node represents a test of an attribute, each branch represents the test
result, and each leaf (or terminal) node has a class label and class
result (IBM 2009; Timofeev 2004).

The CART model performs classification through repeated op-
erations. The tree is “pruned” to minimize total error, which opti-
mizes the prediction accuracy of the tree by minimizing the number
of branches. The CART tree is branched and split according to the
Gini index (Timofeev 2004). The formulas are as follows:

gðtÞ ¼
X
j≠i

pðjjtÞpðijtÞ ð4Þ

pðjjtÞ ¼ pðj; tÞ
pðtÞ ð5Þ

pðj; tÞ ¼ pðjÞNjðtÞ
Nj

ð6Þ

pðtÞ ¼
X
j

pðj; tÞ ð7Þ

where i and j = categorical variables in each item; Nj (t) = recorded
number of Node t in Category j; and Nj = recorded number of the
root node in Category j.

CHAID
The CHAID is an efficient statistical model or a decision tree pro-
posed by Kass et al. in 1980 (IBM 2009; Kass 1980). To establish a
decision tree, the CHAID primarily uses the chi-squared test for
determining the optimal splits. Merging and splitting are performed
continuously until the grouped results show no substantial differ-
ences or until the number of sample units included in the subgroups
is too small to enable a meaningful estimation of probability. The
CHAID model also uses various methods to measure different data
types. For example, continuous data are examined through F tests,
and categorical data are measured through the CHAID.

GENLIN
The GENLIN regression model proposed by Nelder and
Wedderburn in 1972 (IBM 2009; Nelder and Wedderburn 1972)
has a wider scope and is more realistic compared with the REG
model. In addition to statistics with normal distributions, GENLIN
model can be used for statistical analyses of various distributions,
e.g., in binary-logistic and log-linear models. The function used
to establish the relationship between X (input) and Y (output) in
GENLIN model is defined as follows:

g½EðyÞ� ¼ ðX · βÞ þO ð8Þ
where g = link function; EðyÞ = expected value of y; β = regression
coefficient; and O = offset variable.

Machine Learning

ANN
The ANNs are a family of information-processing models inspired
by biological neural networks; the structure of an ANN is analo-
gous to that of the human brain, in which the neurons are intercon-
nected through synapses (Das 2012). This virtual system receives
multiple inputs and uses them to make predictions (IBM 2009). The
processing element, which is called a “neuron,” has the following
characteristics: (1) a filtering function to ensure that incomplete
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data inputted to a specific node do not substantially affect the net-
work; and (2) adaptive learning ability to adjust the connective
weight between the nodes.

ANNs have multiple-input, multiple-output systems and a basic
structure that includes an input layer, a hidden layer, and an output
layer. When a processing element sends an output to another
processing unit, the output is received as an input by the second
element. This mapping relationship in the network model can be
expressed with the following equation:

αi ¼ σ

�X
j

ωijoj

�
; σðxÞ ¼ 1

1 − e−x ð9Þ

where αi refers to ANN activities; ωij = weight connecting two
neurons; oj = output or an output signal of the ANN; x = activation
of ith neuron; and σðxÞ = activation function of the ANN that
facilitates transformation of inputs into outputs by multiplying
the inputs from the processing elements by the corresponding
weights.

SVM and SVR
The SVMs are supervised learning models that were first proposed
by Vapnik (1995). The SVMs use a straight line or hyperplane for
classification. A SVM model is used when the target variable in-
volves categorical data; conversely, an SVR model is used when
the target variable involves continuous data (Tinoco et al. 2014).
The classifier can be described as

fðxÞ ¼ ω · ϕðxÞ þ b ð10Þ

ω ¼
Xr

i

yiαiϕðxiÞ ð11Þ

where ω = weight vector representing the flatness of fðxÞ in the
high-dimensional space; b = parameter of the model; and ϕ =
high-dimensional feature space representing the nonlinear mapping
function.

An input data point x can be represented as ϕðxÞ in the high
dimensional space. The computational expense of ϕðxÞ · ϕðxiÞ is
reduced by using a kernel function (Mathur and Foody 2008).
Thus, the classification decision function becomes

fðxÞ ¼ sign

�Xr

i

αiyiKðx; xiÞ þ b

�
ð12Þ

where for each of r training cases there is a vector (xi) that repre-
sents the spectral response of the case together with a definition of
class membership (yi); αi (i ¼ 1; : : : ; r) are Lagrange multipliers;
and Kðx; xiÞ is the kernel function.

SVR is a variation of SVM. The SVR first uses a fixed mapping
procedure to map the SVR input to an n-dimensional feature space.
Nonlinear kernel functions are then fit to the high-dimensional fea-
ture space, in which input data are easier to separate compared with
input data in the original input space. The linear model in the fea-
ture space, fðx;ωÞ, can be expressed by Eq. (13)

fðx;ωÞ ¼
Xm
j¼1

wjgjðxÞ þ b ð13Þ

where gjðxÞ = set of nonlinear transformations; and b = bias term.
Moreover, estimation quality is measured by a loss function Lε ¼
½y; fðx;ωÞ� where

Lε ¼ ½y; fðx;ωÞ� ¼
(
0 if jy − fðx;ωÞj ≤ ε

jy − fðx;ωÞj − ε otherwise

ð14Þ

The SVR uses the ε-insensitive loss function to identify the min-
imal dimensional space kωk2 and to reduce the model complexity.
This function is introduced by including nonnegative slack varia-
bles, ξi and ξ�i , where i ¼ 1; : : : ; n is used to identify training sam-
ples from the ε-insensitive zone. The SVR can thus be formulated
as a minimized version of the following function:

min
1

2
kωk2 þ C

Xn
i¼1

ðξi þ ξ�i Þ ð15Þ

subject to

8><
>:

yi − fðxi;ωÞ ≤ εþ ξ�i
fðxi;ωÞ − yi ≤ εþ ξ�i
ξi; ξ�i ≥ 0; i ¼ 1; : : : ; n

This optimization problem can be transformed into a dual
problem, which is solved by

fðxÞ ¼
XnSV
i¼1

ðαi − α�
i ÞKðxi; xÞ subject to 0 ≤ α�

i ≤ C; 0 ≤ αi ≤ C

ð16Þ
where nSV = number of support vectors. The kernel function is

Kðx; xiÞ ¼
Xm
i¼1

giðxÞgiðxiÞ ð17Þ

During training, kernel functions (i.e., linear, radial basic,
polynomial, or sigmoid function) are used to identify support
vectors along the function surface. This study used the radial
basis function (RBF) [i.e., Kðx; xkÞ ¼ expð−kx − xkk2=2σ2Þ] for
the SVM or SVR as the kernel function.

Metaensemble Models

To obtain improved prediction performance compared with the
previously discussed baseline models, this study proposes the fol-
lowing metaensemble models.

Voting
Fig. 1(a) shows that the voting model sets the mean input obtained
from several models as the predictive value. Optimal heterogeneous
models are then combined into ensemble models for making
predictions. The method generally enhances prediction accuracy
(Prodromidis and Stolfo 1999).

Bagging
Fig. 1(b) depicts the bagging process, in which samples randomly
drawn from the bootstrapped replica in the Group K data set are
combined to form homogenous prediction models to obtain a mean
value of voting output (Austin et al. 2013).

Stacking
Stacking enables multistage predictions. Stage 1 is established first,
comprising the baseline models. The prediction results obtained
from these models (Yi¼1∼n) then serve as input X of Stage 2 for
making further predictions (Ypred), as shown in Fig. 1(c) (Wolpert
1992).
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Tiering
Tiering involves analyzing data in two tiers. The first tier uses
classification models to make predictions; the second tier evenly
divides the data into k classes according to the standard value
(T value). The data can be divided into 2, 3, : : : or k classes,
Fig. 1(d) shows that the regression models are then used to make
predictions. The data are divided according to the T value (Chou
and Tsai 2012): the general equation is T ¼ Ymax þ Ymin=k. For
example, if the total data are divided into three classes, then T ¼
Ymax þ Ymin=3, where Yact ≤ T belongs to Class 1, T < Yact ≤ 2T
belongs to Class 2, and 2T < Yact belongs to Class 3.

Stratified Cross-Validation

The stratified cross-validation procedure is applied when com-
paring prediction accuracy among two or more models. This
method divides randomly drawn data samples into training sam-
ples and testing samples by splitting the samples into k mutually
exclusive subsets. Each time, k-1 subsets serve as the training
samples, and the remaining subsets serve as test samples. This
model validation process is repeated k times to reduce errors dur-
ing random sampling. Kohavi demonstrated that a k of 10 indi-
cates analytical validity, computational efficiency, and optimal
deviation (Kohavi 1995). Therefore, the performance of each pro-
posed model was evaluated in terms of average prediction error
in the 10 groups.

Evaluation of Prediction Accuracy

This study used four commonly used statistical methods to com-
pare the error rate between actual and predicted values. The four
methods are the correlation coefficient (R), MAPE, root mean
square error (RMSE), and mean absolute error (MAE). The R is
the correlation between two items: an R that is close to 1 indicates
that the model has a high goodness of fit. Similarly, low MAPE,
RMSE, and MAE values indicate a low rate of error in the model
predictions. To evaluate the overall prediction performance of the
models, averaged normalization was used to obtain a synthesis in-
dex (SI) for all evaluation principles. The evaluation methods are
explained as follows.

Correlation Coefficient
The statistical index that shows the linear correlation between two
variables is called R. The R values, which are between −1 and þ1,
are calculated as follows:

R ¼ n
P

n
i¼1 yi × pi −P

n
i¼1 yi ×

P
n
i¼1 piffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n ×
P

n
i¼1 y

2
i − ðPn

i¼1 yiÞ2
p

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n ×

P
n
i¼1 p

2
i − ðPn

i¼1 piÞ2
p

ð18Þ

where pi = predicted value; yi = actual value; and n = number of
samples.
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Fig. 1. Metaensemble methods: (a) voting; (b) bagging; (c) stacking; (d) tiering
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The R is interpreted as follows: If R > 0, then the two variables
are positively related; if R < 0, then the two variables are negatively
related.

MAPE
The MAPE is the index typically used to evaluate the accuracy of
prediction models. The closer MAPE is to 0, the better the predic-
tion results achieved by the model. When the MAPE is lower than
10%, the model is highly accurate in its efficacy

MAPE ¼ 1

n

Xn
i¼1

����pi − yi
yi

���� ð19Þ

RMSE
The RMSE represents the dispersion of errors by a prediction
model, i.e., the prediction accuracy of the model

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

n
i¼1 ðpi − yiÞ2

n

r
ð20Þ

MAE
The MAE is the mean absolute difference between the prediction
and the actual value; therefore, the unit of MAE is the same as that
of the measurement

MAE ¼
P

n
i¼1 jpi − yij

n
ð21Þ

SI
The performance measures (discussed in the previous sections)
were synthesized by using the following equation to normalize the
average of the error measurements and calculate the SI. The SI
ranges between 0 and 1; an SI close to zero indicates an accurate
model

SI ¼ 1

m

Xm
i¼1

�
Pi − Pmin;i

Pmax;i − Pmin;i

�
ð22Þ

where Pi = ith averaged performance measurement; Pmin;i =
minimum value of the ith performance measure; Pmax;i = maximum
value of the ith performance measure; and m = number of evalu-
ation methods.

Database

This study compiled high-quality data for triaxial and direct shear
tests of FRS reported in the literature during 1983-2015. Statistical
analyses of the compiled data showed that 63.3% of the studies
examined the behavior and failure mechanisms of FRS (Consoli
et al. 2004, 2005, 2007, 2009b; Freitag 1986; Gray and Al-Refeai
1986; Gray and Ohashi 1983; Hejazi et al. 2012; Ibraim and
Fourmont 2007; Li and Zornberg 2013; Loehr et al. 2005; Maher
and Gray 1990; Michalowski and Zhao 1996; Nataraj and McManis
1997; Ranjan et al. 1994; Shao et al. 2014; Sivakumar Babu et al.
2008; Yetimoglu and Salbas 2003; Zornberg 2002), 20% developed
models for predicting shear strength properties of FRS (Consoli et al.
2009b; Maher and Gray 1990; Najjar et al. 2013; Ranjan et al. 1996;
Sadek et al. 2010; Santoni et al. 2001), and the remainder evaluated
whether adding cement improved the shear stregnth of FRS (13.3%)
(Ahmad et al. 2010; Chauhan et al. 2008; Consoli et al. 1998,
2009b; Kaniraj and Havanagi 2001) and documented practical
applications of FRS on geotechnical engineering projects (3.3%)
(Santoni et al. 2001).

This study analyzed the following parameters, which are known
to affect FRS shear strength. Ibriam and Fourmont performed direct

shear tests to study the mechanical response of fiber-reinforced fine
sand (Ibraim and Fourmont 2007). Factors including confining
pressure, types of fibers and their physical properties (e.g., density,
length, aspect ratio, orientation of alignment), and soil properties
are considered in their study. Consoli et al. (2009b) used triaxial
tests to investigate how addition of cement affects fiber-reinforced
sand. The control factors were the type of the soil, the specific grav-
ity of the soil, the coefficient of uniformity for the soil, the length of
the fiber, the width of the fiber, and the specific gravity of the fiber.

Yetimoglu and Salbas also performed direct shear tests to inves-
tigate the reinforcing effect of discrete fibers (Yetimoglu and Salbas
2003). The test factors included the strength, size, and density of
the fiber and the physical properties of the soil. Sivakumar Babu
et al. considered factors including fiber length, diameter, fiber con-
tent, soil type, dry unit weight, specific gravity, and friction angle
of soil in their study. Table 1 shows the parameters considered in
this study after integrating the influential factors according to the
literature (Ahmad et al. 2010; Al-Refeai 1998, 1991; Chen 2007;
Consoli et al. 1998, 2004, 2007, 2009a; Gray and Al-Refeai 1986;
Gregory 2006; Ibraim and Fourmont 2007; Li and Zornberg 2013;
Maher and Gray 1990; Michalowski and Čermák 2003; Michalowski
and Zhao 1996; Nataraj and McManis 1997; Sadek et al. 2010; Shao
et al. 2014; Sivakumar Babu et al. 2008; Yetimoglu and Salbas 2003):
soil parameters (soil type, soil classification, mean particle size, dry
unit weight, soil friction angle), fiber parameters (fiber type, fiber
dimension, gravimetric and volumetric fiber content, and specific
gravity), soil-fiber interface parameter (soil-fiber interface friction
angle or soil-fiber interface coefficient) and stress parameters (con-
fining pressure or normal stress).

Data reported in previous FRS-related studies were compiled
using two different methods, depending on the type of reported
documents. Method 1 was directly recognizing the parameter val-
ues in the relevant tables and in-text descriptions; method 2 was
calculating the friction angle values of FRS from the reported test
results (stress-strain curves in triaxial tests or stress-displacement
curves in direct shear tests) using Mohr-Coulomb failure criteria.
For FRS specimens that showed ductile (strain-hardening) behavior
(i.e., the stress-strain curve did not have a definite failure), the peak
shear strength was defined at an axial strain of 15% for calculating
the friction angle of FRS.

Of the 316 total data entries collected from 20 publications, 16
entries were excluded from the analysis because they did not have a
complete set of reliable input parameters. Therefore, the total num-
ber of data entries used in this study was 300. Table 2 presents the
detailed information of compiled database of tests conducted on
fiber-reinforced sand.

Establishing the AI Models

The multifunctional data-mining analyzer of the IBM SPSS Mod-
eler was used to ensure accurate prediction models. Although the
software provides an easily used platform for developing basic AI
models, advanced techniques such as the metaensemble models
proposed in this study are quite customized based on the novelty
of the experienced users. A k-fold cross-validation procedure was
used to classify the data into training and test subsets. The follow-
ing section explains the processes for constructing the baseline and
metaensemble models. Table 3 shows the default parameters for
these models.

Baseline Model Streams

When the data in the training subset were trained, the prediction
model (i.e., intelligent golden brick) obtained from the training

© ASCE 04016036-7 J. Comput. Civ. Eng.

 J. Comput. Civ. Eng., 04016036 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

N
at

io
na

l T
ai

w
an

 U
ni

ve
rs

ity
 o

f 
Sc

i a
nd

 T
ec

h 
on

 0
6/

07
/1

6.
 C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.



was placed in the data of the test subset. Fig. 2 shows that the test
results were then exported and evaluated by using various methods
to measure the prediction error for the model.

Modeling Stream of Voting Method

The intelligent golden brick prediction model obtained after train-
ing was combined with the bagging method (K ¼ 10). The modi-
fied results were then added to the test subset, and the test results
were exported. The error-measuring methods of the model’s pre-
dictions were also employed for the assessment (Fig. 3).

Modeling Stream of Bagging Method

First, data in the training subset were randomly drawn from a boot-
strapped replica and used to train the prediction models (i.e., ANN,
CART, CHAID, GENLIN, REG, and SVR). The homogenous
intelligent golden bricks were then combined to export the test
results. Fig. 4 shows the error-measuring methods that were then
used to assess the prediction accuracy of the model.

Modeling Stream of Stacking Method

This method was analyzed in two stages. In Stage 1, data in the
training subset were substituted into the regression model (Step 2)
to build a prediction model or intelligent golden brick. The golden
brick was then used in the training subset for testing (Step 3); the
prediction results obtained in Stage 1 were then used as inputs for
Stage 2. In Stage 2 (Step 4), the regression model was again used to
build prediction models. When the intelligent golden brick built in
Stage 1 was placed in the test subset (Step 5), Stage 2 was stacked
on the golden brick built in Step 4 for testing (Step 6). Finally, the
metaheuristic prediction results were exported. Fig. 5 shows the
modeling stream used to measure the prediction accuracy of
the stacking method.

Modeling Stream of Tiering Method

First, the data in the database were recoded into specified k classes
(Class 1, 2, : : : , k). The data were then randomly divided into
training and test subsets. Classification-regression models were
then established for each of the k classes. In Tier 1, the classifica-
tion model (SVM) was used to build and train the prediction model

(i.e., intelligent golden brick of the classification type). In Tier 2,
the regression model was then used to establish the prediction
model (i.e., intelligent golden brick of the regression type). Finally,
the golden bricks obtained by training were placed in the test subset
to perform tests and export the results. Fig. 6 shows the tiering
stream used to measure the prediction accuracy of the models.

The tiering method divided the data into k classes according to
their attributes. The results were not exported until a weighted aver-
age of the prediction performance, based on the actual distribution
of the data, had been calculated. The following sample was dem-
onstrated using R values in two-class tiering: the prediction perfor-
mance value R of the first class was 0.93, and that of the second
class was 0.69. The error evaluation weighting was calculated using
the following steps: [(250 entries of data in the first class/300 en-
tries of data in total) × R (0.93)] + [(50 entries of data in the second
class/300 entries of data in total) × R (0.69)]. The overall R value
of two-class tiering (0.89) was then obtained. Table 4 shows the
results obtained by other error evaluation methods, which were per-
formed similarly.

Evaluation of Prediction Models

This section discusses and evaluates the prediction accuracy of the
models. Data were categorized into three groups so that the predic-
tion models proposed in this study (i.e., baseline and metaensemble
models) could be compared with theoretical and empirical models
proposed in previous studies. Group 1 includes the whole data set
of FRS including with all parameters presented in Table 1. Thus,
Group 1 consists of 300 samples with 15 inputs.

Consisting of inputs used in the energy-based model [Eq. (1a)]
proposed by Michalowski and Cermak (2003), Group 2 considers
four inputs including: fiber aspect ratio, ηf (¼ Lf=Df); soil friction
angle, ϕ; fiber-soil interface friction angle, δ; and volumetric fiber
content. Xf . Similarly, Group 3 only includes factors used in the
discrete model [Eq. (2)] proposed by Zornberg (2002): soil friction
angle, ϕ; fiber aspect ratio, ηf; volumetric fiber content, Xf; and
soil-fiber interface friction coefficient, ci;ϕ. In the discrete model,
the empirical coefficient (α) values were assumed to be 1.0 and 0.5
to represent the maximum and medium values, respectively, for
fiber uniformity and efficiency.

The theoretical and empirical models [in Eqs. (1a) and (2)]
were developed exclusively for FRS, in which the failure mode is

Table 1. Summary of Parameters Considered in This Study

Type of variable Category Parameter Minimum Maximum

Input variable Fiber Fiber type Polypropylene/polyester/
polyamide/steel/glass/coir/palm

Fiber length Lf (mm) 6 51
Fiber diameter Df (mm) 0.01 1.25
Volumetric content Xf (%) 0.17 5.53
Gravimetric content Wf (%) 0.10 6.55
Fiber specific gravity Gs;f 0.58 7.85

Soil Classification SP/SW
Soil type Fine sand/medium sand/medium

dune/medium mortar/coarse sand
Mean particle size D50 (mm) 0.09 1.45

Friction angle ϕ (°) 26.4 43.0
Cohesion c (kPa) 0 6.9

Dry unit weight γd (kN=m3) 13.00 18.39
Soil-fiber interface Soil-fiber interface friction angle δ (°) 16 40

Coefficient of interaction ci;ϕ 0.37 1.33
Stress condition Confining or normal pressure σ3 or σn (kPa) 20 600

Output variable Shear strength property Friction angle of FRS ϕFRS (°) 31.7 67.4
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governed by slippage of the fibers in the soil matrix (typical failure
mode in the stress range for most engineering practical applica-
tions). Therefore, cases in which fiber rupture could have been
the dominant failure mode [e.g., very large confining pressure

(σ3 > 400 kPa) and fiber aspect ratio ðηfÞ > 200] were excluded
before assessing the model performance. For that reason, 85 sam-
ples with that criteria were removed from Groups 2 and 3, resulting
in a total number of 215 samples including data from 148 rein-
forced sand tests and 67 unreinforced sand tests.

To summarize, Group 1 consists of 300 samples of FRS with all
15 inputs. Group 2 involves 215 samples with four inputs (i.e., ηf ,
ϕ, δ, and Xf), and Group 3 includes 215 samples with four inputs
(i.e., ϕ, ηf , Xf, and ci;ϕ). Model performance was assessed by a
stratified 10-fold cross-validation approach as discussed in the
“Stratified Cross-Validation” subsection. The average prediction
results for 10 test folds can then be used to appraise model per-
formance. To do so, randomly selected data were divided into 10
distinct folds. Each fold was used in turn as a test set with the re-
maining folds used as a training set so as to ensure that all data
instances were applied in both training and testing phases.

Model Results: Group 1

Baseline Prediction Models
The baseline models used to predict the friction angles of FRS
were the ANN, CART, CHAID, GENLIN, REG, and SVR models.
For Group 1, the SVR model had the highest prediction accuracy.
Specifically, the SVR model had a maximal R value of 0.90 (R ¼ 1

denoted a perfect positive correlation), a MAPE of 5.61%. The SI
value for the SVR model was also superior to that of other models
(Table 5).

Metaensemble Models
When the voting method was used, the CART+GENLIN+SVR
ensemble model had the best performance (R value of 0.92 and
MAPE of 5.01%). In the bagging method, the SVR model had the
best stability and prediction accuracy (R value of 0.94 and aMAPE of
4.09%). The CART model used in the stacking method also obtained
an R value of approximately 0.90 and a relatively unsatisfactory
MAPE of 5.56%. The best prediction performance by the tiering
method was obtained when the samples were divided into two
classes. The best metaensemble model was the tiering SVM-(SVR/
SVR) model, which had an R value of 0.89 and a low MAPE of
only 3.27%.

Model Results: Group 2

Baseline Prediction Models
In Group 2, the ANN model showed the optimal performance among
all of the baseline models, with an R value of 0.89 and a MAPE of
6.58%. The prediction results of other models are shown in Table 5.

Table 3. Default Parameters of Baseline Models

Model Parameters Values/options

ANN Alpha 0.9
Initial eta 0.3
High eta 0.1
Low eta 0.01
Eta decay 30

Hidden layers Three (20,15,10)
Persistence 200

CART Levels below root 5
Mode Simple

Maximum surrogates 5
Minimum change in impurity 0.0001

Impurity measure for categorical targets Gini
Minimum records in parent branch (%) 2
Minimum records in child branch (%) 1

CHAID Mode Simple
Alpha for splitting 0.05
Alpha for merging 0.05
Chi-square method Pearson

Minimum records in parent branch (%) 2
Minimum records in child branch (%) 1

Epsilon for convergence 0.001
Maximum iterations for convergence 100
Allow splitting of merged categories False

Use Bonferroni adjustment True
GENLIN Distribution Normal

Singularity tolerance 1 × 10−7
Value order for categorical inputs Ascending

Scale parameter method Maximum likelihood
estimate

Covariance matrix Model-based
estimator

Confidence interval level (%) 95
SVM/SVR Stopping criteria 1.0 × 10−3

Regularization parameter (C) 10
Regression precision (epsilon) 0.1

Kernel type RBF
RBF gamma 0.1

REG Mode Simple
Only use complete records True

Singularly tolerance 1.0 × 10−4
Stepping criteria Use probability of F

Probability option(s) entry 0.05
Probability option(s) removal 0.1

F value option(s) entry 3.84
F value option(s) removal 2.71

Test

Training

Data source

Predicted 
results

Calculating model 
performance 

C&R Tree

RegressionSVR

Neural Net

GENLIN

CHAID

Regression 
model

GENLINCHAIDC&R Tree SVRRegressionNeural Net

Step 1 Step 2

Step 3
Step 4

Fig. 2. Baseline model stream
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Metaensemble Models
In the voting method, the best model was the ANN+GENLIN+SVR
ensemble model, which had an R value of 0.91 and a MAPE of
5.65%. When the bagging method was used, the CHAID model
had the highest prediction accuracy (with an R value of 0.85 and

a MAPE of 6.82%). The stacking method using REG obtained an R
value of 0.91 and a relatively satisfactory MAPE of 5.15%. When
the tiering method was used, the samples divided into two classes
using the SVM-(CART/CHAID) model had the highest prediction
accuracy (with an R value of 0.86 and a MAPE of 3.88%).

Data source

Test

Training

Neural Net C&R Tree SVR

Neural Net C&R Tree

Neural Net

Ensemble1

Predicted results

Calculating model 
performance

Ensemble2

Ensemble3

Ensemble4

C&R Tree

SVR

Neural Net

GENLIN

GENLIN

GENLIN

C&R Tree SVR

Ensemble6

Ensemble7

Ensemble8

Ensemble9

Ensemble10

Neural Net SVRGENLIN

Neural Net C&R Tree

Neural Net GENLIN

Neural Net SVR

C&R Tree

C&R Tree SVR

SVR

GENLIN

GENLIN

Ensemble5SVMGENLINC&R Tree

Step 1

Step 2

Step 3

Step 4

Ensemble11

Fig. 3. Voting model stream
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Model Results: Group 3

Baseline Prediction Models
The best baseline model was the ANNmodel, which had an R value
of 0.89 and a MAPE of 6.60%. Table 5 compares the prediction
accuracy of the other models.

Metaensemble Models
When the voting method was used, the best model was the
ANN+CART+SVR ensemble model, which had an R value of 0.92
and a MAPE of 5.46%. When the bagging method was used, the
best model was the CART model, which had an R value of 0.86 and
a relatively unsatisfactory MAPE of 6.50%. When the stacking
method was used, the best model was the GENLIN model, which
had a maximal R value of 0.92 and a MAPE of 5.07%. When the
tiering method was used, the SVM-(na/CART/CHAID/na) model di-
vided the samples into four classes and had an R value of 0.87 and a
MAPE of only 3.65%.

Comparison of Predicted Results

Table 6 compares the prediction results obtained by the best base-
line and metaensemble models (Table 5) in each of the three groups
with those calculated by Eqs. (1) and (2). The comparisons indicated
that the Tiering SVM-(SVR/SVR) model in Group 1 has the best

performance, exhibiting an R of 0.89 and a MAPE of only 3.27%.
Groups 2 and 3 had very similar results because only one factor
differed between them. Moreover, the two different factors (ci;ϕ in
Group 2 and δ in Group 3) are related, i.e., one can be used to
calculate the other. The relationship between these two factors is
as follows: ci;ϕ ¼ tan δ= tanϕ.

The prediction accuracy of theoretical and empirical models
proposed in previous studies was also evaluated. The R values cal-
culated for the Michalowski and Cermak model [Eq. (1a)] and for
the Zornberg model [Eq. (2)] were 0.66 and 0.75-0.79, respectively,
and the MAPE values were between 10.6% and 9.1–9.8%. In the
discrete model [Eq. (2)], α ¼ 1 generates better prediction results
compared with α ¼ 0.5, demonstrating that the high efficiency of
fiber to soil shear strength improvement. Other studies have also
recommended a setting of α ¼ 1 in the Zornberg model (Li and
Zornberg 2013; Najjar et al. 2013; Zornberg 2002). Apparently,
the discrete model outperforms the energy-based model [Eq. (1a)],
regardless of the assumed α value.

Comparisons of the theoretical and empirical models with the
AI models in Table 6 indicate that prediction accuracy is greatly
improved by the metaensemble models even for large confining
pressure and fiber aspect ratio that are beyond the estimation limit
of theoretical and empirical equations. Table 6 shows that all the
metaensemble models had higher prediction accuracy compared

Ensemble1
Test

Training

Data source

Neural Net1

C&R Tree1

Neural Net2 Neural Net10

C&R Tree2 C&R Tree10

Regression1 Regression2 Regression10

Ensemble2

Ensemble3

Ensemble4

Random 
sampling

C&R Tree

RegressionSVR

Neural Net

GENLIN

CHAID

CHAID1

Ensemble5

Ensemble6

CHAID10CHAID2

SVR1 SVR2 SVR10

GENLIN1 GENLIN2 GENLIN10

Step 1 Step 2

Step 3

Step 4

Predicted 
results

Calculating model 
performance

Step 5

Fig. 4. Bagging model stream
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Fig. 5. Stacking model stream
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Model
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Fig. 6. Tiering model stream
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with the theoretical and empirical models. Specifically, the follow-
ing coefficients were significantly increased: the R values increased
9.31–35.63%, RMSE increased 58.40–73.43%, MAE increased
70.04–79.50%, and MAPE increased 57.36–69.15%.

Fig. 7 further shows the results of performance tests of the
Michalowski and Cermak model, the Zornberg model and the Tier-
ing SVM-(SVR/SVR) model in Group 1. The comparison clearly
shows that the data points predicted by the tiering SVM-(SVR/SVR)

Table 4. Data Distribution in Tiering Method

Class number 2 classes 3 classes 4 classes 5 classes

1 250 21 0 0
2 50 275 250 118
3 — 4 50 164
4 — — 0 18
5 — — — 0
Total 300

Table 5. Prediction Performance Using the Baseline and Metaensemble Models through 10-Fold Cross-Validation

Method Model R
RMSE
(°)

MAE
(°)

MAPE
(%) SIGroup RANKGroup SIOverall RANKOverall

Group 1
Single SVR 0.90 3.44 1.90 5.61 0.84 8 0.58 18
Voting CART+GENLIN+SVR 0.92 2.91 1.85 5.01 0.62 5 0.43 10
Bagging SVR 0.94 2.46 1.38 4.09 0.28 3 0.20 4
Stacking CART 0.90 2.54 2.05 5.56 0.74 7 0.49 15
Tiering (2) SVM-(SVR/SVR) 0.89 1.98 1.07 3.27 0.22 1 0.12 1
Tiering (3) SVM-(REG/CART/GENLIN) 0.89 3.00 1.91 4.40 0.71 6 0.47 13
Tiering (4) SVM-(na/SVR/SVR/na) 0.89 1.98 1.41 3.27 0.30 4 0.18 3
Tiering (5) SVM-(na/REG/CHAID/GENLIN/na) 0.86 1.92 1.17 2.79 0.28 2 0.14 2
Group 2
Single ANN 0.89 3.56 2.47 6.58 0.73 7 0.76 21
Voting ANN+GENLIN+SVR 0.91 3.18 2.10 5.65 0.49 5 0.57 17
Bagging CHAID 0.85 3.80 2.45 6.82 0.87 8 0.87 24
Stacking REG 0.91 3.02 1.92 5.15 0.38 4 0.48 14
Tiering (2) SVM-(CART/CHAID) 0.86 2.28 1.27 3.88 0.13 1 0.27 7
Tiering (3) SVM-(REG/CART/GENLIN) 0.85 3.43 2.25 5.14 0.63 6 0.69 19
Tiering (4) SVM-(na/CART/SVM/na) 0.83 2.46 1.31 3.96 0.22 2 0.35 8
Tiering (5) SVM-(na/CART/CHAID/SVR/na) 0.77 2.28 1.49 3.47 0.30 3 0.41 9
Group 3
Single ANN 0.89 3.57 2.48 6.60 0.75 7 0.77 22
Voting ANN+CART+SVR 0.92 3.20 2.05 5.46 0.48 5 0.54 16
Bagging CART 0.86 3.91 2.24 6.50 0.81 8 0.81 23
Stacking GENLIN 0.92 2.94 1.88 5.07 0.36 3 0.44 11
Tiering (2) SVM-(CART/CHAID) 0.86 2.24 1.23 3.83 0.14 2 0.25 6
Tiering (3) SVM-(REG/CART/GENLIN) 0.85 3.45 2.26 5.18 0.65 6 0.69 20
Tiering (4) SVM-(na/CART/CHAID/na) 0.87 2.18 1.19 3.65 0.09 1 0.21 5
Tiering (5) SVM-(na/CART/CHAID/CART/na) 0.78 2.39 1.62 3.73 0.37 4 0.46 12

Note: The methods that had the best prediction performance are indicated by bold font. na = no data are available for that class; RANKGroup = ranking
among the group; RANKOverall = ranking among the overall models; SIGroup = synthesis index within the group; SIOverall = synthesis index within the
overall models.

Table 6. Performance Comparison of Energy-Based Model, Discrete Model, and Best Metaensemble Models

Model

10-fold cross-validation performance Improvement

R
RMSE
(°)

MAE
(°)

MAPE
(%)

R
(%)

RMSE
(%)

MAE
(%)

MAPE
(%)

Michalowski and Cermak (2003) 0.66 7.45 5.22 10.60 — — — —
Zornberg (2002), α ¼ 0.5 0.75 6.52 4.47 9.10 — — — —
Zornberg (2002), α ¼ 1 0.79 5.48 4.24 9.80 — — — —
Best model in Group 1; Tiering SVM-(SVR/SVR) 0.89 1.98 1.07 3.27 35.63 73.43 79.50 69.15

17.97 69.62 76.04 64.07
13.12 63.87 74.76 66.63

Best model in Group 2; Tiering SVM-(CART/CHAID) 0.86 2.28 1.27 3.88 31.06 69.40 75.66 63.40
13.99 65.02 71.56 57.36
9.31 58.40 70.04 60.41

Best model in Group 3; Tiering SVM-(na/CART/CHAID/na) 0.87 2.18 1.19 3.65 31.06 69.40 75.66 63.40
15.40 66.53 73.39 59.89
10.66 60.20 71.97 62.76

Note: na = no data are available for that class.
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model follows 1:1 line closely, but the data points are relatively scat-
tered in the Michalowski-Čermák and Zornberg models.

Conclusions and Recommendation

This study compiled high quality data for triaxial and direct shear
tests of FRS reported in the literature during 1983–2015. The re-
sulting database included information on the properties of sand,
fibers, soil-fiber interface, and stress parameters. Data-mining tech-
nology and the baseline models (i.e., ANN, CART, CHAID, REG,
GENLIN, SVR/SVM) were used to explore hidden relationships
among the variables, thereby building a model for predicting the
friction angle (i.e., shear strength parameter) of FRS.

The baseline models were then used to design a series of meta-
ensemble models (i.e., voting, bagging, stacking, and tiering). The
prediction results obtained by the theoretical and empirical models
were then compared with those obtained by the AI models pro-
posed in this study. The comparison results showed that the meta-
ensemble models had greatly improved accuracy in predicting FRS
shear strength. The results showed that the prediction performance
levels of all of the metaensemble models are more favorable than
those of the baseline models.

For the baseline single models, analytical results of Group 1,
with considering 300 samples and all 15 inputs, confirmed that the
SVR is superior to the others in predicting shear strength of FRS with
the average MAPE of 5.61%. Moreover, the comparison results
show that the ANN model outperformed the others, with the average
MAPE of 6.58 and 6.60% for Group 2 and Group 3, respectively.

Regarding the voting method, the ensemble model of CART+
GENLIN+SVR showed the best prediction performance (with a
MAPE of 5.01%) among the others in Group 1; whereas the en-
semble models of ANN+GENLIN+SVR and ANN+CART+SVR
obtained the highest accuracy compared with the other models in
Group 2 and Group 3 (with a MAPE of 5.65 and 5.46%, respec-
tively). For the bagging method, the SVR model, CHAID model,
and CART model yielded the highest prediction performance com-
pared with the others in Groups 1, 2, and 3, respectively. For the
stacking method, the CART model, REG model, and GENLIN
model were superior to the others in Groups 1, 2, and 3, respectively.

Particularly, the optimal metaensemble model was the Tiering
SVM-SVR/SVR model, which had an R up to 0.89, a MAPE of
only 3.27%, and highly accurate predictions. The comparison re-
sults also revealed that all metaensemble models had higher predic-
tion accuracy compared with the theoretical and empirical models,
regardless of normal confining pressure and fiber aspect ratio
conditions. The values of the following coefficients increased sig-
nificantly: the R values increased 9.31–35.63%, RMSE increased
58.40–73.43%, MAE increased 70.04–79.50%, and MAPE in-
creased 57.36–69.15%.

This study demonstrated that AI models provide an effective
alternative for FRS shear strength prediction and, thereby, facilitate
assessment of the stability of FRS structures in design and promot-
ing the application of fiber reinforcement into a wide range of geo-
technical projects. Compared with the conventional theoretical
and empirical models, the AI models could produce more accurate
predictions, resulting in more cost-effective and reliable designs. In
addition, the prediction results from AI models can aid assessment
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Fig. 7. Performance comparison: (a) Michalowski and Čermák model (energy-based model); (b) Zornberg model using α ¼ 1 (discrete model);
(c) Tiering SVM-(SVR/SVR) in Group 1
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of experimental designs during preplanning, providing researchers
with a basis for verification. The AI models can also be used to plan
and design teams as a feedback, serving as information aids in de-
cision making.

Although the developed AI model demonstrated high prediction
accuracy, its applicability is limited to FRS with parameter values
within the ranges in the compiled database in this study (shown in
Tables 1 and 2). In particular, the developed model is only applicable
when the FRS is granular rather than fine grained and cohesive.

For further optimization of the prediction models and enhance-
ment of the prediction efficacy of the AI models, nature-inspired
metaheuristic optimization algorithms can be devised to fine-tune
their default parameters. Moreover, an information exchange plat-
form, combining the prediction results with engineering practices,
can be developed for use to support decision making by engineers
and design teams.
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