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Cohesive Subgroups 

One of the major concerns of social network analysis is identification of 
cohesive subgroups of actors within a network. Cohesive subgroups are 
subsets of actors among whom there are relatively strong, direct, intense, 
frequent, or positive ties. These methods attempt, in part, to formalize 
the intuitive and theoretical notion of social group using social network 
properties. However, since the concept of social group as used by social 
and behavioral scientists is quite general, and there are many specific 
properties of a social network that are related to the cohesiveness of 
subgroups, there are many possible social network subgroup definitions. 

In this chapter and the next we discuss methods for finding cohesive 
subgroups of actors within a social network. In this chapter we discuss 
methods for analyzing one-mode networks, with a single set of actors 
and a single relation. In Chapter 8 we continue the discussion of 
cohesive subgroups and related ideas, but focus on affiliation networks. 
Affiliation networks are two-mode networks consisting of a set of actors 
and a set of events. Cohesive subgroups in one-mode networks focus 
on properties of painvise ties, whereas cohesive subgroups in two-mode 
affiliation networks focus on ties existing among actors through their 
joint membership in collectivities. Thus, one major difference between 
this chapter and the next is whether one-mode or two-mode data are 
being analyzed. 

We begin with an overview of the theoretical motivation for studying 
cohesive subgroups in social networks and discuss general properties of 
cohesive subgroups that have influenced network formalizations. We then 
discuss how to assess the cohesiveness of network subgroups, and extend 
subgroup methods to directional relations and to valued relations. The 
final section of this chapter briefly discusses alternative approaches for 
studying cohesiveness - l n  networks using multidimensional. scaling and 
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factor a m o s t  of the methods discussed in this chapter are based 
on  graph theoretic ideas, and use graph theoretic concepts and notation. 
Thus, it might be useful to review Chapter 4 before reading the rest of 
this chapter. 

7.1 Background 

In this section we discuss the theoretical background for social groups, 
briefly outline some ways to conceptualize cohesive subgroups, and review 
key notation and graph theoretic concepts that are used to study cohesive 
subgroups. 

7.1.1 Social Group and Subgroup 

Many authors have discussed the role of social cohesion in social expla- 
nations and theories (Burt 1984; Collins 1988; Erickson 1988; Friedkin 
1984). Friedkin examines the use of network cohesion as an  explanatory 
variable in sociological theories, especially for studying the emergence of 
consensus among members of a group: 

Structural cohesion models are founded upon the causal propositions 
that pressures toward uniformity occur when there is a positively val- 
ued interaction between two persons; that these pressures may occur by 
being "transmitted" through intermediaries even when two persons are 
not in direct contact; and that such indirect pressures toward unifor- 
mity are associated with the number of short indirect communication 
channels connecting the persons. (1984, page 236) 

Consequently, according to this idea, one expects greater homogeneity 
among persons who have relatively frequent face-to-face contact o r  who 
are connected through intermediaries, and less homogeneity among per- 
sons who have less frequent contact (Friedkin 1984). In  his review of 
sociological theory, Collins (1988) also states the importance of cohesion 
in social network analysis: 

The more tightly that individuals are tied into a network, the more they 
are affected by group standards . . . . (page 416) 

Collins continues, noting that 

Actually, there are two factors operating here, which we can see from 
network analysis: how many ties an individual has to the group and how 
closed the entire group is to outsiders. Isolated and tightly connected 
groups make up a clique; within such highly cohesive groups, individuals 
tend to have very homogeneous beliefs. (page 417) 



7.1 Background 

Cohesive subgroups are theoretically important according to these the- 
ories because of social forces operating through direct contact among 
subgroup members, through indirect conduct transmitted via intermedi- 
aries, or through the relative cohesion within as compared to outside the 
subgroup. Such theories provide motivation for cohesive subgroup meth- 
ods for one-mode social networks (in which ties are measured between 
pairs of actors). These ideas are all used to study cohesive subgroups in 
social networks. 

The notions of social group, subgroup, clique, and so on are widely 
used in the social sciences, particularly in social psychology and sociology. 
Although the notion of social group has received widespread attention 
in the social sciences, researchers often use the word without giving 
it a precise formal definition. As noted by Freeman (1984, 1992a) 
and Borgatti, Everett, and Freeman (1991) authors often assume that 
since "everybody knows what it means" it can be used without precise 
definition. Freeman reviews the history of the concept of group in 
sociology with special attention to network formalizations of this concept 
(Freeman 1992a). 

Many network researchers who have developed or reviewed methods 
for cohesive subgroups in social networks have noted that these methods 
attempt to formalize the notion of social group (Seidman and Foster 
1978a, 1978b; Alba and Moore 1978; Mokken 1979; Burt 1980; Freeman 
1984, 1992a; Sailer and Gaulin 1984). According to these authors, the 
concept of social group can be studied by looking at properties of 
subsets of actors within a network. In social network analysis, the notion 
of subgroup is formalized by the general property of cohesion among 
subgroup members based on specified properties of the ties among the 
members. However, since the property of cohesion of a subgroup can 
be quantified using several different specific network properties, cohesive 
subgroups can be formalized by looking at many different properties of 
the ties among subsets of actors. 

Although the literature on cohesive subgroups in networks contains 
numerous ways to conceptualize the idea of subgroups, there are four 
general properties of cohesive subgroups that have influenced social 
network formalizations of this concept. Briefly, these are: 

rn The mutuality of ties 

rn The closeness or reachability of subgroup members 

rn The frequency of ties among members 
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The relative frequency of ties among subgroup members com- 
pared to non-members 

Subgroups based on mutuality of ties require that all pairs of subgroup 
members "choose" each other (or are adjacent); subgroups based on 
reachability require that all subgroup members be reachable to each 
other, but not necessarily adjacent; subgroups based on numerous ties 
require that subgroup members have ties to many others within the 
subgroup; and subgroups based on the relative density or frequency of 
ties require that subgroups be relatively cohesive when compared to the 
remainder of the network. Successive definitions weaken the first notion 
of adjacency among all subgroup members. These general subgroup ideas 
lead to methods that focus on different social network properties. Thus, 
our discussion in this chapter is divided into sections, each of which takes 
up methods that are primarily motivated by one of these ideas. 

In contrast to these ideas that focus on ties between pairs of actors in 
one-mode networks, some cohesive subgroup ideas are concerned with 
the linkages that are established among individuals by virtue of their 
common membership in collectivities. These ideas motivate methods for 
studying affiliation networks, which we discuss in Chapter 8. 

Before we present the subgroup methods for one-mode networks, let 
us review some basic concepts and definitions from graph theory. 

7.1.2 Notation 

Our presentation of notation here is intentionally brief, since these ideas 
were covered in detail in Chapters 3 and 4. To start, we will limit our 
attention to graphs, and thus, to dichotomous nondirectional relations. 

We begin with a graph, 4 ,  consisting of a set of nodes, M ,  and a set 
of lines, 9. Each line connects a pair of nodes in 4 .  Two nodes that are 
connected by a line are said to be adjacent. A node generated subgraph, 
4,, of 4 ,  consists of a subset of nodes, M,, where M ,  G M ,  along with 
the lines from 9 that link the nodes in 4,. We will refer to a subset of 
nodes as a subgroup or subset, and the nodes along with the lines among 
them as a subgraph. A graph is complete if all nodes are adjacent; that 
is, if each pair of nodes is connected by an line. Similarly, a subgraph, 
B,, is complete if all pairs of nodes in it are adjacent. 

A path connecting two nodes is a sequence of distinct nodes and lines 
beginning with the first node and terminating with the last. If there 
is a path between two nodes then they are said to be reachable. The 
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length of a path is the number of lines in it. A shortest path between 
two nodes is called a geodesic, and the (geodesic) distance between two 
nodes, denoted by d(i, j), is the length of a shortest path between them. 
The diameter of a graph is the length of the longest geodesic between any 
pair of nodes in the graph. In other words, the diameter of a graph is the 
maximum geodesic distance between any pair of nodes; max(d(i, j)), for 
ni,n, E M .  Similarly, the diameter of a subgraph can be defined as the 
longest geodesic between two nodes within the subgraph. The diameter 
of a subgraph is defined on the subset of nodes and lines that are present 
in the subgraph. 

A graph is connected if there is a path between each pair of nodes in 
the graph. A subgraph is connected if there is a path between each pair 
of nodes in the subgraph, and the path contains only nodes and lines 
within the subgraph. The degree of a node, d(i), is the number of nodes 
that are adjacent to it. The degree of node i in subgraph Y, is denoted 
by d,(i), and is defined as the number of nodes within the subgraph that 
are adjacent to node i. 

A subgraph is said to be maximal with respect to some property (for 
example, completeness) if that property holds for the subgraph, but does 
not hold if additional nodes and the lines incident with them are added 
to the subgraph. If a subgraph is maximal with respect to a property, 
then that property holds for the subgraph, Y,, but not for any larger 
subgraph that contains Y, (Mokken 1979). For example, a component of 
a graph is a maximal connected subgraph (Hage and Harary 1983). The 
presence of two or more components in a graph indicates that the graph 
is disconnected. 

We can now define some interesting subgroup ideas using these graph 
theoretic concepts. 

7.2 Subgroups Based on Complete Mutuality 

The earliest researchers interested in cohesive subgroups gathered and 
studied sociometric data on affective ties, such as friendship or liking 
in small face-to-face groups, in order to identify "cliquish" subgroups. 
Network data on friendship nominations often give rise to directional 
dichotomous relations. Festinger (1949) and Luce and Perry (1949) 
argued that cohesive subgroups in directional dichotomous relations 
would be characterized by sets of people among whom all friendship 
choices were mutual. Specifically, Luce and Perry and Festinger proposed 
that a clique for a relation of positive affect is a subset of people among 
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whom all choices are mutual, and no other people can be added to the 
subset who also have mutual choices with all members of the subset. 
This definition of a clique is appropriate for a directional dichotomous 
relation. 

The clique is the foundational idea for studying cohesive subgroups in 
social networks. Graph theory provides a precise formal definition of a 
clique that is appropriate for a nondirectional dichotomous relation. 

7.2.1 Definition of a Clique 

A clique in a graph is a maximal complete subgraph of three or more 
nodes. It consists of a subset of nodes, all of which are adjacent to 
each other, and there are no other nodes that are also adjacent to all of 
the members of the clique (Luce and Perry 1949; Harary, Norman, and 
Cartwright 1965). The restriction that the clique contain at least three 
nodes is included so that mutual dyads are not considered to be cliques. 
One can think of a clique as a collection of actors all of whom "choose" 
each other, and there is no other actor in the group who also "chooses" 
and is "chosen" by all of the members of the clique. 

The clique definition is a useful starting point for specifying the formal 
properties that a cohesive subgroup should have. It has well-specified 
mathematical properties, and also captures much of the intuitive notion 
of cohesive subgroup; however, it has limitations, which we discuss below. 

Figure 7.1 shows a graph and a listing of the cliques contained in it. 
The reader can verify that these subgraphs are in fact cliques, and that 
there are no remaining cliques in the graph. 

Notice that cliques in a graph may overlap. The same node or set of 
nodes might belong to more than one clique. For example, in Figure 7.1 
node 3 belongs in all three cliques. Also, there may be nodes that do not 
belong to any cliques (for example node 7 in Figure 7.1). However, no 
clique can be entirely contained within another clique, because if it were 
the smaller clique would not be maximal. 

7.2.2 An Example 

We will use the example of the relations of marriage and business among 
Padgett's Florentine families to illustrate cohesive subgroups throughout 
this chapter. Recall that both of these relations are dichotomous and 
nondirectional. We used the network analysis programs GRADAP 2.0 
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cliques: {I, 2,3), {l, 3,5), and {3,4,5,6) 

Fig. 7.1. A graph and its cliques 

(Sprenger and Stokman 1989) and UCINET ZV (Borgatti, Everett, and 
Freeman 1991) to do the subgroup analyses described in this chapter. 

First consider the relation of marriage among these families. For the 
marriage relation there are three cliques: 

Bischeri Peruzzi Strozzi 
Castellani Peruzzi Strozzi 
Medici Ridolfi Tornabuoni 

Only seven of the sixteen families in this network belong to any clique 
on the marriage relation. Furthermore, the cliques are small; each clique 
contains only the minimum three families. By definition, there has been 
a marriage between all pairs of families in each clique. Notice that the 
first two cliques contain two members in common (Peruzzi and Strozzi), 
and differ only by a single member. However, the four families, Bischeri, 
Castellani, Peruzzi and Strozzi, do not form a clique because there is no 
marriage tie between Castellani and Bischeri. 

For the business relation there are five cliques: 

Barbadori Castellani Peruzzi 
Barbadori Ginori Medici 
Bischeri Guadagni Lamberteschi 
Bischeri Lamberteschi Peruzzi 
Castellani Lamberteschi Peruzzi 
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Eight of the sixteen families belong to at least one clique on the business 
relation, and some families (for example Lamberteschi, Bischeri, and 
Peruzzi) belong to several cliques on this relation. As we saw with the 
marriage relation, the cliques are small (no more than three members) 
and there is considerable overlap among them. However, the cliques that 
are present in the business relation are different from the cliques that are 
present in the marriage relation. 

7.2.3 Considerations 

A clique is a very strict definition of cohesive subgroup. In fact, Alba 
(1973) calls it "stingy." The absence of a single line, or in sociometric 
terms, the absence of a single tie or "choice," will prevent a subgraph 
from being a clique. In a sparse network there may be very few cliques (as 
with the marriage relation among the Florentine families). In addition, 
the sizes of the cliques will be limited by the degree of the nodes. This 
can be a problem if the number of ties that an actor can have is limited 
by the data collection design. For example, in a sociometric study using 
a fixed choice design in which respondents are asked to list their three 
best friends, each person can be adjacent to at most three other people. 
Thus there can be no clique with more than four members. In general, if 
actors are restricted to k ties, then there can be no clique in the resulting 
data that has more than k + 1 members. 

Early researchers were concerned with methods for detecting cliques 
in networks (Festinger 1949; Luce and Perry 1949; Luce 1950; Harary 
and Ross 1957). More recently, researchers have realized that cliques 
seldom are useful in analysis of actual data because the definition is too 
strict. Actual data rarely contain interesting cliques, since the absence 
of a single tie among subgroup members prevents the subgroup from 
meeting the clique definition. In addition, cliques that do occur are often 
quite small, and overlap one another (as we have seen in the analysis of 
Padgett's Florentine families). 

An additional limitation of clique as a formalization of cohesive sub- 
group is that there is no internal differentiation among actors within 
a clique (Doreian 1969; Seidman and Foster 1978a, 1978b; Freeman 
1992a, 1992b). Since a clique is complete, within the clique all members 
are graph theoretically identical. All clique members are adjacent to all 
other clique members, thus there are no distinctions among members 
based on graph theoretic properties within the clique. If we expect that 
the cohesive subgroups within a network should exhibit interesting in- 
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ternal structure, such as having some core actors who are more strongly 
identified with the subgroup and other peripheral actors who are less 
identified with it, then a clique might be an inappropriate definition of 
cohesive subgroup. 

On the other hand, some researchers working with large network data 
sets (that include hundreds or even thousands of actors) have found that 
there may be numerous, but largely overlapping, cliques in the group 
(Alba and Moore 1978). In such cases, the cliques themselves might 
not be very informative. Instead, the researcher might study the overlap 
among the cliques. Studying how cliques overlap is one way to focus on 
the differentiation or internal structure of subgroups within the network. 
A recent paper by Freeman (1992b) describes how to use lattices (which 
we define in Chapter 8) to study the overlap among cliques in social 
network. 

An active area of recent research is the development of methods to 
extend the definition of cohesive subgroup to make the resulting sub- 
groups more substantively and theoretically interesting. These methods 
weaken the notion of clique so that the subgroups are less "stingy." 
There are obviously numerous ways to loosen the definition by removing 
required properties of a subgraph. These definitions describe subgraphs 
that are not cliques, but rather, are "clique-like" ---_ entities The "trick" 
is to develop formal mathematical definitions that have known graph 
theoretic properties, and also capture important intuitive and theoretical 
aspects of cohesive subgroups. Two different structural properties have 
been used to relax the clique notion: first, Luce (1950), and later Alba 
(1973) and Mokken (1979), have used properties of reachability, path 
distance, and diameter to extend the clique definition; second, Seidman 
and Foster (1978a) and Seidman (1981 b, 1983b) used nodal degree to 
propose alternative cohesive subgroup ideas. Both of these ideas take 
the clique as a starting point, and extend it by removing one or more 
restrictions. We will describe each of these in turn. 

7.3 Subgroups Based on Reachability and Diameter 

Reachability is the motivation for the first cohesive subgroup ideas 
that extend the notion of a clique. These alternative subgroup ideas are 
useful if the researcher hypothesizes that important social processes occur 
through intermediaries. For example, the diffusion of information has 
been hypothesized to occur in this way (Erickson 1988). Conceptually, 
there should be relatively short paths of influence or communication 
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between all members of the subgroup. Subgroup members might not be 
adjacent, but if they are not adjacent, then the paths connecting them 
should be relatively short. 

7.3.1 n-cliques 

Recall that the geodesic distance between two nodes, denoted by d(i, j), 
is the length of a shortest path between them. Cohesive subgroups based 
on reachability require that the geodesic distances among members of 
a subgroup be small. Thus, we can specify some cutoff value, n, as 
the maximum length of geodesics connecting pairs of actors within 
the cohesive subgroup. Restricting geodesic distance among subgroup 
members is the basis for the definition of an n-clique (Alba 1973; Luce 
1950). An n-clique is a maximal subgraph in which the largest geodesic 
distance between any two nodes is no greater than n. Formally, an 
n-clique is a subgraph with node set N,, such that 

d(i, j) 5 n for all ni, nj E N, (7.1) 

and there are no additional nodes that are also distance n or less from 
all nodes in the subgraph. 

When n = 1, the subgraphs are cliques, since all nodes are adjacent. 
Increasing the value of n gives subgraphs in which longer geodesic 
distances between nodes are permitted. A value of n = 2 is often a 
useful cutoff value. 2-cliques are subgraphs in which all members need 
not be adjacent, but all members are reachable through at most one 
intermediary. 

Let us look at an example to illustrate n-cliques. Figure 7.2, taken 
from Alba (1973) and Mokken (1979), contains a single clique, {1,2,3}, 
which, by definition, is a 1-clique. In this graph, there are two 2-cliques: 
{1,2,3,4,5) and {2,3,4,5,6}. Notice that these two 2-cliques share four 
of their five members. In addition, it is important to note that even 
though we are using a maximum geodesic distance of n = 2 to find the 
2-cliques, the first 2-clique ({1,2,3,4,5}) has a diameter of 3. The geodesic 
between nodes 4 and 5 includes node 6, which is not a member of this 
2-clique. Within this 2-clique, the shortest path between 4 and 5 is the 
path 4,2,3,5, which is of length 3. Thus, n-cliques can be found in which 
the intermediaries in a geodesic between a pair of n-clique members are 
not themselves n-clique members. 
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2-cliques: {1,2,3,4,5} and {2,3,4,5,6} 
2-clan: {2,3,4,5,6} 
2-clubs: {1,2,3,4}, {1,2,3,5}, and {2,3,4,5,6} 

Fig. 7.2. Graph illustrating n-cliques, n-clans, and n-clubs 

7.3.2 An Example 

Let us return to the example of marriage and business relations among 
Padgett's Florentine families to illustrate n-cliques. We used the program 
GRADAP 2.0 (Sprenger and Stokman 1989) for this analysis. There are 
thirteen 2-cliques in the marriage relation: 

0 Acciaiuoli Albizzi Barbadori Medici Ridolfi Salviati Tornabuoni 
0 Albizzi Bischeri Guadagni Lamberteschi Tornabuoni 
0 Albizzi Bischeri Guadagni Ridolfi Tornabuoni 
0 Albizzi Ginori Guadagni Medici 
0 Albizzi Guadagni Medici Ridolfi Tornabuoni 
0 Barbadori Castellani Medici Ridolfi Strozzi 
0 Barbadori Castellani Peruzzi Ridolfi Strozzi 
0 Barbadori Medici Ridolfi Strozzi Tornabuoni 
0 Bischeri Castellani Peruzzi Ridolfi Strozzi 
0 Bischeri Guadagni Peruzzi Ridolfi Strozzi 
0 Bischeri Guadagni Ridolfi Strozzi Tornabuoni 
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Guadagni Medici Ridolfi Strozzi Tornabuoni 
Medici Pazzi Salviati 

There are four 2-cliques on the business relation: 

Barbadori Bischeri Castellani Lamberteschi Peruzzi 
Barbadori Castellani Ginori Medici Peruzzi 
Barbadori Ginori Medici Pazzi Salviati Tornabuoni 
Bischeri Castellani Guadagni Lamberteschi Peruzzi 

Notice that the 2-cliques are both larger and more numerous than the 
cliques found for both the marriage and business relations. Since the 
definition of an n-clique is less restrictive than the definition of a clique, 
when n is greater than 1 it is likely that a network will contain more 
n-cliques than cliques. It is also likely that the n-cliques will be larger 
than the cliques. 

7.3.3 Considerations 

There are several important properties of n-cliques, some of which limit 
the usefulness of this cohesive subgroup definition. Since n-cliques are 
defined for geodesic paths that can include any nodes in the graph, 
two problems might arise: first, an n-clique, as a subgraph, may have a 
diameter greater than n, and second, an n-clique might be disconnected. 
The first problem arises because the requirement that nodes be connected 
by paths of length n or less does not require that these paths remain 
within the subgroup (Alba 1973; Alba and Moore 1978). Geodesics 
connecting a pair of nodes in an n-clique may include nodes that lie 
outside of the n-clique. Thus, the diameter of the subgraph can be 
larger than n. The second problem is that an n-clique may not even 
be connected. Two nodes may be connected by a geodesic of n or less 
which includes nodes outside the n-clique, and these two nodes may have 
no path connecting them that includes only n-clique members. These 
problems indicate that n-cliques are not as cohesive as we might like for 
studying cohesive subgroups (Alba and Moore 1978; Mokken 1979). 

7.3.4 n-clans and n-clubs 

One idea to "improve" n-cliques is to restrict them so that the resulting 
subgroups that are identified are more cohesive, and do not have the 
problems of n-cliques. A useful restriction is to require that the diameter 
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of an n-clique be no greater than n. Mokken (1979) has described two 
logical ways to do this. The first, which he calls an n-clan, starts with 
the n-cliques that are identified in a network and excludes those n-cliques 
that have a diameter greater than n. The second approach, called an 
n-club, defines a new entity, a maximal n-diameter subgraph. 

An n-clan is an n-clique in which the geodesic distance, d(i, j) ,  between 
all nodes in the subgraph is no greater than n for paths within the 
subgraph. The n-clans in a graph can be found by examining all n-cliques 
and excluding those that have diameter greater than n. Any n-cliques that 
include pairs of nodes whose geodesics require non-subgroup members 
are excluded from consideration. The n-clans in a graph are those n- 
cliques that have diameter less than or equal to n (Alba 1973; Mokken 
1979). All n-clans are n-cliques. 

An n-club is defined as a maximal subgraph of diameter n. That is, an 
n-club is a subgraph in which the distance between all nodes within the 
subgraph is less than or equal to n; further, no nodes can be added that 
also have geodesic distance n or less from all members of the subgraph. 
n-clubs are not necessarily n-cliques, though they are always subgraphs 
of n-cliques. 

Although conceptually similar, n-clans and n-clubs are somewhat dif- 
ferent, as illustrated in Figure 7.2. This example is taken from Alba (1973) 
and Mokken (1979), and illustrates the difference between n-cliques, n- 
clans, and n-clubs. For this graph, taking n = 2 results in the following 
sets: 

2-cliques: {1,2,3,4,5} and {2,3,4,5,6} 
2-clan: {2,3,4,5,6} 
2-clubs: {1,2,3,4}, {1,2,3,5}, and {2,3,4,5,6} 

First, consider the 2-cliques and 2-clans. Since the 2-clique {1,2,3,4,5} 
has diameter greater than 2 (the distance from 4 to 5 is equal to 3) it 
is not an 2-clan. The 2-clique {2,3,4,5,6} is a 2-clan since its diameter 
is not greater than 2. Now, consider the 2-clubs. The 2-clubs {1,2,3,4} 
and {1,2,3,5} both have diameter equal to 2, and are maximal, since no 
node can be added to either subgraph without increasing its diameter. 
Notice that each of these 2-clubs is a subgraph of the 2-clique {1,2,3,4,5} 
(whose diameter is greater than 2). Finally, the 2-club {2,3,4,5,6} has a 
diameter of 2 and is maximal. 

As this example illustrates, 2-clubs are either 2-cliques, or are subgraphs 
of 2-cliques. Mokken (1979) demonstrates that all n-clans are also n- 
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cliques, and all n-clubs are contained within n-cliques. Furthermore, all 
n-clans are also n-clubs, though there can be n-clubs that are not n-clans. 

As Sprenger and Stokman (1989) have noted, "hardly anybody" has 
used n-clans and n-clubs, and more research is needed on these cohesive 
subgroup ideas. The n-clans in a social network are relatively easy to find 
by examining the n-cliques, and eliminating those with diameter greater 
than n. The n-clubs are difficult to find, and often routines for n-clubs 
are not included in standard network analysis packages. Therefore, in 
the following example we restrict our attention to n-clans. 

An Example. We will use the marriage and business relations 
for Padgett's Florentine families to illustrate n-clans. For the business 
relation, all of the four 2-cliques have a diameter that is 2 or less, and 
therefore these four 2-cliques are also 2-clans. For the marriage relation, 
five of the 2-cliques have diameter greater than 2, so they are excluded 
from the list of 2-clans. This leaves eight 2-clans: 

Acciaiuoli Albizzi Barbadori Medici Ridolfi Salviati Tornabuoni 
Albizzi Bischeri Guadagni Lamberteschi Tornabuoni 

0 Albizzi Ginori Guadagni Medici 
0 Albizzi Guadagni Medici Ridolfi Tornabuoni 

Barbadori Castellani Medici Ridolfi Strozzi 
Bischeri Castellani Peruzzi Ridolfi Strozzi 
Bischeri Guadagni Ridolfi Strozzi Tornabuoni 

0 Medici Pazzi Salviati 

The difference between the 2-cliques and the 2-clans on the marriage 
relation is that the five 2-cliques with diameter greater than 2 are excluded. 
For example, the diameter of the 2-clique {Barbadori, Medici, Ridolfi, 
Strozzi, Tornabuoni) is greater than 2, since the geodesic between Strozzi 
and Barbadori (which is of length 2) includes Castellani (who is not in 
this 2-clique). 

7.3.5 Summary 

The three definitions of cohesive subgroups discussed in this section are 
primarily motivated by the property of reachability among the nodes in 
a subgraph. An n-clique simply requires that there is some short path 
(geodesic) between subgroup members, though this short path may go 
outside the subgraph. An n-clique may be seen as too loose a definition 
of cohesive subgroup, and restrictions requiring geodesic paths to remain 
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within the subgroup can be applied by requiring the subgraph to have a 
given maximum diameter. n-clubs and n-clans are two possible definitions 
that have the desired restrictions. 

As Erickson (1988) has noted, cohesive subgroup definitions based 
on reachability are important for understanding "processes that operate 
through intermediaries, such as the diffusion of clear cut and widely 
salient information" (Erickson 1988, page 108). In studying network 
processes such as information diffusion that "flow" through interme- 
diaries, cohesive subgroups based on indirect connections of relatively 
short paths provide a reasonable approach. 

A related cohesive subgroup idea is influence among subgroup mem- 
bers. This idea provides the motivation for Hubbell's (1965) adaptation 
of economic input-output models to sociometric data. Hubbell argues 
that ties between actors are "channels for the transmission of influence" 
(1965, page 377). Influence occurs both through direct contact and 
through indirect chains of contact via other actors. The goal is to iden- 
tify subgroups of actors among whom there is a relatively strong mutual 
influence, whether the influence is direct or indirect. Hubbell's approach 
relies on measures of influence based on a weighting of adjacencies and 
paths of influence, and a partitioning of actors based on the degree to 
which subgroup members mutually influence each other. 

In contrast, if one hypothesizes that network processes require direct 
contact among actors, and perhaps repeated, direct, contact to several 
actors, then a different cohesive subgroup definition is required. We turn 
now to subgroup methods that study cohesive subgroups by focusing on 
adjacency between actors, rather than on paths and geodesics. 

7.4 Subgroups Based on Nodal Degree 

In this section we describe cohesive subgroup ideas that are based on 
the adjacency of subgroup members. These approaches are based on 
restrictions on the minimum number of actors adjacent to each actor 
in a subgroup. Since the number of actors adjacent to a given actor is 
quantified by the degree of the node in a graph, these subgroup methods 
focus on nodal degree. Subgroups based on nodal degree require actors to 
be adjacent to relatively numerous other subgroup members. Thus, unlike 
the clique definition that requires all members of a cohesive subgroup 
to be adjacent to all other subgroup members, these alternatives require 
that all subgroup members be adjacent to some minimum number of 
other subgroup members. 
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Fig. 7.3. A vulnerable 2-clique 

Subgroups based on adjacency between members are useful for under- 
standing processes that operate primarily through direct contacts among 
subgroup members. For example, Erickson hypothesizes that "multiple 
redundant channels of communication" will be related to the accuracy of 
information and the recognizability of subgroups (Erickson 1988, page 
108). 

These definitions arise in part because of the "vulnerability" of n- 
cliques. Seidman and Foster (1978) observed that n-cliques often are not 
robust. One measures robustness by considering "the degree to which the 
structure is vulnerable to the removal of any given individual" (Seidman 
and Foster 1978, page 142). Robustness is often assessed using measures 
of connectivity (see Chapter 4). Robust subgraphs are little affected by 
the removal of individual nodes. For example, consider the 2-clique in 
Figure 7.3 consisting of nodes 1,2,3, and 4. Although all pairs of nodes 
are within path distance 2 of each other, these paths all contain node 3. 
Node 3 is critical for the connections between other nodes. Furthermore, 
1,2, and 4 are not connected to each other through any paths that do 
not contain 3. This 2-clique is vulnerable to the removal of node 3. 

The possible lack of robustness of n-cliques was one consideration that 
led to the proposal of an alternative subgroup definition. This alternative 
definition, the k-plex, builds on the notion that cohesive subgroups 
should contain sets of actors among whom there are relatively numerous 
adjacencies (Seidman 1978; Seidman and Foster 1978). 
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7.4.1 k-plexes 

A k-plex is a maximal subgraph containing g, nodes in which each node 
is adjacent to no fewer than g, - k nodes in the subgraph. In other 
words, each node in the subgraph may be lacking ties to no more than k 
subgraph members. We denote the degree of a node i in subgraph 3, by 
d,(i). A k-plex as a subgraph in which d,(i) 2 (g, - k) for all ni E N, and 
there are no other nodes in the subgraph that also have d,(i) 2 (g, - k). 
That is, the k-plex is maximal. 

Since there are g, nodes in the subgraph, and we do not consider 
loops, the degree of a node within the subgraph cannot exceed g, - 1. 
Thus, if k = 1, the subgraph is a clique (the "missing" line is the reflexive 
line from the node to itself). As k gets larger, each node is allowed 
more missing lines within the subgraph. Since nodes within a k-plex will 
be adjacent to many other members, a k-plex is more robust than an 
n-clique, and removal of a single node is less likely to leave the subgraph 
disconnected. 

Seidman and Foster (1978) discuss properties of k-plexes. An important 
property of a k-plex is that the diameter of a k-plex is constrained by 
the value of k. Seidman and Foster prove that in a k-plex of g, nodes, if 
k < (g, + 2)/2, then the diameter of 3, is less than or equal to 2. Thus, 
if the value of k is small relative to the size of the k-plex, the k-plex will 
have a small diameter. They also note that if 3, is a k-plex with g, nodes, 
then for any subgraph Yk of k nodes from Y,, the set of nodes in Yk plus 
all nodes in $9, that are adjacent to the nodes in Yk constitute the node 
set of the k-plex 3,. Thus, if you take any subset of k nodes in a k-plex, 
and then consider these k nodes along with the nodes adjacent to them, 
then all nodes in the k-plex (from which the subset is drawn) either will 
be in the original subset of k nodes or will be adjacent to one of these 
nodes (Seidman and Foster 1978). 

An Example. Again, we return to the example of marriage and 
business relations for Padgett's Florentine families. We used the program 
UCINET IV (Borgatti, Everett, and Freeman 1991) for this analysis. 
Since 1-plexes are the same as cliques, we will examine the 2-plexes. Also, 
since k=2 means that two ties may be absent, we will restrict the size 
of the 2-plexes so that we only consider subgraphs with four or more 
members. For the marriage relation there are two 2-plexes, involving 
eight families : 

0 Albizzi Guadagni Medici Tornabuoni 
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0 Bischeri Castellani Peruzzi Strozzi 

Within each of these 2-plexes, each family is missing at most one marriage 
tie to one of the other families (since two ties can be missing, and one 
is the undefined reflexive tie). For the business relation there are three 
2-plexes, involving six families: 

0 Barbadori Castellani Lamberteschi Peruzzi 
Bischeri Castellani Lamberteschi Peruzzi 
Bischeri Guadagni Lamberteschi Peruzzi 

Notice that for both the marriage and the business relations there are 
relatively few Zplexes, compared to fairly numerous 2-cliques. 

Considerations. Choosing a useful value of k so that the resulting 
subgroups are both interesting and interpretable depends in part on the 
relationship between the sizes of the resulting subgroups and the chosen 
value of k. If the value of k is large relative to the size of a subgroup, 
then the k-plex can be quite sparse. For example, a 2-plex of size three 
might be meaningless, since all three nodes could be missing ties to k = 2 
other nodes. A 2-plex of size five could also be quite sparse, since each 
node could have two lines present and two lines absent, and still meet the 
2-plex requirement. Therefore, in practice the researcher should restrict 
the size of a k-plex so that it is not too small relative to the number of 
ties that are allowed to be missing. 

7.4.2 k-cores 

Another approach to cohesive subgroups based on nodal degree is the 
k-core (Seidman 1983b). A k-core is a subgraph in which each node 
is adjacent to at least a minimum number, k, of the other nodes in 
the subgraph. In contrast to the k-plex, which specifies the acceptable 
number of lines that can be absent from each node, the k-core specifies 
the required number of lines that must be present from each node to 
others within the subgraph. As before, we define the degree of node i 
within a subgraph, d,(i), as the number of nodes within the subgraph 
that are adjacent to i. We then define a k-core in terms of minimum 
nodal degree within the subgraph. A subgraph, 9,, is a k-core if 

d,(i) 2 k for all ni E N,. 
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A k-core is thus defined in terms of the minimum degree within a sub- 
graph, or the minimum number of adjacencies that must be present. 
Seidman (1983b) notes that although k-cores themselves are not nec- 
essarily interesting cohesive subgroups, they are "areas" of a graph in 
which other interesting cohesive subgroups will be found. 

7.5 Comparing Within to Outside Subgroup Ties 

The three general cohesive subgroup approaches discussed so far in this 
chapter are based on properties of ties within the subgroup (adjacency, 
geodesic distance, or number of ties among subgroup members). How- 
ever, as Seidman notes, cohesive subgroups ". . . in social networks have 
usually been seen informally as sets of individuals more closely tied to 
each other than to outsiders" (1983a, page 97). Thus, the intuitive notion 
of cohesive subgroup derives both from the relative strength, frequency, 
density, or closeness of ties within the subgroup, and the relative weak- 
ness, infrequency, sparseness, or distance of ties from subgroup members 
to nonmembers (Bock and Husain 1950; Alba 1973; Seidman 1983a; 
Sailer and Gaulin 1984; Freeman 1992a). 

As Alba (1973) has noted, there are at least two different aspects to 
the concept of a cohesive subgroup: the concentration of ties within the 
subgroup, and a comparison of strength or frequency of ties within the 
subgroup to the strength or frequency of ties outside the subgroup. Alba 
has referred to the comparison of within to between subgroup ties as the 
"centripetal-centrifugal" dimension of cohesive subgroups. This idea has 
led to subgroup definitions that compare the prevalence of ties within the 
subgroup to the sparsity of ties outside the subgroup (Alba 1973; Bock 
and Husain 1950; Freeman n.d.; Sailer and Gaulin 1984). In this section 
we describe methods for analysis of subgroups based on comparison of 
ties within the subgroup to ties outside the subgroup. 

The fourth cohesive subgroup idea is that cohesive subgroups should 
be relatively cohesive within compared to outside. Thus, instead of 
concentrating simply on properties of the ties among members within 
the subgroup, it is necessary to compare these to properties of ties to 
actors outside the subgroup. 

It will be useful to define some additional graph properties before 
we describe these methods. Recall that a graph Y consists of a set of 
nodes N, and a set of lines 9. To start we will restrict our attention 
to dichotomous, undirected graphs. We will be interested in subsets of 
nodes N, G N ,  and the subgraph Y, induced by node set N,. In 
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addition, we can denote the subset of nodes that are in N but not in N, 
as Nt = N - N,. Nt and N, are mutually exclusive and exhaustive 
subsets. Now, there are three sets of lines in the graph: lines between 
nodes within the subset N , ,  lines between nodes in N, and nodes in N , ,  
and lines between nodes within N,. There are g nodes in N ,  g, nodes 
in N,,  and g, = g - g, nodes in N , .  There are g(g - 1)/2 possible lines 
in the entire graph, gs(gs - 1)/2 possible lines within N, ,  and (g, x gt)/2 
possible lines between members of N, and "outsiders" belonging to N t .  

Let us first consider an "ideal" type of subgraph which exhibits the 
most extreme realization of a cohesive subgroup in which there are ties 
within the subgroup but not between subgroup members and outsiders 
(Freeman n.d.). Such an ideal subgroup would consist of ties between 
all pairs of members within the subgroup, and no ties from subgroup 
members to actors not in the subgroup. In graph theoretic terms, such a 
subgraph is a complete component of the graph. All nodes in a complete 
component are adjacent, and there are no nodes outside the subgraph 
that are adjacent to any node in the component. Freeman has called 
such a subgraph a strong alliance. A strong alliance is also a clique, since 
it is complete and maximal. But, a strong alliance is a stricter subgroup 
definition than is a clique. There are many cliques that are not strong 
alliances. 

A strong alliance is a stricter subgroup definition than a clique and 
is clearly too restrictive for data analytic purposes. However, there are 
natural graph theoretic relaxations of the strong alliance that define 
useful cohesive subgroup methods. Also a strong alliance provides a 
formal standard against which to compare observed cohesive subgroups 
to assess their cohesiveness. 

7.5.1 LS Sets 

An LS set is a subgroup definition that compares ties within the subgroup 
to ties outside the subgroup by focusing on the greater frequency of ties 
among subgroup members compared to the ties from subgroup members 
to outsiders (Luccio and Sami 1969; Lawler 1973; Seidman 1983a; 
Borgatti, Everett, and Shirey 1990). Seidman defines an LS set as 
follows : 

a set of nodes S in a social network is an LS set if each of its proper 
subsets has more ties to its complement within S than to the outside of 
S. (Seidman 1983a, page 98) 
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Consider the subgraph 9, with node set N,, and the subsets of nodes 
that can be taken from N,. We will define a subset of nodes taken from 
N, as 2 ,  SO that 2 c NS. The set of nodes, N,, is an LS set if any 
proper subset 2 c N, has more lines to the nodes in N, - 2 (other 
nodes in the subset) than to N - N, (nodes outside the subset) (see 
Seidman 1983a, page 97). 

The definition of an LS set compares the frequency of ties within and 
between subsets. There are three basic sets to consider: 2 c NS G N. 
The set 2 is a "wild card" that stands for any possible subset of nodes 
that can be selected from N, (the potential LS set). Next there are two 
additional sets that consist of nodes in one of these three sets but not in 
another: N - N, and N, - 2. There are two kinds of lines to consider: 
lines from 2 to N, - 2 and lines from 2 to N - N,. Lines within the LS 
set, N, (that is, from any subset of the nodes in the LS set to remaining 
LS set members), should be more numerous than lines from a subset of 
nodes in an LS set to non-LS set members. 

Seidman (1983a) and Borgatti, Everett, and Shirey (1990) have de- 
scribed several important properties of LS sets. First, since all subsets 
of the LS set have more ties within than outside the subset, they are 
relatively robust, and do not contain "splinter" groups. This leads Bor- 
gatti, Everett, and Shirey (1990) to hypothesize that LS sets in a network 
will be relatively stable through time. An important relationship between 
the LS sets in a given graph is that any two LS sets either are disjoint 
(share no members) or one LS set contains the other (Borgatti, Everett, 
and Shirey 1990). Unlike cliques, n-cliques, and k-plexes, LS sets cannot 
overlap by sharing some but not all members. The fact that LS sets are 
related by containment means that within a graph there is a hierarchical 
series of LS sets. 

7.5.2 Lambda Sets 

Recently, Borgatti, Everett, and Shirey (1990) have extended the notion 
of an LS set. Their approach, which they call a lambda set, is motivated 
by the idea that a cohesive subset should be relatively robust in terms of 
its connectivity. That is, a cohesive subset should be hard to disconnect 
by the removal of lines from the subgraph. The extent to which a pair 
of nodes remains connected by some path, even when lines are deleted 
from the graph, is quantified by the edge connectivity or line connectivity 
of the pair of nodes (see Chapter 4). The line connectivity of nodes i 
and j, denoted A(i, j), is equal to the minimum number of lines that must 
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be removed from the graph in order to leave no path between the two 
nodes. The line connectivity of two nodes is also equal to the number 
of paths between them that contain no lines in common (the number of 
line-disjoint or line-independent paths). The smaller the value of 1(i, j), 
the more vulnerable i and j are to being disconnected by removal of 
lines. The larger the value of 1(i, j), the more lines must be removed from 
the graph in order to leave no path between i and j. 

Using the notion of line connectivity, Borgatti, Everett, and Shirey 
(1990) define a lambda set. The logic of the definition of a lambda set 
is similar to the definition of an LS set. Consider pairs of nodes in the 
subgraph 9,, with node set N,. The set of nodes, N , ,  is a lambda set if 
any pair of nodes in the lambda set has larger line connectivity than any 
pair of nodes consisting of one node from within the lambda set and a 
second node from outside the lambda set. Formally, a lambda set is a 
subset of nodes, N, G N ,  such that for all i, j, k E N , ,  and 1 E N - N, ,  
1(i, j) > 1(k, 1). 

Since high values of 1 require high line connectivity within the lambda 
set, successively increasing values of 1 gives rise to a series of lambda 
sets in a given network. These lambda sets do not overlap unless one 
lambda set is contained within another. An advantage of lambda sets is 
that they are more general than LS sets. Any LS set in a network will 
be contained within a lambda set, and a given network is more likely to 
contain lambda sets than it is to contain LS sets (Borgatti, Everett, and 
Shirey 1990). 

One important property of lambda sets is that nodes within a lambda 
set are not necessarily cohesive in terms of either adjacency or geodesic 
distance, the two properties that are the basis for other kinds of cohesive 
subsets that we have discussed. Members of a lambda set do not need 
to be adjacent, and since there is no restriction on the length of paths 
that connect nodes within a lambda set, members of a lambda set may 
be quite distant from one another in the graph (Borgatti, Everett, and 
Shirey 1990). 

So far we have described formal definitions of cohesive subgroups. 
Now we turn to some measures of how cohesive a subgroup is. 

7.6 Measures of Subgroup Cohesion 

Several researchers have proposed measures for the extent to which 
ties are concentrated within a subgroup, rather than between subgroups 
(Bock and Husain 1950; Alba 1973; Sailer and Gaulin 1984; Freeman 
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n.d.). These measures are primarily descriptive, although Alba presents 
a probability model for his measure. The problem of assessing the 
"goodness" of an assignment of actors to cohesive subgroups within a 
network is related to issues we discuss in Chapter 16, under the topic 
of goodness-of-fit indices. In this section we present some descriptive 
measures, and leave the statistical approaches for later, after we have 
developed the necessary background (in Chapters 13 and 15). 

Bock and Husain (1950) proposed that one way to search for cohesive 
subgroups in a social network is iteratively to construct subgroups so 
tha; the ratio of the strength of ties within the subgroup to ties between 
subgroups does not decrease appreciably with the addition of new mem- 
bers. They note the similarity of this analytic problem to the analysis of 
sets of test items to identify subsets of highly correlated items. If there 
are g members in the whole network, and g, members in a subgroup N,, 
then a measure of the degree to which strong ties are within rather than 
outside the subgroup is given by the ratio: 
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The numerator of this ratio is the average strength of ties within the 
subgroup and the denominator is the average strength of the ties that 
are from subgroup members to outsiders. For a dichotomous relation 
the numerator is the density of the subgroup. For a valued relation the 
numerator is the average strength of ties within the subgroup. If the ratio 
is equal to 1, then the strength of ties does not differ within the subgroup 
as compared to outside the subgroup. If the ratio is greater than 1, then 
the ties within the subgroup are more prevalent (or stronger) on average 
than are the ties outside the subgroup. Bock and Husain suggest that 
cohesive subgroups of actors can be constructed by successively adding 
members to an existing subgroup, so long as the additional members do 
not greatly decrease the value of this ratio. 

As we mentioned above, Alba (1973) views the measure in equa- 
tion (7.2) in terms of two separate components. The numerator is a 
measure of the cohesiveness of a subgroup, and the denominator is a 
measure of sparsity of ties to actors outside the subgroup. Alba calls 
these the "centripetal" and "centrifugal" properties, respectively. Fur- 
ther, he presents formulas for the probability of obtaining the density 
of a subgroup equal to or greater than the observed density, given the 
density of the graph. 
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Alba (1973) uses the hypergeometric probability function to calculate 
the probability of observing exactly L, lines in a subgraph of g, nodes, 
taken from a graph with g nodes and L lines. Equivalently, this is 
the probability of drawing a random sample without replacement of 
g,(g, - 1)/2 dyads (the number of dyads within the subgroup) and 
observing exactly L, ties present, from a graph of g(g - 1)/2 dyads and 
L = x++/2 ties. The probability that the observed number of lines in 
the subgraph is equal to q is given by the following hypergeometric 
probability (Alba 1973, page 122): 

Equation (7.3) is the probability of obtaining exactly q lines in the 
subgraph. The probability that we are interested in is the probability of 
q or more lines; that is, the probability of a subgraph that is as dense 
or denser than the one we observe. Thus, we must sum the probabilities 
from equation (7.3) for values of q from L,, the observed number of lines 
in the subgraph, to its maximum possible, which is either g,(g, - 1)/2, 
the possible number of lines that could be present in the subgraph, or 
L = x++/2, the observed number of lines in the graph, whichever is 
less. The formula for the probability of observing q or more lines in a 
subgraph of size g, from a graph with L lines is: 

If the calculated probability in equation (7.4) is small, then the observed 
frequency of lines within the subgraph is greater than would be expected 
by chance, given the frequency of lines in the graph as a whole. Thus, 
this probability can be interpreted as a p-value for the null hypothesis 
that there is no difference between the density of the subgraph and the 
density of the graph as a whole. 

Freeman (n.d.) provides another approach to measuring the cohe- 
siveness of a subgroup. Freeman's measure is based on his model of 
strict alliances (see discussion above) and the extent to which a given 
subgroup approaches that strictly defined property. Sailer and Gaulin 
(1984) discuss several alternative measures of cohesiveness of a subgroup, 
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depending on how one conceptualizes the concentration of interactions 
within as opposed to outside the subgroup. 

So far we have described cohesive subgroup methods for dichoto- 
mous nondirectional relations. We now discuss extensions of cohesive 
subgroups to relations that are valued or directional. These extensions 
allow the cohesive subgroup ideas discussed in the previous sections to 
be applied to a much wider range of social network data. 

7.7 Directional Relations 

Cohesive subgroup ideas can be extended to directional relations. We will 
continue to restrict our attention to dichotomous relations. Recall that a 
directional relation is one in which a tie has an origin and a destination. 
A directional relation can be represented as a directed graph. An arc 
in the directed graph is present from i to j if i -+ j, or equivalently, if 
i "chooses" j. In a sociomatrix for a directional relation xij might not 
equal xji. 

There are several ways to define cohesive subgroups for directional 
relations. The most straightforward way is to consider only the recipro- 
cated ties that are present in the graph (Festinger 1949; Luce and Perry 
1949; Luce 1950). More generally, it is possible to define properties of 
connectedness for directional relations, and then use these properties to 
define cohesive subgroups for directional relations. We will discuss each 
approach in turn. 

7.7.1 Cliques Based on Reciprocated Ties 

Recall that the definition of a clique originally proposed by Festinger 
(1949) and Luce and Perry (1949) focused on directional affective re- 
lations and required that all ties between all pairs of clique members 
be reciprocated. Thus, cliques can be found in a directional relation 
by focusing only on those ties that are reciprocated (xi, = xji = 1). 
In analyzing a directional relation, this is equivalent to symmetrizing 
the sociomatrix by taking the minimum of the entries in corresponding 
off-diagonal cells. More precisely, we can define a new nondirectional 
relation, Smin, where 

1 if Xij  = Xji = 1, 
0 otherwise. 
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The new relation A?'"''" contains only ties that are reciprocated (xij = 

xji = 1) or nu11 (xi, = x,i = 0). The sociomatrix representation for 
this relation is symmetric. The relation Xmi" can then be analyzed 
using methods for finding cliques or other cohesive subgroups in a 
nondirectional relation. However, if there are few reciprocated ties the 
resulting symmetric relation will be quite sparse, and might not yield 
many cohesive subgroups. 

An Example. As an example of a clique analysis of a dichoto- 
mous directional relation we will consider the Friendship relation for 
Krackhardt's high-tech managers. Recall that each manager was asked, 
"Who are your friends?" Thus, a friendship tie is directed from one 
manager to another, and friendship choices need not be reciprocated. To 
find cliques (subsets of actors among whom all choices are reciprocated), 
it is necessary to analyze only those ties that are reciprocated. This is 
accomplished by symmetrizing the sociomatrix as described above. We 
analyzed the symmetrized sociomatrix for the friendship relation using 
UCINET IV (Borgatti, Everett, and Freeman 1991). There are six cliques, 
containing nine of the managers. 

Notice that these cliques are small, containing only the minimum three 
members, and there is considerable overlap among them. 

7.7.2 Connectivity in Directional Relations 

A more flexible way to extend cohesive subgroup ideas to directional re- 
lations uses definitions of semipaths and connectivity for directed graphs. 
These ideas generalize the definitions of path, path distance, and connec- 
tivity from graphs to directed graphs, and were defined in Chapter 4. We 
will begin by briefly reviewing the two kinds of paths for digraphs and 
then use these kinds of paths to describe four ways to extend the notion 
of connectivity and n-cliques to directed graphs (Harary, Norman, and 
Cartwright 1965; Peay 1975a, 1980). 
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Recall that a path from node i to node j in a directed graph is a 
sequence of distinct nodes, where each arc has its origin at the previous 
node and its terminus at the subsequent node. Thus, a path in a directed 
graph consists of arcs all "pointing" in the same direction. The length 
of a path is the number of arcs in it. A semipath from node i to node 
j is a sequence of distinct nodes, where all successive pairs of nodes are 
connected by an arc from the first to the second, or by an arc from the 
second to the first. In a semipath the direction of the arcs is irrelevant. 
The length of a semipath is the number of arcs in it. 

There are four different ways in which two nodes can be connected by 
a path, or semipath, of n arcs or fewer. Our definitions come from Peay 
(1980, pages 390-391). A pair of nodes, i, j, is: 

Weakly n-connected if they are joined by a semipath of length n 
or less 

Unilaterally n-connected if they are joined by a path of length n 
or less from i to j, or a path of length n or less from j to i 

Strongly n-connected if there is a path of length n or less from i 
to j, and a path of length n or less from j to i; the path from i 
to j may contain different nodes and arcs than the path from j 
to i 

Recursively n-connected if they are strongly n-connected, and the 
path from i to j uses the same nodes and arcs as the path from 
j to i, in reverse order 

These are increasingly strict connectivity definitions. A pair of nodes 
connected by a stricter kind of connectivity is also connected by weaker 
kinds. 

7.7.3 n-cliques in Directional Relations 

It is now possible to define four different kinds of cohesive subgroups 
based on the four types of connectivity (see Peay 1975, 1980). In each 
case, a cohesive subgroup is defined as a subgraph of three or more nodes 
that is maximal with respect to the specified property. The property is the 
kind of connectivity between the nodes in the subgraph. Since there are 
four kinds of connectivity in a directed graph, there are four definitions 
of cohesive subgroups. These are natural extensions of the definition of 
an n-clique described above. 
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(i) A weakly connected n-clique is a subgraph in which all nodes are 
weakly n-connected, and there are no additional nodes that are 
also weakly n-connected to all nodes in the subgraph. 

(ii) A unilaterally connected n-clique is a subgraph in which all nodes 
are unilaterally n-connected, and there are no additional nodes 
that are also unilaterally n-connected to all nodes in the sub- 
graph. 

(iii) A strongly connected n-clique is a subgraph in which all nodes 
are strongly n-connected, and there are no additional nodes that 
are also strongly n-connected to all nodes in the subgraph. 

(iv) A recursively connected n-clique is a subgraph in which all nodes 
are recursively n-connected, and there are no additional nodes 
that are also recursively n-connected to all nodes in the subgraph. 

As with the definitions of connectivity, these are increasingly strict cohe- 
sive subgroup definitions. 

Finding some kinds of n-cliques in directional dichotomous relations 
is straightforward. Finding weakly connected n-cliques and recursively 
connected n-cliques requires symmetrizing the relation using the appro- 
priate rule, and then using a standard n-clique algorithm. Since weakly 
connected n-cliques require a semipath of length n or less between all 
members, the direction of the arcs in the semipath is irrelevant. Thus, 
we can construct a symmetric relation, Xmax, with values x y ,  in which 
a tie is present from i to j if either i + j or j + i. The relation XmaX is 
defined as: 

Xmax = ma* = 1 if either xi,  = 1 or x,; = 1, 
X j i  0 otherwise. 

The n-cliques in Xmax are the weakly connected n-cliques in X .  
Recursively connected n-cliques require not only a path of length n or 

less between all pairs of members, but the paths must contain exactly 
the same nodes in the reverse order. Thus, one must only consider arcs 
in both directions. In order to find recursively connected n-cliques, one 
can construct a symmetric relation, Xmin (as defined above), in which a 
tie in Xmin is present only if both xi,  = 1 and x,; = 1. The n-cliques in 
Xmin are the recursively connected n-cliques in X.  

An Example. To illustrate n-cliques for a dichotomous direc- 
tional relation we will use the friendship relation from Krackhardt's 
high-tech managers. We only present the recursively connected 2-cliques 
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and the weakly connected 2-cliques, which, as we have discussed above, 
can be found by using an appropriately symmetrized sociomatrix, and a 
usual n-clique program (for example, in GRADAP or UCINET IV).  

There are eight recursively connected 2-cliques: 

Seventeen of the twenty-one managers belong to at least one of the 
recursively connected 2-cliques. Since managers 7 and 9 have outdegrees 
equal to 0 on this relation (they did not choose anyone on the friendship 
relation), they cannot belong to either recursively or strongly connected 
n-cliques. 

There are four weakly connected 2-cliques: 

All of the twenty-one managers belong to at least one of the four 
weakly connected 2-cliques, and the vast majority (fifteen of the twenty- 
one managers) belong to all of them. Clearly, these weakly connected 
2-cliques are not very cohesive. 

7.8 Valued Relations 

Relations are often valued. Valued relations indicate the strength or 
intensity of ties between pairs of actors. For instance, social network 
data can be collected by having each person indicate their degree of 
"liking for" or "acquaintance with" each other person in a group using 
a five point rating scale. Or, one could record the number of social 
occasions at which each pair of actors were both present. Cohesive 
subgroups in valued relations focus on subsets of actors among whom 
ties are strong or frequent; thus, ties among subgroup members should 
have high values. 
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Valued relations are 'represented as valued graphs. A valued graph, 
g ( N ,  9 ,  V), consists of a set of nodes, N ,  a set of lines, 9 ,  and a set 
of values, V ,  indicating the strength of each line. The value attached to 
a line codes the strength of the tie between the pair of actors. A valued 
relation can be represented as a sociomatrix where xi, is the value of 
the tie from actor i to actor j. We will assume that measurements on 
the valued relation are at least ordinal, and take on C values, such that 
0 I xi, I C - 1, for all i and j. The highest possible value indicates the 
strongest tie between any pair of actors. Smaller values of xi, indicate 
weaker ties. Thus, since the relation is assumed to be at least ordinal, 
if xi, c xkl, the tie from i to j is weaker than the tie from k to I .  For 
simplicity we will limit our attention to nondirectional valued relations. 
In a nondirectional valued relation the strength of the tie from actor i to 
actor j is the same as the strength of the tie from actor j to actor i .  If the 
relation is nondirectional xi, = xji for all i and j, and the sociomatrix is 
symmetric. 

In general, a cohesive subgroup of actors in a valued network is a 
subset of actors among whom ties have high values. Thus, if we consider 
the values attached to the ties among subgroup members, these values 
should be relatively high. Since the values of the ties range from 0 
(indicating the weakest possible tie) to C - 1 (indicating the strongest 
tie), more cohesive subgroups will have ties with values close to C - 1 
whereas less cohesive subgroups will have ties with values lower than 
C - 1. Thus, in a valued relation we can study cohesive subgroups that 
vary in the strength of ties among members. 

In studying cohesive subgroups in valued relations we will consider a 
threshold value, c, for the value of ties within the subgroup. By increasing 
(or decreasing) the threshold value we can find more (or less) cohesive 
subgroups. Since the values of the ties range from 0 to C - 1, the 
threshold value c can take on values between 0 and C - 1. 

We will now define a clique, n-clique, and k-plex for a valued relation. 
We then describe how valued relations can be analyzed to study these 
cohesive subgroups. Further discussion of cliques and related ideas for 
valued relations can be found in Doreian (1969) and Peay (1974, 1975a, 
1980). 

7.8.1 Cliques, n-cliques, and k-plexes 

Let us first define a clique at level c. A clique at level c is a subgraph in 
which the ties between all pairs of actors have values of c or greater, and 
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to the specified value, c. In this new dichotomous relation ties are 
present among all pairs of actors who have ties in X with values of c or 
greater. We denote this new, derived dichotomous relation as x('), with 
sociomatrix x(') = {x?)), 11 where 

1 if xi, 2 c 
0 otherwise. 

For any valued relation we can define an increasingly strict series of 
cutoff values, c, that spans the range of values 0 I c I C - 1. Each 
value of c defines a dichotomous relation and its corresponding graph 
and sociomatrix. With larger values of c, ties are present in x(') only if 
there is a relatively strong tie between actors in X. Thus for larger values 
of c, the relation X(') may be fairly sparse. For small values of c, a tie is 
present in X(') even if the strength of the tie in X is relatively low, and 
thus this relation can be fairly dense. In fact, a cutoff value of c = 0 
results in a complete relation (and a complete graph) since all defined 
values of x(O) will be equal to unity. Thus, in practice, there are C - 1 
nontrivial graphs that can be defined from a valued graph with C levels. 
It is important to note that for two cutoff values, c and c', with c' < c, 
all of the ties present in x(') will also be present in %-('I); in other words, 

"includes" X(')). 
We now illustrate cliques in a valued relation using a hypothetical 

valued graph and the dichotomous relations that can be derived from it. 

An Example. Figure 7.4 presents the sociomatrix for a valued 
relation and the graphs that can be derived from this relation. The values 
of the relation range from 0 to C - 1 = 5. Thus, there are five possible 
nontrivial graphs that can be derived from this valued relation using 
increasingly strict cutoff values. 

Consider the cliques that may be present in each derived graph, starting 
from the strictest cutoff value, c = 5. At the strictest cutoff, c = 5, there 
are no cliques. As c decreases there are more, and larger, cliques in the 
derived graphs. The results of a clique analysis of each of the five derived 
graphs are: 

0 c = 5: no cliques 
0 c = 4 :  {1,2,3) 
0 c =  3: {1,2,3) 

c = 2: {1,2,3) and {3,4,5) 
c = 1: {1,2,3,4) and {3,4,5) 
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Fig. 7.4. A valued relation and derived graphs 

Notice that the clique containing nodes 1,  2, and 3 that occurs at c = 4 
continues to be a clique, or is subsumed within a larger clique, at all less 
stringent values of c. 

In general, every derived dichotomous relation defines a graph that 
can be analyzed using methods for finding cohesive subgroups, described 
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above. For example, one can analyze each of the graphs derived from 
a valued relation and study the cliques, k-plexes, or n-cliques that may 
exist in each of the graphs. Each of the C - 1 graphs may (or may not) 
contain cohesive subgroups. 

Actors among whom ties have large values can appear in cohesive 
subgroups at strict cutoff levels, whereas actors among whom ties have 
small values can only appear in cohesive subgroups at less strict cut- 
off levels. As Doreian (1969) notes, analyzing the derived graphs for 
increasingly stringent values of c results in a hierarchical series of cohe- 
sive subgroups. This hierarchical series allows one to study the internal 
structure of cohesive subgroups. 

The approaches presented in this section generalize cohesive subgroup 
ideas that were initially developed for dichotomous relations and apply 
them to valued relations. Thus, the definitions of clique, n-clique, and 
k-plex remain the same, but are applied to dichotomous relations derived 
from the valued relation. An alternative approach for studying cohe- 
sive subgroups in valued relations is to define cohesive subgroup ideas 
specifically for valued relations (Freeman 1992a). 

7.8.2 Other Approaches for Valued Relations 

In a recent paper, Freeman (1992a) reviews sociological approaches to 
the concept of social "group" and discusses formalizations of this concept 
using data on frequency of interactions among people in naturally oc- 
curring communities. Data on interaction frequencies give rise to valued 
relations. Freeman's argument, expanding on ideas presented by Winship 
(1977) and Granovetter (1973), is that membership in a "group" should 
be characterized by relatively frequent face-to-face interactions among 
members. Specifically, if actors i, j, and k are members of a "group," 
then if i and j interact frequently, and j and k interact frequently, then 
i and k should have at least some amount of interaction. This idea of 
cohesiveness of subgroups builds on Granovetter's (1973) ideas of strong 
and weak ties, and extends the ideas of transitivity and clusterability 
to valued relations. Advantages of this approach are that the resulting 
cohesive subgroups form a hierarchical series, and different subgroups 
do not overlap unless one subgroup is fully contained within another. 



7.9 Interpretation of Cohesive Subgroups 283 

7.9 Interpretation of Cohesive Subgroups 

The result of a cohesive subgroup analysis is a list of subsets of actors 
within the network who meet the specified subgroup definition. For 
example, the result of a clique analysis is a list of the cliques in the 
network and the actors who belong to each clique. For a given analysis it 
might be the case that no subsets of actors meet the specified subgroup 
definition (for example, it might be that there are no cliques in a given 
network), or it might be the case that there are numerous subsets of 
actors that meet the specified subgroup definition (for example, the 
n-clique analysis of the marriage relation among Padgett's Florentine 
families resulted in thirteen 2-cliques). In any case, the researcher must 
interpret the results of the analysis. In this section we discuss three levels 
at which one might interpret the results of a cohesive subgroup analysis. 
These levels are the: 

(i) Individual actor 
(ii) Subset of actors 
(iii) Whole group 

In terms of individual actors, the simplest distinction is between actors 
who belong to one or more cohesive subset(s), and actors who do not 
belong to any cohesive subset. Thus, we can make a distinction between 
"members" and "non-members." One can then relate this distinction to 
other actor characteristics, for example, by studying whether subgroup 
"members" differ from "non-members" in theoretically important ways. 
It could also be the case that "non-members" occupy critical locations 
between groups; for example, they might have high betweenness central- 
ity. The network analysis program NEGOPY (Richards 1989a) uses a 
similar distinction to describe types of actors in a network. 

The result of a cohesive subgroup analysis can also be interpreted in 
terms of the characteristics of the members of the subsets. If the network 
data set contains information on attributes of the actors, then one can 
use these attributes to describe the subsets. For example, it might be the 
case that members of the same subgroup are more similar to each other 
than they are to outsiders. This method of interpretation was used by 
Alba and Moore (1978) to describe the composition of subgroups of elite 
decision makers. 

Finally, the result of a cohesive subgroup analysis can be used to 
describe the network as a whole. Consider two quite different ways 
that a network might be organized. On the one hand, a network could 
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be a single cohesive set. On the other hand, the network could be 
"fragmented" into two or more subgroups. In the first case, cohesive 
subgroups within the network would be largely overlapping, and would 
contain most of the actors in the network. We saw this pattern for the 
n-clique analysis of Friendship among Kackhardt's high-tech managers. 
In the second case, fragmentation of the network would show up as two 
or more cohesive subgroups that did not share members in common. 
Hence, the numbers of actors in the subgroups and the degree to which 
these subgroups overlap can be used to describe the structure of the 
network as a whole. 

7.10 Other Approaches 

All of the cohesive subgroup ideas discussed in the previous sections 
define specific graph theoretic properties that should be satisfied in order 
to identify a subset of actors as a cohesive subgroup. For all of these 
approaches, the analytic problem is to examine a set of social network 
data to see whether any subsets of actors meet the specified subgroup 
definition. The result is the possible assignment of actors to one or more 
cohesive subgroups. An alternative, and more exploratory, approach to 
cohesion in social networks seeks to represent the group structure in 
a network as a whole. Collections of actors among whom there are 
relatively strong ties can become more visible by displaying functions or 
rearrangements of the graphs or sociomatrices. We now describe these 
approaches. 

7.1 0.1 Matrix Permutation Approaches 

The earliest contributions to cohesive subgroup analysis of social net- 
works were concerned with systematic ways for ordering rows and 
columns of a sociomatrix to reveal the subgroup structure of a net- 
work (Forsyth and Katz 1946; Katz 1947). The subgroup structure is 
seen in the relative prevalence (or sparsity) of ties among some subsets 
of actors. An informative sociomatrix should make this subgroup struc- 
ture readily apparent. If there are subgroups of actors in a network 
who tend to choose each other and tend not to choose actors outside 
their subgroup, then it is very useful to rearrange the rows and columns 
of the sociomatrix so that actors in the same subgroup occupy rows 
(and columns) that are close to one another in the sociomatrix. Thus, 
there might be some "preferred ordering" of the rows and columns of 
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the sociomatrix that would best reveal the structure of the group (Katz 
1947). If one had objective criteria for this ordering, then different re- 
searchers could construct the same preferred sociomatrix. One could 
then inspect the rearranged sociomatrix and identify subgroups of actors 
among whom there are prevalent or strong ties. 

An important property of a good ordering of a sociomatrix is that sub- 
sets of actors who have strong ties to each other should occupy adjacent 
rows (and columns), or at least should occupy rows (and columns) that 
are close in the sociomatrix. If actors who "choose" each other occupy 
rows and columns that are close in the sociomatrix, then ties that are 
present will be concentrated on the main diagonal of the sociomatrix, 
and ties that are absent will be concentrated far from the main diagonal 
of the sociomatrix. For a dichotomous relation, 1's will be close to the 
main diagonal and 0's will be in the upper right and lower left of the 
sociomatrix. In analyzing a valued relation, ties with larger values will be 
concentrated along the main diagonal and ties with smaller values will 
be found in cells of the matrix that are off the main diagonal. 

The goal is to permute the rows (and simultaneously the columns) of 
the sociomatrix to concentrate "choices" along the main diagonal (Katz 
1947). Subgroups of actors who "choose" one another will then be close 
to each other in rows (columns) of the sociomatrix, and their choices will 
be close to the main diagonal of the sociomatrix. 

Since the mid-1940's, numerous authors have proposed objective crite- 
ria for permuting rows and columns of a matrix to concentrate "choices" 
along the main diagonal of a matrix (Katz 1947; Beum and Brundage 
1950; Coleman and MacRae 1960; Hubert 1985, 1987; Hubert and Ara- 
bie 1989; Hubert and Schultz 1976; Arabie, Hubert, and Schleutermann 
1990). Some of these methods are applicable to matrices in general, and 
are thus not restricted to sociomatrices. 

Figure 7.5 shows a small hypothetical sociomatrix, first in original 
order, and then with the rows and columns permuted so that actors who 
have ties to each other are close to one another in the sociomatrix. 

Systematic procedures for permuting rows and columns of a socioma- 
trix seek to minimize a function that quantifies the extent to which ties 
with high values are far from the main diagonal (assuming that high 
values code strong ties). Recall that xg is the value of the tie from actor i 
to actor j. Furthermore, i and j index the rows/columns of the socioma- 
trix (for example, i = 2 refers to row 2 of the sociomatrix). Therefore, 
we would like to have large values of xi, correspond to small differences 

1 
between the indices i and j. Small differences between the indices can be 
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X permuted 

Fig. 7.5. A hypothetical example showing a permuted sociomatrix 

quantified either by small values of li - j (  or by small values of ( i  - j )2 .  
The largest values of xi, should occupy cells in which the indices i and 
j are close. The smallest values of xi, should occupy cells in which the 
indices i and j are far apart. 

For an entire matrix a summary measure of how close large values of 
xij are to the main diagonal is given by: 

g g 

xij( i  - j )2  for i + j .  
i=1 j=1 

The quantity in equation (7.5) is relatively small when large values of xi, 
occupy cells of the sociomatrix with small differences between the indices 
i and j .  This quantity is relatively large when large values of xi, occupy 
cells of the sociomatrix with large differences between the indices i and 
j .  If the value of equation (7.5) is small, then the ordering of rows and 
columns in the sociomatrix places actors among whom there are relatively 
strong ties close to each other, as is desired. On the other hand, if the 
value of this quantity is relatively large, then the ordering of rows and 
columns in the sociomatrix probably is not the best possible ordering for 
revealing cohesive subgroups of actors. Katz (1947) suggests permuting 
rows and simultaneously columns of the sociomatrix to minimize this 
quantity. 

Beum and Brundage (1950), Coleman and MacRae (1960), and Arabie, 
Hubert, and Schleutermann (1990) suggest strategies for reordering rows 
and columns of the sociomatrix so that i and j corresponding to large 
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values of xij are moved closer together. This problem of sociomatrix 
permutation to optimize a given quantity is an instance of the more gen- 
eral analysis problem of combinatorial optimization. Finding the single 
best ordering of rows and columns of a data array is computationally 
intensive, and, short of trying all possible permutations, there may be no 
guarantee that the optimum has been reached. Algorithms for permuting 
rows and columns to minimize a given objective function can be found 
in Arabie, Hubert, and Schleutermann (1990 and references therein) and 
a more general review of this data analytic approach can be found in 
Arabie and Hubert (1992). 

The result of a matrix permutation analysis is a reordering of the 
rows and columns of the sociomatrix so that actors that are close in the 
sociomatrix tend to have relatively strong ties. However, a matrix permu- 
tation analysis does not indicate the boundaries between, or membership 
in, any subgroups that might exist in the network. Therefore, matrix 
permutation methods do not locate discrete subgroups. These methods 
do provide a preferred ordering in which to present a sociomatrix. Nev- 
ertheless, it can be quite informative to present the sociomatrix with rows 
and columns permuted to suggest the subgroup structure. 

Other approaches to subgroup identification include methods for pre- 
senting the subgroup structure of a social network using standard data 
analytic methods to display proximities among actors. Approaches in 
this tradition use multidimensional scaling, hierarchical clustering, or 
factor analysis to represent the proximities among network actors. We 
will briefly describe multidimensional scaling and factor analysis for 
representing proximities among actors. 

7.10.2 Multidimensional Scaling 

Often the researcher is confronted with a set of network data and simply 
wishes to display the proximities among actors in the group. Such rep- 
resentations can be quite useful for understanding the internal structure 
of the group, for revealing which actors are "close" to each other, and 
for presenting possible cleavages between subgroups. Standard clustering 
and multidimensional scaling techniques can be used to represent prox- 
imities among actors when appropriate network measures are used as 
input. 

Multidimensional scaling has been used by many network analysts to 
represent proximities among actors. Just a few of the many substantive 
examples include: studies of community elites (Laumann and Pappi 1973, 

I 
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1976), naturally occurring communities (Freeman, Romney, and Freeman 
1987; Freeman, Freeman, and Michaelson 1988; Arabie and Carroll 
1989; Doreian and Albert 1989), organizational culture (Krackhardt and 
Kilduff n.d.), scientific communities (Arabie 1977), and state supreme 
court precedents (Caldeira 1988). 

Multidimensional scaling is a very general data analysis technique, 
and there are numerous texts and articles describing multidimensional 
scaling (see for example Kruskal and Wish 1978; Schiffman, Reynolds, 
and Young 1981; and Coxon 1982). Multidimensional scaling seeks 
to represent proximities (similarities or dissimilarities) among a set of 
entities in low-dimensional space so that entities that are more proximate 
to each other in the input data are closer in the space, and entities that 
are less proximate to each other are farther apart in the space. The 
usual input to multidimensional scaling is a one-mode symmetric matrix 
consisting of measures of similarity, dissimilarity, or proximity between 
pairs of entities. To study cohesive subsets of actors in a network the 
input to multidimensional scaling should be some measure of pairwise 
proximity among actors, such as the geodesic distance between each pair 
of actors. The output of multidimensional scaling is a set of estimated 
distances among pairs of entities, which can be expressed as coordinates 
in one-, two-, or higher-dimensional space. Results are also displayed as 
a diagram in which the coordinates are used to locate the entities in the 
resulting one-, two-, or three-dimensional space. Using multidimensional 
scaling to study cohesive subgroups shows which subsets of actors are 
relatively close to each other in a graph theoretic sense. 

An Example. To illustrate multidimensional scaling for studying 
cohesive subgroups we use the marriage relation for Padgett's Florentine 
families. Recall that this relation is dichotomous and nondirectional. 
Analyzing the sociomatrix directly using multidimensional scaling is 
unwise. Since there are only O's and 1's in this matrix the multidimensional 
scaling solution would be very unstable. Instead, it is useful to compute 
a valued measure of proximity among pairs of actors. One such measure 
is the geodesic distance between pairs of actors. In our example we use 
the matrix of the geodesic distances among pairs of families as input to 
multidimensional scaling. We used GRADAP (Sprenger and Stokman 
1989) to calculate the path distances, and SYSTAT (Wilkinson 1987) 
to do the multidimensional scaling. The Pucci family is an isolate on 
the marriage relation and thus was omittedfrom the multidimensional 
scaling. The final multidimensional scaling solution in two dimensions 
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Fig. 7.6. Multidimensional scaling of path distances on the marriage 
relation for Padgett's Florentine families (Pucci family omitted) 

has stress equal to 0.0198 (Kruskal, stress form 1). This result is presented 
in Figure 7.6. 

Notice in Figure 7.6 that one of the most prominent families, Medici, 
is located in the center of the plot. It is also interesting to note that the 
six families (Bischeri, Castellani, Guadagni, Lamberteschi, Peruzzi, and 
Strozzi) identified by Kent (1978; also see Breiger and Pattison 1986) as 
being in the anti-Medici faction are, without exception, all on the right 
side of the plot. 
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7.1 0.3 OFactor Analysis 

Factor analysis of sociometric data was quite widespread and influential 
in the early history of network analysis (Bock and Husain 1952; MacRae 
1960; Wright and Evitts 1961). Both direct factor analysis (in which a 
sociomatrix is input directly into a factor analytic program) and factor 
analysis of a correlation or covariance matrix derived from the rows (or 
columns) of a sociomatrix have been used to reveal aspects of network 
structure. In studying cohesive subgroups, Bonacich (1972b) shows that 
if a group contains non-overlapping subsets of actors in which actors 
within each subset are connected by either adjacency or paths, then a 
factor analysis of the sociomatrix will reveal this subgroup structure. 
However, one should be quite cautious about using factor analysis on 
dichotomous data, since results can be quite unstable. 

Although factor analysis can be used to study cohesive subgroups in an 
exploratory way, the most influential and important cohesive subgroup 
ideas are those (such as cliques and related ideas) that express specific 
formal properties of cohesive subgroups and locate such subgroups that 
might exist within a network data set. 

7.11 Summary 

In this chapter we have presented methods for studying cohesive sub- 
groups in social networks, for dichotomous nondirectional relations, 
directional relations, and valued relations. These methods are motivated 
by theoretically important properties of cohesive subgroups, and present 
alternative ways of quantifying the idea of social group using social 
networks. We also presented methods for assessing the cohesiveness of 
subgroups. 


