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Abstract

This paper proposes a damped constant elasticity variance (CEV) stochastic volatility
(DCEV) model, which remedies the possible explosive behavior of the CEV model
and also accommodates the mean-reverting dynamics more appropriately than the
nonlinear drift (NLD) stochastic volatility model. As the DCEV model maintains the
linear drift, an analytic formula is available to efficiently infer latent variances from
VIX levels, after which both its physical and risk-neutral parameters can be simultan-
eously estimated with the maximum-likelihood approach given S&P 500 returns and
inferred variances. The DCEV model outperforms the CEV and NLD models in in-
sample fitting performance and in out-of-sample variance forecasting under the
physical measure. It also exhibits superior ability in out-of-sample option pricing
over the CEV and Heston’s (1993) models under the risk-neutral measure. This satis-
factory performance demonstrates the suitability of describing volatility dynamics
with the DCEV model and the potential of applying this to study other issues.

Key words: constant elasticity variance (CEV), damping function, linear drift, nonaffine stochastic

volatility model, nonlinear drift

JEL classification: G10, G13

Since volatility dynamics are critical in derivative pricing, risk management, and even asset al-

location, there is a growing literature investigating the empirical performance of the stochastic

volatility (SV) model. According to Duffie, Pan, and Singleton (2000), an affine jump-

diffusion model (hereafter termed simply “affine model”) is defined such that the drift vector,

instantaneous covariance matrix, and jump intensities all have affine dependence on the state

vector. Under this framework, analytical tractability can be attained for a wide variety of

valuation and estimation problems. One of the most classical affine SV models is Heston’s

(1993) square root (SQR) SV model, which considers the SQR of variance in the diffusion

part of the proposed SV model to account for time-varying volatility and the leverage effect.

However, an empirical consensus has gradually formed that the SQR model is insufficient to
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describe the dynamics of equity returns. As a result, this paper—along with abundant litera-

ture—focuses on exploring a more appropriate SV model to fit empirical data.

By maintaining the affine property, Bates (1996) proposes an SQR model augmented

with price jumps and finds it captures the possibility of discontinuities in the stock price dy-

namic. Bakshi, Cao, and Chen (1997) show that the inclusion of price jumps in the SQR

model has little effect on pricing and hedging longer-maturity S&P500 index options, but

worsens the hedging performance for shorter-maturity options. Bates (2000) evaluates the

performance of the two-SQR SV model with price jumps on pricing S&P 500 futures

options and concludes that price jumps are necessary even with an additional volatility fac-

tor. Pan (2002) adopts the SQR model with price jumps to price S&P 500 index options

and finds that jump specification is important in explaining time-varying volatility smirks.

Eraker, Johannes, and Polson (2003) study an SQR model with contemporaneous jumps in

price and volatility dynamics and conclude that the proposed model improves fitting per-

formance on the S&P 500 index price. However, exploiting the similar model specification

of Eraker, Johannes, and Polson (2003), Eraker (2004) argues that jumps have little or no

effect on pricing S&P 500 index options. Broadie, Chernov, and Johannes (2007), by con-

trast, find strong evidence of improvement from introducing price and volatility jumps into

the SQR model for pricing S&P 500 futures options. The impacts from introducing jumps

in affine SV models are mixed, which implies the actual source of problems may arise from

the affine specification of SV models.

In order to capture richer volatility structures, research has been conducted on nonaffine

SV models with more flexible drift or diffusion functions that can be incorporated to match

higher-moment statistics observed in actual data. There are two major categories of nonaffine

SV models. The first exploits the concept of the constant elasticity of variance to model the

diffusion part in an SV model [called a constant elasticity variance (CEV) model hereafter].

Ait-Sahalia and Kimmel (2007) examine the fitting performance of a CEV model for the S&P

500 and VIX indices and argue that the SQR model is misspecified. Duan and Yeh (2010) es-

timate a jump-diffusion CEV model with spot prices and theoretical volatility levels, which

are analytically transformed from VIX index values. They conclude that the CEV model out-

performs the SQR model even with the existence of jumps. For modeling the S&P 100 index,

Jones (2003) proposes an extended CEV model with two CEV components, one (the other)

of which is perfectly correlated with (independent from) the spot Brownian motion. His em-

pirical results suggest that the proposed model exhibits better explaining power for price

returns than a jump-diffusion SQR model. Kaeck and Alexander (2012) also propose a CEV

model with a stochastic long-run volatility mean and contemporaneous jumps in both spot

and volatility to fit the S&P 500 and VIX indices; they find that either the CEV model or

GARCH (generalized autoregressive conditional heteroskedasticity) model (with a unity ex-

ponent term for the CEV diffusion) outperforms the SQR model.

The second category of nonaffine SV models replaces the mean-reverting linear drift

(LD) with a more general non-linear drift in an SV model (NLD model henceforth). Unless

otherwise specified, the NLD model discussed in this paper follows Ait-Sahalia’s (1996)

NLD interest rate model to formulate the drift term as a0 þ a1Xt þ a2X2
t þ a3X�1

t

� �
1 and

1 Other NLD literature may consider a less generally quadratic drift term, such as Ahn and Gao

(1999) and Christoffersen, Jacob, and Mimouni (2010). In additional to the NLD and CEV models, a

stochastic log volatility model is studied in Durham (2007, 2013) and Ferriani and Pastorello (2012).
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the diffusion term as a CEV variance of rXc
t , where Xt denotes the value of the state vari-

able. The restrictions of a2 < 0 and a3 > 0, respectively, capture reversals in the drift at

the high and low ends of the spectrum of the state variable. Generally speaking, the mean-

reverting property of the NLD method is reinforced near both ends, compared with the LD

model. Bakshi, Ju, and Ou-Yang (2006) test the fitting performance of the NLD model by

directly taking the VXO index as the proxy of volatility and find that the NLD model out-

performs LD-based affine and nonaffine models. Moreover, the investigations of the S&P

500 and VIX indices in Christoffersen, Jacob, and Mimouni (2010), the VIX index and

realized volatility in Chourdakis and Dotsis (2011), the S&P 500 index in Ignatieva,

Rodrigues, and Seeger (2015), and the S&P 100 and VXO indices in Mijatovic and

Schneider (2014) are also employed to examine the importance of NLD for volatility dy-

namics. All of the above-mentioned SV models are summarized and classified in Table 1.

This paper differs in that it is the first time a damping function has been used to formu-

late the diffusion part of the SV model. Instead of combining the NLD and CEV models,

we maintain the LD and follow Li (2010)2 in introducing a damped superimposed CEV dif-

fusion into an SV model (henceforth termed the DCEV model). There are several potential

merits regarding this specification. First of all, due to the appealing LD property, our

DCEV model has a closed-form solution for the expected volatility, which is a desired

quantity in many applications and more importantly helpful for us to efficiently extract la-

tent volatility values from prevailing VIX levels. Second, the DCEV model may be more ap-

propriate for describing the mean-reverting property when the value of the state variable is

near its high and low ends. When the value of the state variable is high, the damping func-

tion and thus the diffusion term approaches zero. Consequently, interference from the dif-

fusion term is minimized such that the downward mean-reverting force from the LD is

effectively pronounced, which is analogous to the effect of a2X2
t for a2 < 0 in the NLD

model to enhance the mean-reverting force when the state variable is high. When the value

of the state variable is low, the term a3X�1
t for a3 > 0 in the NLD model represents an ex-

tremely strong mean-reverting force (due to the singularity point at the lower-end value of

the state variable) to pull up the value of the state variable. However, this force is not neces-

sarily observed in the real world. For a market experiencing a calm period, it is possible to

observe a volatility that remains low for a while, but an NLD with the term of a3X�1
t

(a3 > 0) almost eliminates this possibility. Finally, pure CEV diffusion could lead to diffi-

culty in estimation for exponent terms significantly greater than 1, which could result in an

explosive scenario for some high levels of the state variable. In contrast, the DCEV model

eliminates this possibly explosive behavior by governing the effective variants of CEV diffu-

sion for high state variable values. These merits motivate us to employ the DCEV model to

capture SV dynamics. To the best of our knowledge, this paper is the first to propose and

empirically examine a DCEV model for SV.

Note that in this paper we do not account for the jump feature, because we believe that

the choice of an appropriate volatility dynamic is far more important than the inclusion of

2 Li (2010) is the first to apply the DCEV model to formulate the stochastic interest rate process. He

suggests that a more appropriate diffusion function may be more valuable than the NLD model, be-

cause the DCEV stochastic interest rate model outperforms Ait-Sahalia’s (1996) NLD stochastic

interest rate model for 1963–1998 federal funds rates, even though the DCEV model has fewer

parameters than the NLD model.
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jumps in spot prices or volatilities. The same argument can be found in Jones (2003) and

Kaeck and Alexander (2012).3 In fact, as long as one first identifies a best-performing SV

Table 1 Classification of SV models

Information sets

for estimation

Affine SV model Nonaffine SV model

S Eraker, Johannes, and

Polson (2003), SQR_CJ

Chacko and Viceira (2003), CEV_J;

Chernov et al. (2003), CEV_CJ;

Ignatieva, Rodrigues, and Seeger (2015),

NLD_CJ

V Bakshi, Ju, and Ou-Yang (2006), NLD;

Chourdakis and Dotsis (2011), NLD

Option Heston (1993), SQR;

Bates (1996, 2000), SQR_J;

Bakshi, Cao, and Chen (1997),

SQR_J;

Pan (2002), SQR_J;

Broadie, Chernov, and Johannes

(2007), SQR_CJ

S and Option Eraker (2004), SQR_CJ Christoffersen, Jacob, and Mimouni (2010),

NLD_J

S and V Jones (2003), CEV;

Ait-Sahalia and Kimmel (2007), CEV;

Duan and Yeh (2010), CEV_J;

Kaeck and Alexander (2012), CEV_CJ;

Mijatovic and Schneider (2014), NLD;

Proposed model: DCEV

Notes: This table classifies SV models according to their affine or nonaffine property and different information

sets used for estimation. The “S” or “V” sets, respectively, correspond to estimation using series of spot prices

or realized (or inferred) volatilities. “SQR” indicates the SQR SV model specified in Heston (1993). “J” or

“CJ,” respectively, represent spot price jumps or contemporaneous jumps in spot and volatility. “NLD” and

“CEV” indicate a non-linear drift term [in Ait-Sahalia’s (1996) form] and constant elasticity of variance diffu-

sion, respectively. Except for Bakshi, Ju, and Ou-Yang (2006) and Mijatovic and Schneider (2014), the NLD

models discussed here are all accompanied with the CEV diffusion term. Bakshi, Ju, and Ou-Yang (2006) use a

diffusion function in the form of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b0 þ b1Vt þ b2Vc

t

p
, and Mijatovic and Schneider (2014) adopt a GARCH-

type diffusion term by fixing the exponent of the CEV diffusion to be unity. For non-NLD models, they follow

the same LD term as that in Heston (1993).

3 Recent literature which examines SV models by testing the pricing performance for VIX derivatives

also supports this argument. For example, Branger, Kraftschika, and Volkerta (2016) find that the

most important factor to include in a variance process is a stochastic mean-reversion long-term

mean, followed by a stochastic volatility of volatility, and finally followed by variance jumps. In Lo

et al. (2019), they find that it is always useful to include the second variance component. When

examining short-term (shorter than 60 days) contracts, the improved performance for introducing

variance jumps is comparable to that of introducing the second variance component. Only when

examining long-term (longer than 180 days) contracts, incorporating the variance jump in the
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model with the absence of jumps, adding jumps in spot price or volatility processes definite-

ly may enhance the in-sample fitting performance in most cases. Meanwhile, it is not rare

to find that the out-of-sample forecasting power is not improved after the inclusion of

jumps, see Kaeck and Alexander (2012) for example. We note that the inclusion of jumps

may cause problems with overfitting, and the question of whether infrequent jumps occur

in out-of-sample data may affect significantly the out-of-sample performance of an SV

model with jumps. To avoid unexpected issues caused by jumps, this paper focuses on

investigating the best-performing SV dynamic without jumps.

To estimate our DCEV model, we employ both the series of spot prices and inferred var-

iances due to several reasons. First, a relatively long sample period is needed to obtain reli-

able estimations if using only the series of spot prices, since the instantaneous variance is

nonobservable and its effect is hidden in the series of spot prices. Second, employing indi-

vidual spot price or volatility time series for estimation disregards the correlation between

them, but the negative correlation between the asset price and its volatility is an important

and unneglectable feature for various financial issues. Third, option data allow the accurate

estimation of latent volatility because volatility is an important factor in determining the

option price. However, with approaches using only option-implied volatilities, it is difficult

to estimate physical-measure parameters (i.e., parameter values in the real world) and de-

termine their statistic inferences. Due to these concerns, there is a growing stream of litera-

ture exploiting both spot returns and derivatives (such as options or volatility proxies) to

estimate SV models. This paper also adopts this type of estimation method. To be more spe-

cific, we follow Jones (2003), Ait-Sahalia and Kimmel (2007), Duan and Yeh (2010),

Kaeck and Alexander (2012), and Mijatovic and Schneider (2014) to estimate the series of

latent volatilities and then employ both the series of logarithmic spot returns and inferred

variances to simultaneously estimate the physical and risk-neutral parameters for the pro-

posed model. In addition to distinguishing affine or nonaffine SV models, in Table 1 we

also categorize SV models according to the information sets used for estimation. The pro-

posed DCEV model and the estimation method utilized in this paper belong to the category

on the lowest right block.

Since volatility is nonobservable, several methods have been proposed to extract volatil-

ity levels from other asset prices. Bakshi, Ju, and Ou-Yang (2006) simply use volatility

indexes as proxies for latent volatility levels, although they should not be the same theoret-

ically. Bates (1996, 2000); Bakshi, Cao, and Chen (1997); Pan (2002); and Broadie,

Chernov, and Johannes (2007) obtain implied volatilities by calibrating option data.

Chernov et al. (2003); Eraker, Johannes, and Polson (2003); and Ignatieva, Rodrigues, and

Seeger (2015) employ simulation approaches to infer latent volatility levels solely based on

stock price data. However, calibrating options and simulation approaches are both time-

consuming. Utilizing a suitable volatility proxy is clearly a more efficient method. Duan

and Yeh (2010) propose an efficient approach to extract instantaneous volatility levels of

the S&P 500 index given observations of the VIX index. Due to the fact that the latent vola-

tility level can be expressed as a function of VIX, Duan and Yeh (2010) propose an analytic

variance component with a lower mean-reversion speed does further improve the pricing fit given

the presence of the second variance component.
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transformation between the two by exploiting the LD property.4 Once the volatility level

can be inferred, Duan and Yeh (2010) discretize the stochastic differential equations using

the Euler method and estimate both physical and risk-neutral parameters of their jump-

diffusion CEV model by maximizing the likelihood value of the joint density function of

spot returns and inferred variances. Many papers have adopted procedures similar to Duan

and Yeh (2010) to extract volatility levels but employ methods other than the maximum-

likelihood method to estimate the joint density function of spot prices and volatilities, such

as the Markov chain Monte Carlo (MCMC) method in Jones (2003) and Kaeck and

Alexander (2012), likelihood expansion based on Hermite polynomials in Ait-Sahalia and

Kimmel (2007), or expected maximum likelihood in Mijatovic and Schneider (2014).

Recall that since this paper takes advantage of the DCEV model rather than the NLD

model to govern the volatility mean-reverting behavior, we can thus retain the LD term in

DCEV model, which allows us to adopt a similar method to that suggested in Duan and

Yeh (2010) to infer volatility levels.

To show the advantages of the proposed DCEV model in estimating both physical and

risk-neutral parameters, we conduct several experiments to investigate its in-sample fitting

and out-of-sample forecasting performance. The in-sample test evaluates the fitting per-

formance of the DCEV, pure CEV, and NLD models based on daily spot price and VIX

index data from 1996 to 2017. As for inferring latent volatility, Duan and Yeh’s (2010)

analytic transformation approach is utilized for the DCEV and CEV models. Furthermore,

to ensure the comparability with the NLD model for which there is no simple translation

between the VIX index and the instantaneous volatility, we mimic Duan and Yeh’s (2010)

transformation form by introducing a data-implied linear relationship to approximately

infer latent variance from the squared VIX index for the NLD model. After obtaining

inferred variances, all of the examined models can be estimated through the maximum-like-

lihood method. For the in-sample analyses, the DCEV model always outperforms the com-

peting models in terms of a higher log-likelihood (LL) value, a smaller Akaike information

criterion (AIC) or a smaller Hong and Li’s (2005) Q-statistic, which shows that the superior

performance of the DCEV model arises from the advanced model specification rather than

the inclusion of additional parameters. In the out-of-sample analyses, we consider two

experiments: variance forecasting for the realized variance (RV) based on the physical

parameters and option pricing for S&P 500 index options based on the risk-neutral param-

eters. Empirical results indicate that the DCEV model demonstrates a superior ability in

forecasting future volatilities and pricing option contracts in almost all cases in terms of its

smaller squared forecasting and pricing errors.

4 It is worth noting that for NLD models, one can still express the latent volatility level as a function

of VIX, but the analytic transformation is unavailable and numerical methods must be used to infer

volatilities from VIX. To the best of our knowledge, Chourdakis and Dotsis (2011) are the only ones

to propose a Markov-chain approximation method to numerically transform the VIX to the latent

volatility for an SV model with Ait-Sahalia’s (1996) NLD specification. Their method is complicated

to implement; also, since the drift and diffusion terms are functions of the latent volatility, the as-

sumption that transition probabilities fall within [0,1] may not hold for all parameter values or volatil-

ity levels.
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The paper is organized as follows. Section 1 details the proposed DCEV model and esti-

mation method. The dataset and empirical results are reported in Section 2. We conclude

the paper in Section 3.

1 DCEV Model and Estimation Method

In the proposed DCEV model, the dynamics of the spot price (St) and its variance (Vt) sat-

isfy the following stochastic differential equations under the physical measure:

dlnSt ¼ l� q� 0:5Vtð Þdt þ
ffiffiffiffiffi
Vt

p
dWS

t ;

dVt ¼ jP hP � Vt

� �
dt þ r1V0:5

t D1 Vtð Þ þ r2Vc
t D2ðVtÞ

h i
dWV

t ; (1)

where l is the instantaneous expected growth rate; q is the dividend yield; jP is the speed of

mean reversion; hP is the long-run variance level; r1, r2, and c are the parameters of the

CEV-style diffusion terms of the variance process; DiðVtÞ, for i ¼ 1; 2, are two continuous-

ly differentiable damping functions; and WS
t and WV

t are two standard Brownian motions

with a correlation q. Following Li (2010), we consider the exponential-form damping func-

tions as D1 Vtð Þ ¼ D2 Vtð Þ ¼ e�8V4
t . Under this setting, the damping function as well as the

diffusion part in Equation (1) approaches zero when Vt is high. Consequently, the effect of

the downward mean-reverting force from the LD becomes more pronounced due to the ab-

sence of interference from the diffusion parts. When the value of Vt is low, the damping

functions approach unity and the proposed DCEV model behaves like an extended CEV

model. Equation (1) is a general SV model that nests many classical affine or nonaffine SV

models in the literature as special cases; these include the SQR, CEV, GARCH, and 3/2

(fixes the exponent term of a CEV model to 1.5) models. All nested models based on

Equation (1) are summarized in Table 2.

To express the VIX level as a function of the nonobservable Vt, we follow the standard

martingale pricing approach in Duan and Yeh (2010). Under the risk-neutral measure, the

system corresponding to Equation (1) becomes

dlnSt ¼ r� q� 0:5Vtð Þdt þ
ffiffiffiffiffi
Vt

p
d ~W

S

t ;

dVt ¼ j h� Vtð Þdt þ r1V0:5
t D1 Vtð Þ þ r2Vc

t D2ðVtÞ
h i

d ~W
V

t ; (2)

where r is the risk-free rate, j ¼ jP þ dV , h ¼ jPhP= jP þ dV

� �
, dV represents the market price

of volatility risk, and ~W
S

t and ~W
V

t are two standard Brownian motions under the risk-neutral

measure with a correlation q. Following Duan and Yeh (2010), the squared VIX at time t

equals the expected risk-neutral integrated variance over the future horizon s ¼ 21=252:

VIX2
t ¼

1

s

ðtþs

t

E
Q
t ðVuÞdu; (3)

where EQ
t ð�Þ represents the expected value at time t under the risk-neutral measure Q. As long

as the drift function in Equation (2) is a linear function of Vt, Equation (3) can be evaluated as
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VIX2
t ¼

1

s

ðtþs

t

½Vte
�ju þ hð1� e�juÞ�du;

which results in the following Vt-VIX2
t linear relationship whose intercept and slope are

functions of jP, hP, j, and s:

Vt ¼
jPhP

j
1� js

1� e�js

� �
þ js

1� e�js
VIX2

t : (4)

The derivation details of Equation (4) can be found in Duan and Yeh (2010).

1.1 In-Sample Estimation Method

To estimate parameters in the stochastic process system of ðSt;VtÞ, we implement a two-

step procedure as follows based on both the time series of S&P 500 index prices and VIX

indices in the DCEV and CEV models:

Step i. Divide each observation of the VIX level by 100 and then square the result to ob-

tain VIX2
t , the scale of which is thus consistent with Vt. Next, by exploiting Equation (4),

express the latent variance Vt as a function of VIX2
t , j (¼ jP þ dV), and h

(¼ jPhP= jP þ dV

� �
) such that the parameters jP, hP, and dV can be estimated.

Step ii. The Euler discretization method is applied to Equation (1), that is,

lnStþDt � lnSt ¼ l� q� 0:5Vtð ÞDt þ
ffiffiffiffiffiffiffiffiffiffi
VtDt

p
eS
t ;

VtþDt � Vt ¼ jP hP � Vt

� �
Dt þ r1V0:5

t D1 Vtð Þ þ r2Vc
t D2ðVtÞ

h i ffiffiffiffiffi
Dt
p

gV
t ; (5)

where gV
t ¼ qeS

t þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p
eV
t , ei

t � NDð0;1Þ (standard normal distribution) for i ¼ S; V,

and Dt ¼ 1=252 (one trading day). Denote the parameter set of the DCEV model as

H ¼ ðjP; hP; r1; r2; c; q; dVÞ. The joint density function for lnStþDt and VtþDt conditional

on lnSt and Vt can be approximated by

f lnStþDt;VtþDtjlnSt; Vt; Hð Þ ¼ /2ðlnStþDt; VtþDt;l1;l2; .
2
1; .

2
2; qÞ � C; (6)

where C ¼ js=ð1� e�jsÞ is the Jacobian transformation from VIX2
t to Vt, and /2ð�Þ is the

bivariate standard normal density function with

l1 ¼ lnSt þ l� q� 0:5Vtð ÞDt;

Table 2 Nested SV models of proposed DCEV model

Model c D1ðVtÞ D2ðVtÞ

DCEV Free e�8V4
t e�8V4

t

CEV Free 0 1

3/2 3/2 0 1

GARCH 1 0 1

SQR 1=2 1 0

Note: Parameter settings for the nested SV models of the proposed DCEV model.
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l2 ¼ Vt þ jP hP � Vt

� �
Dt;

.1 ¼
ffiffiffiffiffiffiffiffiffiffi
VtDt

p
;

.2 ¼ r1V0:5
t D1ðVtÞ þ r2Vc

t D2ðVtÞ
h i ffiffiffiffiffi

Dt
p

:

Note that the instantaneous expected ex-dividend growth rate, l� q, is estimated by

annualizing the arithmetic average of the daily returns during the whole-sample or sub-

sample period to avoid possible overidentification for the drift term of the spot price.

Finally, we estimate H by maximizing the LL function:

LL ¼
X

ti

ln/2 lnStiþDt; VtiþDt;l1;l2; .
2
1; .

2
2; q

� �
þNln

js
1� e�js

� �
; (7)

where ti for i ¼ 0; . . . ;N � 1 represent the examined trading dates and there are a total of

ðN þ 1Þ observations of daily data in the estimation period.

For comparison, we also estimate the NLD model. However, the above two-step estima-

tion method is unavailable for the NLD model since there is no simple translation between

the VIX index and the latent variance Vt for the NLD model.5 To make the NLD and

DCEV models comparable, we assume that there is a linear relationship between latent

variance Vt and VIX2
t under the NLD model similar to Equation (4), that is,6

Vt ¼ aþ bVIX2
t (8)

Equipped with Equation (8), the parameters of l2, .2, and C in Equation (6) are

replaced with

l2 ¼ Vt þ a0 þ a1Vt þ a2V2
t þ a3V�1

t

� �
Dt;

5 A naive estimation method for the NLD model is to skip Step i by following Bakshi, Ju, and Ou-

Yang’s (2006) assumption to simply approximate the latent variance Vt by the VIX index. Under this

setting, we can estimate the NLD model by slightly modifying Step ii as follows. First, Equation (6) is

altered by eliminating the second term of the Jacobian transformation. Second, we further revise

the variance-related parameters in the bivariate normal density function l2 and .2 to be the drift

and diffusion functions of NLD model. Finally, the parameter set of the NLD model is represented

by H ¼ ða0; a1; a2; a3; r; c; qÞ. This naive method is also implemented in the previous ver-

sion of this paper. Since this method does not properly formulate the relationship between the VIX

index and instantaneous variance and its fitting performance is inferior to that of the method intro-

duced below, this paper does not report the estimation results of the naive method. However, this

part of the estimation results is available from the authors upon request.

6 Computational time is the primary reason why we do not employ a brute-force numerical method to

evaluate Equation (3) and thus express VIX2
t as a function of Vt for the NLD model. Note that given

the required calculation for the double integration, it is already time-consuming to calculate VIX2
t

numerically based on Vt , not to mention that one must further numerically solve the latent Vt based

on the observed VIXt . Finally, the computational time may increase by several orders of magnitude

when the above numerical method is incorporated into our optimization procedure to maximize the

likelihood value. Similar arguments are mentioned in Chourdakis and Dotsis (2011).
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.2 ¼ rVc
t

ffiffiffiffiffi
Dt
p

;

C ¼ b:

Consequently, the NLD model can be estimated using the same two-step procedure for

estimating the DCEV model given its parameter set of H ¼ ða0; a1; a2; a3; r; c; q; a; bÞ.
It is worth noting that the introduction of Equation (8) is merely a workaround. Since we

directly estimate the intercept and slope parameters a and b, this transformation method,

which is not like Duan and Yeh’s (2010) analytic transformation function, does not contain

risk-neutral parameters. As a result, the obtained estimation results of the NLD model are

purely under the physical measure.

Last, to evaluate the in-sample performance, we utilize the traditional LL and AIC gen-

erated by the DCEV, CEV, and NLD models as the criteria. In addition, we also adopt

Hong and Li’s (2005) Q-test to examine the appropriateness of model specification as an-

other criterion. Unlike likelihood-based evaluations (such as LL and AIC) which utilize the

model-implied conditional density function, the corresponding Q-statistic is a probability

integral transform-based evaluation relying on the model-implied cumulative distribution

function, so it provides a different aspect by which to test the in-sample fitting performance

of the examined models. However, it requires modifications to accommodate Hong and

Li’s (2005) Q-test to examine SV models because the variance time series is actually nonob-

servable. To account for this, we employ the time series of spot prices to calculate Hong

and Li’s (2005) Q-statistic. Specifically, given the estimated parameter values Ĥ of an SV

model, we first transform VIXt into inferred variance Vt through Equation (4) for the

DCEV and CEV models or Equation (8) for the NLD model and then use the transition

density of log spot price /1
ln StþDt=Stð Þ� l�q�0:5Vtð ÞDtffiffiffiffiffiffiffi

VtDt
p

� �
, where /1ð�Þ is the univariate standard

normal density function, as the fundamental ingredient to compute the Q-statistic. The

details for calculating the Q-statistics of the examined three SV models are relegated to

Appendix A.

1.2 Out-of-Sample Analysis Method

In addition to examining the fitting performance of different models, this paper also investi-

gates their out-of-sample forecasting ability, since superior in-sample performance does not

necessarily translate to superior performance in out-of-sample periods. We argue that

in-sample tests are helpful to learn or identify stylized facts in historical data, but out-of-

sample tests for analyzing the actual forecasting power of examined models are indispens-

able, especially because SV models are always used in a forward-looking way, whether for

derivative pricing, risk management, or asset allocation. Therefore, we conduct two experi-

ments to evaluate the out-of-sample performance of the DCEV, CEV, and NLD models,

including variance forecasting based on the physical parameters and option pricing based

on both the risk-neutral parameters. However, for option pricing, we cannot compare the

out-of-sample performance of the NLD models since risk-neutral parameters such as j and

h in Equation (2) cannot be estimated for the NLD model. Instead, the SQR model (Heston

SV model) is included for comparison. Another reason for choosing the SQR model is that

it is one of the most popular SV models for option pricing in practice due to the existence of

the corresponding analytic option pricing formula.
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To compare forecasting and actual variance in the out-of-sample tests, we employ the

RV as the comparison benchmark, which is commonly used as an unbiased benchmark in

ex post volatility forecast evaluations and model comparisons as discussed in Andersen,

Bollerslev, and Meddahi (2005). The time series of 5-min RV is selected as the proxy of the

true variance. The forecasting error is measured by the mean of squared errors (MSEs) of

the D-day average differences between the variance forecasts of the examined model and

the corresponding RVs in different horizons. In addition, a rolling window scheme is

adopted in the out-of-sample tests, for which the procedure is described as follows.

To forecast D-day-ahead average variance based on model k on date ti, FVk
tiþD

, where k ¼
DCEV, CEV, and NLD, and D ¼ 5, 10, and 15, we implement the following five-step procedure:

Step 1. A fixed sample size of the prior 1,000 daily observations,that is, the observations

from ti�999 to ti, are employed to estimate the parameters of different models.

Step 2. We transform VIX2
ti

to Vti
using Equation (4) for the DCEV and CEV models

and Equation (8) for the NLD model given the parameters estimated in Step 1.

Step 3. To ensure the correct co-varying behavior between the actual innovations of lnSt and

the latent volatility for the subsequent D days, the particle filter approach suggested by Malik

and Pitt (2011) is implemented based on the system of stochastic difference equations in

Equation (5). The procedure is summarized below; for details refer to Malik and Pitt (2011):

3.1 We first fix the particles at time ti as Vj
ti
¼ Vti

for all j ¼ 1, 2,. . ., M, where M is the number

of particles (fixed at 10,000 in this paper) and Vti
is obtained in Step 2.

3.2 Based on the values of lnStiþ1
� lnSti

, Vti
, and the parameters from Step 1,

the corresponding innovation eS;j
ti

is derived as

eS;j
ti
¼ lnStiþ1

� lnSti
� l� q� 0:5Vj

ti

� �
Dt

h i
=

ffiffiffiffiffiffiffiffiffiffiffi
Vj

ti
Dt

q
:

To obtain the simulated values of the variance at time tiþ1, that is, Vj
tiþ1

for j ¼ 1; 2; 3 . . . ;M, we

generate random samples for gV;j
ti

in Equation (5). Since Corr eS
ti
; gV

ti

� �
¼ q, we draw samples of

gV;j
ti

according to

gV;j
ti
¼ qeS;j

ti
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p
eV;j
ti
;

where eV;j
ti
� NDð0; 1Þ (following the standard normal distribution), forj ¼ 1; 2; 3 . . . ;M.

Equipped with gV;j
ti

, we derive a set of simulated values of Vj
tiþ1

as

Vj
tiþ1
� Vj

ti
¼ jP hP � Vj

ti

� �
Dt þ r1 Vj

ti

� �0:5

D1 Vj
ti

� �
þ r2 Vj

ti

� �c
D2 Vj

ti

� �	 
 ffiffiffiffiffi
Dt
p

gV;j
ti

for the DCEV model.7

3.3 For the actual lnStiþ2
, the simulated particles Vj

tiþ1
, and the estimated parameters in Step 1,

we then calculate the likelihood value from the normal density for all j:

7 For the CEV and NLD models, V j
tiþ1

is simulated based on

Vj
tiþ1
� Vj

ti
¼ jP hP � Vj

ti

� �
Dt þ r2 Vj

ti

� �c ffiffiffiffiffi
Dt
p

gV;j
ti

and
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Wj
tiþ2
¼ /1ðlnStiþ2

; lnStiþ1
þ l� q� 0:5Vj

tiþ1

� �
Dt;Vj

tiþ1
DtÞ:

3.4 The empirical cumulative distribution function of Vj
tiþ1

is constructed by using Wj
tiþ2

to

calculate the normalized weights for Vj
tiþ1

. We resample ~V
j

tiþ1
based on the continuous approxi-

mation algorithm proposed in Malik and Pitt (2011), which results in a smoothed empirical

cumulative distribution function for Vj
tiþ1

. This resampling process effectively reduces the dis-

cretization error caused by examining a limited number of particles. The advantage of this ap-

proach is its speed and extensibility in implementation for a variety of applications. For details,

see Appendices A1A3 of Malik and Pitt (2011). The filtered variance of model k at time tiþ1,

V̂
k

tiþ1
, is simply the average of the resampled ~V

j

tiþ1
:

V̂
k

tiþ1
¼ 1

M

XM
j¼1

~V
j

tiþ1
:

We treat V̂
k

tiþ1
as the forecasting variance at time tiþ1 of the model k. Repeating Steps 3.13.4 at

time tiþ2, tiþ3,. . ., and tiþD, we obtain V̂
k

tiþ2
, V̂

k

tiþ3
,. . ., and V̂

k

tiþD
.

Step 4. Following Mijatovic and Schneider (2014), we calculate the D-day-ahead fore-

casting average variance (FV) generated from the model k on date ti as

FVk
tiþD
¼ 1

D

XD
l¼1

V̂
k

tiþl
:

Step 5. By rolling the window forward by D days, the re-estimated parameters on a new

date ti are utilized to forecast variance over the period covering tiþ1, tiþ2, . . ., tiþD.

Whenever we add D more observations into the sample, the most aged D observations in

the sample are discarded such that the number of samples for estimation remains 1,000.

Steps 1–5 are repeated until we reach the end of the sample.

Note that it is critical to account for the information on the realized innovations of spot

prices in the out-of-sample test by applying the particle filter approach to examining SV

models (see Step 3 above), as the volatility is nonobservable and merely a kind of statistic

information embedded in spot prices. We argue that one should not simply simulate the gV
t s

from the standard normal distribution based on the stochastic variance process individually

and next calculate the expected variance for D-day-ahead horizons, as this approach does

not yield trustworthy forecasts of the variance for the estimated parameters, because the

correlation between the innovations of the spot price and variance is ignored. This indicates

another important reason for our estimation of the examined SV models with both time ser-

ies of St and Vt. Since we employ the information of both St and Vt in the in-sample and

out-of-sample tests, the methodology in this paper is internally consistent and is employed

in Eraker (2004) and Kaeck and Alexander (2012) also.

For each forecasting variance, we follow Mijatovic and Schneider (2014) in calculating

the average of annualized 5-min RV (AV) on dates tiþ1, tiþ2,. . ., tiþD as the corresponding

benchmark, that is,

Vj
tiþ1
� Vj

ti
¼ a0 þ a1Vj

ti
þ a2 Vj

ti

� �2

þ a3 Vj
ti

� ��1
	 


Dt þ r Vj
ti

� �c ffiffiffiffiffi
Dt
p

gV;j
ti
;

respectively.
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AVtiþD
¼ 1

D

XD
l¼1

252 � RVtiþl
:

After obtaining the series of FVs and AVs under the rolling window scheme, we com-

pute the MSEs to measure the forecasting ability of each model:

MSEk
out ¼

Pn
i¼1 ðFVk

tiþD
� AVtiþD

Þ2

n
;

where k ¼ DCEV, CEV, and NLD, and n is the number of rolling times, computed as the

largest integral smaller than ðN � 1000Þ=D. We also evaluate the statistical significance of

MSEout differences between DCEV model and the competing models with the following

pairwise t-statistic:

t � statistic ¼MSEDCEV
out �MSEk

out

rDCEV;k
;

where k ¼ CEV and NLD, and rDCEV;k is the standard deviation of the difference of the

squared error on each forecasting date. We adjust the standard deviation calculation for

serial dependence based on Newey and West (1987). A negative (positive) t statistic means

that the MSE of the benchmarked DCEV model is smaller (larger) than that of the compet-

ing models.

For out-of-sample option pricing experiments, the same rolling window estimation

scheme described above is adopted, and we focus on pricing S&P 500 index call and put

options with 30 days to maturity (approximately 21 trading days and thus the time matur-

ity being 21=252 here), since the proposed estimation method in this paper utilizes the in-

formation of VIX, which is designed to reflect the volatility of the S&P 500 index in the

period of future 30 days. We employ the discrete-time counterpart of Equation (2) (with a

time step of 1=252
50 to mitigate discretization error) and the Monte Carlo simulation with

10,000 paths to compute the option prices for the DCEV, CEV, and SQR models.

However, to conduct this simulation approach, we require not only the estimated param-

eter values in Equation (2) but also the initial value of the variance on an examined date ti.

The former can be obtained according to the estimation results of the rolling window

scheme up to ti, but the latter necessitates further estimation. We argue that using Vti

inferred from VIXti
to evaluate options on an examined date ti may incur foresight bias, be-

cause VIXti
is actually determined based on the option prices on date ti. To mitigate this

problem, we derive an estimation ^VIX
2

ti
based on the following regression for the whole-

sample period:

VIX2
ti
¼ b0 þ

Xp

j¼1

bjVIX2
ti�j
þ tti

;

where tti
� Nð0;rtÞ. The adjusted R2 values of the regression for p ¼ 1, 2, 3, and 4 are

0.940974, 0.941715, 0.942716, and 0.942715, respectively, so we choose p ¼ 3 (with a

higher adjusted R2 than that of p ¼ 4) to avoid overidentification.

In summary, on an examined date ti, we obtain dVIX
2

ti
¼ b̂0 þ

P3
j¼1 b̂ jVIX2

ti�j
and then

transform dVIX
2

ti
to V̂ ti

using Equation (4) for the DCEV, CEV, and SQR models given the

up-to-ti parameters estimated by the rolling window scheme. Next, we simulate the system
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of stochastic difference equations in Equation (2) given Sti
and V̂ ti

(to approximate Vti
),

and obtain the theoretical call and put values with different strike prices through computing

the present values of their expected payoffs at maturity under the risk-neutral measure.

Note that the risk-free interest rate r (used in the drift term of the spot price and for dis-

counting the expected option payoff) is fixed as the one-month risk-free interest rate

observed at ti. Finally, we follow Broadie, Chernov, and Johannes (2007) and Kaeck and

Alexander (2012) to measure the out-of-sample performance of the DCEV, CEV, and SQR

models in terms of the root of the mean of the squared pricing errors (RMSEs) as follows:

RMSEk
out ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ti

P
Kij

OVk
ti ;Kij
�MPti ;Kij

� �2

no

vuut
;

where k ¼ DCEV, CEV, and SQR, OVk
ti ;Kij

and MPti ;Kij
denote, respectively, the theoretical

option value based on the model k and its market price corresponding to different strike

prices Kij on an examined date ti, and no is the number of total examined option contracts.

2 Empirical Results

The empirical data set for the in-sample test consists of daily prices of the S&P 500 and

VIX indices from January 2, 1996 to December 29, 2017. Both time series are collected

from Bloomberg, and the number of total data pairs is N¼ 5442. As a robustness check, we

also split the whole sample of 1996–2017 into four sub-sample periods: the periods from

1996 to 2000, from 2001 to August of 2007, from September of 2007 to 2009 (the crisis

period covering the subprime crisis and the subsequent financial tsunami), and from 2010

to 2017 (the after-crisis period). The first two sub-sample periods are in line with those

examined in Duan and Yeh (2010) such that one can conduct a close comparison with their

empirical results in these two subperiods.

For out-of-sample tests, we conduct variance forecasting (option pricing) experiments

based on the estimated parameters under the physical (risk-neutral) measure, since one of

the advantages of our estimation method for the DCEV model is that both the physical and

risk-neutral parameter values can be obtained simultaneously through the estimation pro-

cess. The daily data of the 5-min RVs (S&P 500 index options) are downloaded from the

website of the Oxford-Man Institute (the database of OptionMetrics). Because the data of

RVs are available since January 4, 2000 and the last date of the examined period of the in-

sample test is December 29, 2017, for consistency, we constrain the examined period of the

out-of-sample tests for both variance forecasting and option pricing to lie between these

two dates.

For pricing options, the average of the bid and ask quotes is regarded as the market price

for each option contract, the risk-free interest rate on each examined date is approximated

by the continuously compounding Treasury zero rates with 30 calendar days to maturity

provided by OptionMetrics, and the dividend yield q of the S&P 500 index is calculated

based on the monthly data provided on Robert Shiller’s website. Finally, the option con-

tracts are screened according to the following criteria: (1) Since the VIX levels play critical

roles in the proposed model and are highly related with the option-implied volatilities for

the following 30 days, we focus on pricing European call and put options with 30 calendar

days to maturity; (2) options with market prices below 3/8 dollars are filtered out according
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to the common setting in the literature on S&P 500 index options; (3) option contracts

with moneyness out of [0.9, 1.1] are excluded. We define moneyness as the ratio between

the strike and spot price, K=S0; and (4) option contracts are eliminated if the Black-Scholes

implied volatilities corresponding to their market prices do not exist. The above screening

process results in a total of 50,711 contracts included for the out-of-sample option pricing

test.

Table 3 provides the descriptive statistics of the S&P 500 index returns, the VIX index,

and the annualized RV in the examined periods. As some RV data are not available for the

sample period, the statistic quantities associated with the RV are reported only for the se-

cond to fourth subperiods. As observed in Table 3, the S&P 500 index returns exhibit

negative skewness and heavy tails in the whole-sample period. The four subperiods all pos-

sess similar characteristics except for the positive skewness in the second subperiod. During

the subprime crisis, starting at mid-2007, the volatility increased and the index price

decreased dramatically; these volatile economic conditions continued until the end of 2009.

One thus observes a negative average index return and a significantly higher average and

standard deviation for the VIX index and RV in the third subperiod. The maximum and

minimum ranges of the VIX index and RV are also widest in the third subperiod. For the

VIX index and RV, they are positively skewed with heavy tails in all examined periods, par-

ticularly in the last two subperiods. In addition, we plot the time series of the S&P 500

index, the VIX index, and the annualized standard deviation of the S&P 500 index returns

calculated for the subsequent 21 trading days (one-month calendar days). Figure 1 shows

that the S&P 500 index suffers a dramatic downturn and the VIX and standard deviation

of the S&P 500 index returns skyrocket in the subprime crisis and the following financial

tsunami. Moreover, the VIX index is systematically higher than the standard deviation of

the S&P 500 index returns over the whole examined period, which suggests that the volatil-

ity risk has mostly been priced by the market according to Duan and Yeh (2010).

In the following in-sample and out-of-sample variance forecasting analyses, we investi-

gate the performance of the DCEV, CEV, and NLD models in the whole-sample period and

four subperiods. By contrasting the performance of the DCEV model with that of the CEV

model, one can discern the advantage of introducing the damping function into the conven-

tional CEV model. Moreover, we intentionally examine the NLD model, modified by

imposing the Vt-VIX2
t linear transformation such that the differences in the performance of

the DCEV and NLD models truly reflect the model superiority of the LD plus the DCEV

diffusion over that of the NLD plus the CEV diffusion. As for the out-of-sample option

pricing analyses, the SQR model replaces the NLD model as a competing model because

the latter lacks the estimation for risk-neutral parameters. In addition, the potential advan-

tage and possible usefulness of the DCEV model in option pricing is further demonstrated if

the DCEV model outperforms the SQR model, which in practice is commonly used for op-

tion pricing.

2.1 In-Sample Analysis

The maximum-likelihood estimation results for the DCEV, CEV, and NLD models in the

whole-sample period and four subperiods are reported in Tables 4–8, respectively. It is

well known that a model with more parameters is likely to yield a higher LL value but can

cause an illusion of better performance due to overfitting. In order to measure the in-
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sample fitting performance fairly, we report not only the LL value but also the AIC value,

which discourages overfitting with the addition of a penalty function that increases with

the number of parameters. In addition, Hong and Li’s (2005) Q-statistic is calculated to

compare the appropriateness of different model specifications. Hong and Li (2005) argue

that as there may exist other features not explored in the specification of examined models,

there is a long way to go to obtain a significant Q-statistic even for the most sophisticated

model examined in their paper. Consequently, they merely compare the relative levels of

Q-statistics and identify a more appropriate model specification according to a smaller

Q-statistic value. We also follow Hong and Li (2005) to evaluate the relative performance

of the examined SV models in terms of the magnitude of the Q-statistic.

Table 3 Descriptive statistics in different periods

Period Whole sample Subsamples

1996–2017 1996–2000 2001–2007/08 2007/09–2009 2010–2017

S&P 500 daily return

Mean 0.0003 0.0006 0.0001 �0.0005 0.0004

Standard

deviation

0.0120 0.0115 0.0108 0.0210 0.0094

Skewness �0.2360 �0.2354 0.0446 �0.1277 �0.4639

Kurtosis 10.9598 5.7980 5.8185 7.7449 7.7994

Maximum 0.1096 0.0499 0.0557 0.1096 0.0463

Minimum �0.0947 �0.0711 �0.0505 �0.0947 �0.0690

VIX

Mean 20.2988 22.3963 18.9136 30.7079 17.0884

Standard

deviation

8.3278 5.2446 7.2055 12.8670 5.9633

Skewness 1.9831 1.0809 1.0293 1.5672 1.6936

Kurtosis 9.8636 5.1178 3.4211 4.9051 6.4495

Maximum 80.8600 45.7400 45.0800 80.8600 48.0000

Minimum 9.1400 12.0000 8.8900 16.1200 9.1400ffiffiffiffiffiffiffi
RV
p

(%)

Mean 12.9338 23.5443 11.0045

Standard

deviation

6.8584 15.7103 7.3045

Skewness 1.9780 2.3934 3.0400

Kurtosis 8.8616 11.3023 20.8044

Maximum 57.9000 139.7294 96.9471

Minimum 3.6477 5.4669 1.7534

Notes: Both series of daily S&P 500 and VIX indices are collected from Bloomberg, covering the period from

January 1996 to December 2017. The time series of daily 5-min RV (realized variance) is downloaded from the

website of the Oxford-Man Institute. Since the earliest available date for the 5-min RV is January 4, 2000, the

statistics analysis of
ffiffiffiffiffiffiffi
RV
p

is conducted on neither the whole-sample period nor the subperiod from 1996 to

2000.
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In Table 4, the DCEV model dominates the other two competing models in terms of its

higher LL value, lower AIC value, and smaller Q-statistic in the whole-sample period. It is

not surprising that the DCEV model outperforms the CEV model, but it is encouraging that

the DCEV model performs better than the NLD model. Since the NLD model examined

here possesses several desirable features to enhance its performance, the fact that the DCEV

model still outperforms the NLD model under such unfavorable settings firmly establishes

the contribution made by the proposed DCEV model. Recall that for the original NLD

model, it is not feasible to use VIXt information to analytically infer unobservable Vt. In

fact, without the Vt-VIX2
t transformation, the performance of the original NLD model is

far worse than the NLD model examined here. To account for this shortcoming of the

NLD model, this paper is the first to utilize the data-implied linear Vt-VIX2
t transformation

in Equation (8) to approximate the latent Vt according to the prevailing VIXt index. In

Table 4, the estimated values for both a and b are significant, which demonstrates the

satisfactory performance of this linear approximation and also the sufficient marginal bene-

fit of adding these two parameters to the NLD model. Recall that the main advantage of

the NLD model over the DCEV model is its more general drift term. Despite the many

advantages of the NLD model, its performance is still inferior to that of the DCEV model

in terms of all three measurements. Other interesting findings in Tables 4–8 are discussed

as follows.

First, the superiority of the DCEV model over the CEV model verifies that introducing

the damping function into the CEV diffusion term more properly captures volatility dynam-

ics. In addition, the lower AIC values of the DCEV model prove that the improvements of

the DCEV model are due to the novel specification of the damping function rather than the

Figure 1 S&P 500 index, VIX index, and 21-trading-day-ahead standard deviations (annualized and

multiplied by 100) of S&P 500 index returns.
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use of additional parameters. Moreover, the estimated exponent term (c) of the DCEV

model is always significantly higher than 1.2 (in the crisis period, even higher than 2), but

that of the CEV model is close to or lower than 1. We conjecture that the c in the CEV

model may be self-constrained to be artificially low to avoid unreasonably explosive behav-

ior when Vt is high.8 The relatively low value of c in the CEV model may harm its overall

fitting performance regardless of whether Vt is high or low. Since the damping function ef-

fectively controls this explosive behavior when Vt is high, the constraint for c in the DCEV

model is removed and thus c in the DCEV model reflects its actual nature. In summary, des-

pite the minor difference in specifications between the DCEV and CEV models, the effect of

introducing the damping function is comprehensive rather than merely imposing a cut

when Vt is high.

Table 4 Maximum-likelihood estimation results for whole-sample period from January 2, 1996

to December 29, 2017

Parameter DCEV CEV Parameter NLD

jP 1.8116** 0.4024 a0 0.0264

(0.5085) (0.4380) (0.0395)

hP 0.0413** 0.1127 a1 0.3865

(0.0096) (0.1177) (1.6015)

r1 0.2126** a2 �18.1019

(0.0096) (12.2112)

r2 4.4312** 1.9923** a3 0.0002

(0.2322) (0.0362) (0.0002)

q �0.7850** �0.7833** r 2.1026**

(0.0045) (0.0045) (0.0471)

c 1.3856** 0.9448** q �0.7841**

(0.0236) (0.0065) (0.0045)

dV �9.0001** �8.9076** c 0.9703**

(0.5185) (0.5045) (0.0080)

a �0.0009**

(0.0002)

b 0.6624**

(0.0126)

LL 41304 41247 41254

AIC �82595 �82483 �82490

Q-statistic 17.2440 17.2980 17.6208

Notes: This table reports the estimated parameters, standard errors (in parentheses), LL values, AIC values,

and Hong and Li’s (2005) Q-statistics for different models using maximum-likelihood estimation. The stand-

ard errors are calculated by estimating the inverse of the Fisher information matrix using an outer product of

gradients method at the optimal parameter values. The asterisks indicate parameter significance at the 5% (**)

and 10% (*) significance levels.

8 In Tables 4–8, the estimated values of c in the NLD model always lie between those of the DCEV

and CEV models. We conjecture that the self-constrained effect for c in the NLD model may not be

so serious (compared with the CEV model) due to the nonlinear drift term which can reinforce the

mean-reverting behavior.
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Second, even though there are fewer parameters in the DECV model than in the NLD

model, the DCEV model outperforms the NLD model in all examined periods except the

sub-sample period from January 1, 1996 to December 29, 2000 reported in Table 5, where

the LL (AIC) values of NLD model are larger (smaller) than those of the DCEV model.

However, the smaller Q-statistic of the DCEV model in Table 5 indicates that it is still

closer to the true volatility dynamic than the NLD model. As mentioned in the analyses for

the whole-sample-period results in Table 4, the NLD model examined here enjoys extra

benefits, so it is reasonable that the NLD model sometimes outperforms the DCEV model

given different datasets. Nevertheless, even under this not-quite-fair comparison, the super-

ior performance of the DCEV model over the NLD model is readily apparent in Tables 4–

8, which confirms our assertion that the DCEV model is more appropriate than the NLD

model commonly found in the literature for describing the SV process.

Last, our two-step estimation procedure generates consistent estimation results for the

diffusion-related estimators (r2, c, and q) with those in Duan and Yeh (2010) in the first

two sub-sample periods, as reported in Tables 5 and 6. Take the period of January 2001 to

August 2007 for example. Table 6 [Table 2 in Duan and Yeh (2010)] shows estimated

Table 5 Maximum-likelihood estimation results for sub-sample period from January 2, 1996 to

December 29, 2000

Parameter DCEV CEV Parameter NLD

jP 2.1381* 1.4941 a0 �0.1004

(1.2099) (1.1661) (0.3274)

hP 0.0506** 0.0605* a1 3.9107

(0.0194) (0.0345) (11.5862)

r1 0.2418** a2 �77.5606

(0.0281) (118.2668)

r2 9.4844* 1.6555** a3 0.0024

(5.0589) (0.1479) (0.0027)

q �0.7386** �0.7369** r 2.5014**

(0.0093) (0.0087) (0.4250)

c 1.7705** 0.9342** q �0.7431**

(0.2120) (0.0314) (0.0090)

dV �10.2793** �10.1655** c 1.1128**

(0.9703) (0.9603) (0.0627)

a 0.0024

(0.0015)

b 0.5550**

(0.0333)

LL 9047 9039 9050

AIC �18080 �18066 �18082

Q-statistic 3.0973 3.1206 3.6555

Notes: This table reports the estimated parameters, standard errors (in parentheses), LL values, AIC values,

and Hong and Li’s (2005) Q-statistics for different models using maximum-likelihood estimation. The stand-

ard errors are calculated by estimating the inverse of the Fisher information matrix using an outer product of

gradients method at the optimal parameter values. The asterisks indicate parameter significance at the 5% (**)

and 10% (*) significance levels.
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values for r2, c, and q being 1.3643, 0.8854, and �0.7753 (1.3572, 0.8942, and �0.7753),

respectively. As for the drift-related parameters (jP and hP) and the market prices of volatil-

ity risk (dV ), our estimation results differ slightly from those in Duan and Yeh (2010). Note

that all of these parameters could affect the drift terms of the spot price and volatility proc-

esses during the transformation between the physical and risk-neutral measures. Whereas

Duan and Yeh (2010) estimate all the parameters in the drift term of the spot price, recall

that our two-step estimation procedure fixes the drift term of l� q in the spot price dynam-

ic as the annualized arithmetic average of the daily returns. Furthermore, note that the mar-

ket prices of volatility risk (dV) are significantly negative across the DCEV and CEV models

in all examined periods except for the estimators of the CEV model in the crisis period,

where dV is negative but not significant. These observations are in line with the results

reported in Duan and Yeh (2010) and imply that the volatility risk premiums are properly

priced by the DCEV and CEV models in most examined periods.

Overall, the in-sample analyses attest the superiority of the proposed DCEV model over

the conventional CEV and NLD models, even though the NLD model is additionally

Table 6 Maximum-likelihood estimation results for sub-sample period from January 2, 2001 to

August 31, 2007

Parameter DCEV CEV Parameter NLD

jP 1.6149* 1.1017 a0 �0.1019

(0.9275) (0.8076) (0.1127)

hP 0.0326** 0.0390* a1 4.8410

(0.0134) (0.0235) (5.1924)

r1 0.1622** a2 �70.3960

(0.0201) (58.1803)

r2 2.9284** 1.3643** a3 0.0009

(0.4646) (0.0577) (0.0006)

q �0.7755** �0.7753** r 1.4963**

(0.0103) (0.0103) (0.0884)

c 1.3013** 0.8854** q �0.7763**

(0.0695) (0.0148) (0.0102)

dV �8.9115** �8.8866** c 0.9293**

(0.9497) (0.9399) (0.0215)

a �0.0003

(0.0005)

b 0.6607**

(0.0301)

LL 12938 12931 12936

AIC �25861 �25849 �25854

Q-statistic 7.4642 7.4812 7.5353

Notes: This table reports the estimated parameters, standard errors (in parentheses), LL values, AIC values,

and Hong and Li’s (2005) Q-statistics for different models using maximum-likelihood estimation. The stand-

ard errors are calculated by estimating the inverse of the Fisher information matrix using an outer product of

gradients method at the optimal parameter values. The asterisks indicate parameter significance at the 5% (**)

and 10% (*) significance levels.
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equipped with a data-implied Vt-VIX2
t linear transformation. The outstanding fitting per-

formance of the DCEV model is significant and robust in all examined periods. We suggest

that instead of using the NLD model or the pure CEV model, the DCEV model may be a

more suitable candidate to characterize the volatility dynamics.

2.2 Out-of-Sample Analysis

This subsection presents the results of two out-of-sample tests to prove the superior practic-

ability of the DCEV model. Since we require 1,000 observations to obtain the first set of

parameter estimations in the rolling window scheme, the starting month for the out-of-

sample tests is January 2000 rather than January 1996.

For variance forecasting, Table 9 reports MSEout results of the three examined SV mod-

els and pairwise t-statistics of the DCEV model versus the other two competing models in

the whole-sample period. For robustness check, the MSEout and pairwise t-statistics in indi-

vidual subperiods are reported in Table 10. Bold figures indicate the value of the smallest

MSEout among the competing models. Since the DCEV model serves as the benchmark, the

pairwise t-statistics versus the CEV and NLD models are shown in the parentheses next to

Table 7 Maximum-likelihood estimation results for sub-sample period from September 4, 2007

to December 31, 2009[TQ38]

Parameter DCEV CEV Parameter NLD

jP 2.3115 0.1361 a0 �0.7767

(1.5917) (1.4305) (0.5721)

hP 0.1002** 0.9979 a1 10.2208

(0.0509) (10.1757) (8.3114)

r1 0.4404** a2 �26.5274

(0.0437) (24.4772)

r2 7.8067** 2.8598** a3 0.0202

(1.0977) (0.1214) (0.0106)

q �0.8438** �0.8442** r 2.9453**

(0.0101) (0.0109) (0.1577)

c 1.8819** 1.0385** q �0.8446**

(0.1058) (0.0277) (0.0112)

dV �3.6181** �2.1782 c 1.0693**

(1.4095) (1.5812) (0.0347)

a �0.0028

(0.0029)

b 0.8803**

(0.0589)

LL 3663 3649 3652

AIC �7312 �7293 �7286

Q-statistic 5.1348 5.1793 5.1405

Notes: This table reports the estimated parameters, standard errors (in parentheses), LL values, AIC values,

and Hong and Li’s (2005) Q-statistics for different models using maximum-likelihood estimation. The stand-

ard errors are calculated by estimating the inverse of the Fisher information matrix using an outer product of

gradients method at the optimal parameter values. The asterisks indicate parameter significance at the 5% (**)

and 10% (*) significance levels.
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their MSEs. A negative (positive) t-statistic means that the MSE of the benchmarked DCEV

model is smaller (larger) than that of the competing model. In Tables 9 and 10, several phe-

nomena are worth discussing.

First, it can be observed in Table 9 that the DCEV model outperforms all other models

in forecasting future 5-, 10-, and 15-day-ahead average RV in terms of its smallest MSEs.

On average, the MSE of the DCEV model is smaller that of the CEV and NLD models by

16.1% and 14.2%, respectively, in the whole-sample period. In addition, all pairwise t-sta-

tistics are significantly negative, which indicates that the forecasting errors of the DCEV

model are significantly smaller than those of the competing models in the whole-sample

period. Note that due to the similarity between the DCEV and CEV models, the standard

deviation of the differences in MSEs between the DCEV and CEV models is generally

smaller than that between the DCEV and NLD models. As a result, the pairwise t-statistics

between the MSEs of the DCEV and CEV models are inclined to be more significant. In

fact, they are all 5% level significant in Table 9; in contrast, the pairwise t-statistics be-

tween the MSEs of the DCEV and NLD models are all 10% level significant. Moreover,

even though the DECV outperforms the CEV model by a smaller amount (4.4452 versus

Table 8 Maximum-likelihood estimation results for sub-sample period from January 4, 2010 to

December 29, 2017

Parameter DCEV CEV Parameter NLD

jP 3.3999** 0.9809 a0 �0.0329

(1.0419) (0.8686) (0.0791)

hP 0.0237** 0.0483 a1 4.0746

(0.0055) (0.0390) (5.0684)

r1 0.2349** a2 �90.7512

(0.0159) (72.7280)

r2 12.3413** 3.0326** a3 0.0004

(1.2607) (0.1179) (0.0003)

q �0.8202** �0.8177** r 3.2237**

(0.0071) (0.0071) (0.1594)

c 1.5836** 1.0076** q �0.8189**

(0.0373) (0.0131) (0.0073)

dV �11.5431** �10.9640** c 1.0319**

(0.9541) (0.9083) (0.0161)

a �0.0012**

(0.0003)

b 0.6194**

(0.0208)

LL 15938 15908 15910

AIC �31861 �31803 �31802

Q-statistic 9.8973 10.5673 10.8170

Notes: This table reports the estimated parameters, standard errors (in parentheses), LL values, AIC values,

and Hong and Li’s (2005) Q-statistics for different models using maximum-likelihood estimation. The stand-

ard errors are calculated by estimating the inverse of the Fisher information matrix using an outer product of

gradients method at the optimal parameter values. The asterisks indicate parameter significance at the 5% (**)

and 10% (*) significance levels.
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5.2602) in MSEs than that for the NLD model (4.4452 versus 5.5738) in the 15-day-ahead

case, it is still possible that the pairwise t-statistic between the MSEs of the DCEV and CEV

models is more significant than that of the DCEV and NLD models.

Second, the superior forecasting performance of the DCEV model is again verified in 11

out of the 12 cases examined in Table 10. The only exception is the 15-day-ahead case in

the subperiod January 2000–December 2000. Although the NLD performs best in this case

in terms of its smallest MSE (2.0761), the pairwise t-statistic does not support the signifi-

cance of this superiority. We attribute this exception to the insufficient sample size in this

subperiods, which has a horizon of only one year, far shorter than the other three

subperiods.

Third, it can be observed that the performance of the CEV model is close to that of the

DCEV model in the first two subperiods but is far worse than that of the DCEV model or

sometimes inferior to the NLD model in the last two subperiods. We attribute the relatively

poor performance of the CEV model in September 2007–December 2009 and January

2010–December 2017 to the questionable estimations for its exponent term c to avoid ex-

plosive behavior, since the high volatility in the financial crisis and subsequent period ex-

acerbate this problem. Note that high volatility is more likely in the last two subperiods

(compared with the first two subperiods), since the skewness (maximum value) of
ffiffiffiffiffiffiffi
RV
p

is

1.8423, 1.9780, 2.3934, and 3.0400 (56.2451, 57.9000, 139.7294, and 96.9471) in the

four subperiods, respectively.9 In contrast, by combining the damping function into the

CEV diffusion, the proposed DCEV model mitigates this disadvantage associated with the

CEV model and still performs satisfactorily in the last two periods. This further explains

why the DCEV model outperforms the CEV model insignificantly (significantly) in the first

(last) two subperiods. This is because the degree of similarity between the DCEV and CEV

models should be high for the low-volatility (first two) subperiods but diverge in the high-

volatility (last two) subperiods.

Table 9 Out-of-sample MSEs of various SV models for whole-sample period from January 2000

to December 2017

D-day-ahead 5 10 15

DCEV 7.9469 6.1765 4.4452

CEV 9.3150 (�2.5246**) 7.5430 (�2.1658**) 5.2602 (�2.0716**)

NLD 8.7420 (�1.5045*) 7.1093 (�1.5230*) 5.5738 (�1.3119*)

Notes: This table reports the out-of-sample results of 5-, 10-, and 15-day-ahead variance forecasting under the

rolling window scheme. The model performance is evaluated by the mean-squared error calculated from the

out-of-sample fit (MSEout) multiplied by 104. Bold entries represent the value of the smallest MSEout among

competing models. The pairwise t-statistics are shown in parentheses next to the MSEs of the CEV and NLD

models. A negative (positive) t-statistic means that the MSE of the benchmarked DCEV model is smaller

(larger) than that of the competing model. The asterisks indicate significance of the differences at the 5% (**)

and 10% (*) significance levels.

9 These figures can be found in Table 3 except those for the first subperiod of January 2000–

December 2000. In this subperiod, the mean, standard deviation, skewness, kurtosis, maximum

value, and minimum value of
ffiffiffiffiffiffi
RV
p

are 17.7169, 6.8743, 1.8423, 9.4668, 56.2451, and 7.1528,

respectively.
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Fourth, the NLD model usually performs the worst in the first three subperiods but

yields competitive performance in the last subperiod. Note that in a time period where the

volatility is highly positively skewed but the standard deviation of the volatility is at a nor-

mal level (see the descriptive statistics of
ffiffiffiffiffiffiffi
RV
p

for the last subperiod in Table 3), the mean-

reverting drift term plays a more important role than the not-so-volatile diffusion term for

governing the dynamics of an SV process.10 Furthermore, the NLD term in the NLD model

is better able to capture the mean-reverting behavior than the conventional CEV model

with a LD term. As a result, the NLD model outperforms the CEV model in the last subper-

iod. However, the superiority of the DCEV model over the NLD model still holds in the

last subperiod, supporting our assertion that the DCEV model is more appropriate than the

NLD model for describing the mean-reverting behavior of an SV process. Recall that the

Table 10 Out-of-sample MSEs of various SV models for sub-sample periods

D-day-ahead 5 10 15

Forecasting period: January 2000–December 2000

DCEV 2.9610 1.5723 2.1528

CEV 2.9645 (�0.2231) 1.5769 (�0.6455) 2.1708 (�0.8888)

NLD 3.4258 (�2.0664**) 1.8859 (�1.6980**) 2.0761 (0.0375)

Forecasting period: January 2001–August 2007

DCEV 2.0164 1.8074 1.4939

CEV 2.0197 (�0.1033) 1.8450 (�1.0214) 1.5050 (�0.8342)

NLD 2.1348 (�0.5402) 1.9658 (�0.6526) 1.6446 (�0.6553)

Forecasting period: September 2007–December 2009

DCEV 41.8339 33.2971 21.7575

CEV 46.2449 (�1.5359*) 38.6686 (�1.3726*) 24.2039 (�1.3602*)

NLD 47.0093 (�1.5797*) 39.2344 (�1.4351*) 29.2376 (�1.1683)

Forecasting period: January 2010–December 2017

DCEV 3.5369 2.4090 2.0452

CEV 5.3096 (�2.3613**) 3.8681 (�1.8020**) 3.1386 (�1.5556*)

NLD 3.6495 (�0.9445) 2.5923 (�1.3227*) 2.2508 (�1.2088)

Notes: This table reports the out-of-sample results of 5-, 10-, and 15-day-ahead variance forecasting under the

rolling window scheme. The model performance is evaluated by the mean-squared error calculated from the

out-of-sample fit (MSEout) multiplied by 104. Bold entries represent the value of the smallest MSEout among

competing models. The pairwise t-statistics are shown in parentheses next to the MSEs of the CEV and NLD

models. A negative (positive) t-statistic means that the MSE of the benchmarked DCEV model is smaller

(larger) than that of the competing model. The asterisks indicate significance of the differences at the 5% (**)

and 10% (*) significance levels.

10 In contrast, for the third subperiod (the financial crisis period), the volatility is not only highly posi-

tively skewed but its standard deviation is also relatively high. Consequently, the comparative ef-

fect of the mean-reverting drift term may be weakened due to a more volatile diffusion term.
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NLD model examined in this paper enjoys benefits that make for an unfair comparison.

Without introducing the data-implied VIX2
t -Vt transformation in Equation (8), the NLD

model performs even worse than the CEV model in the last subperiod.11 This implies that

the existence of the transformation between VIXt and Vt is critical for estimating an SV

model and also highlights the merits of the proposed DCEV model that not only maintains

the LD term such that there exists an analytic Vt-VIX2
t transformation but also exhibits a

superior ability over the widely examined NLD model for describing the mean-reverting be-

havior of an SV process.

In addition to the experiments in Tables 9 and 10 under the physical measure, we next

present the empirical results of out-of-sample option pricing of the examined SV models

based on the estimations of risk-neutral parameters. Table 11 presents the option pricing

RMSEout results of the DCEV, CEV, and SQR models in the whole-sample and sub-sample

periods, and Table 12 further separates the samples in different periods into three catego-

ries by option moneyness. In these two tables, bold entries represent the value of the small-

est RMSEout among competing models. A negative (positive) percentage number in the

parentheses next to the RMSE means that the RMSE of the benchmarked DCEV model is

smaller (larger) than that of the competing model by the indicated percentage number.

Overall speaking, similar to the results for out-of-sample variance forecasting, the DCEV

model dominates the competing models in option pricing in Tables 11 and 12.

Table 11 shows that the DCEV model uniformly improves the option pricing errors of

the CEV model by roughly 3.3–4.4% in all subperiods except the last one, in which the

RMSE of the DCEV model is still smaller than that of the CEV model but only by 2.2%. In

contrast, the DCEV model dramatically reduces the option pricing errors of the SQR model

by 11.4–26.7% in different subperiods. Since the SQR model is widely used for option pric-

ing in practice, the superiority of the DCEV model over the SQR model in option pricing

attests another important merit of the DCEV model. In addition, in slight contrast to the

out-of-sample results of variance forecasting, in which the superiority of the DCEV model

is more significant in the last two subperiods, the performance of the DCEV in option pric-

ing is more pronounced in the second and third subperiods, especially versus the CEV

model. Nevertheless, by combining the out-of-sample results of variance forecasting and

option pricing, we have reason to believe the advantages of introducing the damping func-

tion in the CEV model may be amplified in a more volatile period, such as the financial cri-

sis period, which is consistent with our original motivation for proposing the DCEV model.

In Table 12, the RMSEs of the DCEV model are smaller than those of the CEV and

SQR models across all moneyness in all subperiods. In addition, the improvement of the

DCEV model appears more pronounced for the moneyness in [0.97, 1.03] and larger than

1.03. Since variance is one of the many factors that influence option prices, it is not

straightforward to explain all observed phenomena based only on the features of the DCEV

model without controlling all other factors. However, the robust performance of the DCEV

model in Table 12 is still encouraging to anyone who is interested in the DCEV model.

11 The related results are available from the authors upon request.
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3 Conclusion

We advocate a novel SV model with an LD and damped CEV diffusion. This structure cap-

tures similar or even more appropriate mean-reverting behavior than the commonly used

NLD model proposed by Ait-Sahalia (1996) but lacks the complications of the NLD model.

In addition, the proposed DCEV model also restrains the possibly explosive behavior of the

traditional CEV model. Moreover, the specification of the DCEV model allows us to follow

the estimation method proposed in Duan and Yeh (2010) to estimate the physical and risk-

neutral parameters simultaneously after the latent volatility is inferred.

To comprehensively evaluate the performance of the proposed DCEV model, we com-

pare not only in-sample fitting performance but also out-of-sample variance forecasting

Table 11 Out-of-sample RMSEs of S&P 500 index options

Model Option contracts

Whole-sample period: January 2000–December 2017

DCEV 3.6148

CEV 3.7015 (�2.34%)

SQR 4.8880 (�26.05%)

Sub-sample period: January 2000–December 2000

DCEV 3.8982

CEV 4.0330 (�3.34%)

SQR 4.3979 (�11.36%)

Sub-sample period: January 2001–August 2007

DCEV 2.3562

CEV 2.4657 (�4.44%)

SQR 2.7983 (�15.80%)

Sub-sample period: September 2007–December 2009

DCEV 3.2689

CEV 3.3987 (�3.82%)

SQR 4.2188 (�22.52%)

Sub-sample period: January 2010–December 2017

DCEV 3.7343

CEV 3.8175 (�2.18%)

SQR 5.0922 (�26.67%)

Notes: This table reports out-of-sample results on pricing S&P 500 index call and put option contracts with 30

calendar days to maturity. The model performance is evaluated by the root mean-squared errors (RMSEout) of

all option contracts in an examined period. Bold entries represent the value of the smallest RMSEout among

competing models. A negative (positive) percentage number in parentheses next to the RMSE means that the

RMSE of the benchmarked DCEV model is smaller (larger) than that of the competing model by the indicated

percentage number.
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with the physical parameters and option pricing with the risk-neutral parameters. The em-

pirical results based on the time series of both the S&P 500 and VIX indices suggest that

the DCEV model yields in-sample fitting performance that is superior to that of the CEV

and NLD models and that the improvements yielded by the DCEV model arise from the

advanced model specification rather than the inclusion of additional parameters.

In out-of-sample tests, we first apply the particle filter approach for variance forecast-

ing, such that information on actual stock price innovations (the most original and

Table 12 Out-of-sample RMSEs of S&P 500 index options with different moneyness

Model Moneyness

<0.97 0.97–1.03 >1.03

Whole-sample period: January 2000–December 2017

DCEV 2.2631 4.8925 2.9206

CEV 2.2858 (�0.99%) 5.0049 (�2.24%) 3.0497 (�4.24%)

SQR 2.8462 (�20.49%) 6.5634 (�25.46%) 4.3734 (�33.22%)

Sub-sample period: January 2000–December 2000

DCEV 2.8753 4.5641 3.6955

CEV 2.9265 (�1.75%) 4.7413 (�3.74%) 3.8222 (�3.31%)

SQR 3.0035 (�4.27%) 5.1628 (�11.60%) 4.2690 (�13.43%)

Sub-sample period: January 2001–August 2007

DCEV 1.3699 3.0331 2.1962

CEV 1.3802 (�0.75%) 3.1635 (�4.12%) 2.3592 (�6.91%)

SQR 1.6797 (�18.45%) 3.5821 (�15.32%) 2.5995 (�15.51%)

Sub-sample period: September 2007–December 2009

DCEV 2.7530 3.7914 3.2067

CEV 2.8174 (�2.29%) 3.9741 (�4.60%) 3.3357 (�3.87%)

SQR 3.1679 (�13.10%) 4.5968 (�17.52%) 4.6889 (�31.61%)

Sub-sample period: January 2010–December 2017

DCEV 2.2971 5.0974 2.9550

CEV 2.3183 (�0.91%) 5.2064 (�2.09%) 3.0811 (�4.09%)

SQR 2.9105 (�21.08%) 6.8922 (�26.04%) 4.5220 (�34.65%)

Notes: This table reports out-of-sample results on pricing S&P 500 index call and put option contracts with 30

calendar days to maturity across different moneyness, which is defined as the ratio of the strike price to the

underlying spot price. The model performance is evaluated by the root mean-squared errors (RMSEout) of the

option contracts with specified moneyness in an examined period. Bold entries represent the value of the small-

est RMSEout among competing models. A negative (positive) percentage number in parentheses next to the

RMSE means that the RMSE of the benchmarked DCEV model is smaller (larger) than that of the competing

model by the indicated percentage number.
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observable information) is taken into account when evaluating the forecasting power of the

examined SV models. The DCEV model outperforms competing models statistically signifi-

cantly in forecasting 5-, 10-, and 15-day-ahead average RVs for the whole sample and al-

most all subperiods. We next compare the model performance for option pricing based on

the Monte Carlo simulation. The DCEV model consistently generates smaller pricing errors

than the CEV and SQR models in evaluating S&P 500 index options across all moneyness

in different examined periods. The impressive in-sample and out-of-sample empirical per-

formance sheds light on the appropriateness of the proposed DCEV model to describe the

volatility dynamics. Since this demonstrates that the DCEV model outperforms the NLD

model (a classic representation of the nonaffine SV model), an interesting and fruitful future

work would be to compare the proposed DCEV model with other innovative nonaffine SV

models such as the stochastic log volatility model for various applications.

Appendix A: Hong and Li’s (2005) Q-Test for Examining SV

Models

We first brief Hong and Li’s (2005) Q-test method and then explain how to apply this

method to test model specifications of the examined SV models.

Suppose that the stochastic process of the underlying variable fYtg follows

dYt ¼ l0 Yt; tð Þdt þ r0 Yt; tð ÞdWt;

where l0 Yt; tð Þ and r0 Yt; tð Þ are the true drift and diffusion terms, and Wt is a standard

Brownian motion. Let p0 y; tjx; sð Þ be the true transition density of Yt; that is, the condi-

tional density of Yt ¼ y given Ys ¼ x and s < t. To examine a pair of l Yt; t; Ĥ
� �

and

r Yt; t; Ĥ
� �

(corresponding to a model specification with an estimated parameter set Ĥ), a

family of transition densities fp y; tjx; s; Ĥ
� �

g is characterized. Hong and Li (2005) trans-

form the sample fYiDtgN
i¼1 via the following dynamic probability integral transform:

Zi Ĥð Þ ¼
ðYiDt

�1
p y; iDtjY i�1ð ÞDt; i� 1ð ÞDt; Ĥ
� �

dy; i ¼ 1; . . . ;N:

Hence, for some h0, the hypotheses of interest H0 that a model with the parameter set h0

is correctly specified can be written as

p y; iDtjY i�1ð ÞDt; i� 1ð ÞDt; h0

� �
¼ p0 y; iDtjY i�1ð ÞDt; i� 1ð ÞDt

� �
almost surely for allDt > 0; and the series fZi � Zi h0ð ÞgN

i¼1 follows i.i.d. U½0; 1� (standard

uniform distribution).

The Zi Ĥð Þ for i ¼ 1; . . . N are called the generalized residuals of model p y; tjx; s; Ĥ
� �

.

The main task is to test H0 versus its alternative hypothesis by checking whether fZi Ĥð Þg is

i.i.d. U½0; 1� for some Ĥ ¼ h0. Hong and Li (2005) propose testing i.i.d. U½0; 1� by com-

paring a kernel estimator ĝjðz1; z2Þ for the joint density of fẐi; Ẑi�jg (the product of two

U½0; 1� densities) with unity, where j is a prespecified lag order and Ẑi is the abbreviation

of Zi Ĥð Þ.
The kernel estimator of the joint density is, for any integer j > 0, as follows:
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ĝj z1; z2ð Þ ¼ ðN � jÞ�1
XN
i¼jþ1

Khðz1; ẐiÞKhðz2; Ẑi�jÞ;

where Khðz1; z2Þ is a boundary-modified kernel function defined as follows, for x 2 ½0; 1�,

Kh x; yð Þ �

h�1k
x� y

h

� �
=
Ð 1
� x

hð Þ k uð Þdu if x 2 0; h½ Þ;

h�1k
x� y

h

� �
if x 2 h; 1� h½ �;

h�1k
x� y

h

� �
=
Ð 1�x

h

�1 k uð Þdu if x 2 1� h; 1ð �;

8>>>>>>><>>>>>>>:
where kð�Þ is a prespecified symmetric probability density and h � hðNÞ is a bandwidth

such that h! 0, Nh!1 as N !1. Hong and Li (2005) choose a quartic kernel as

follows.

k uð Þ ¼ 15

16
1� u2ð Þ21 juj � 1ð Þ;

where 1ð�Þ is the indicator function, and h ¼ ŜZN�1=6, where ŜZ is the sample standard de-

viation of fZi Ĥð ÞgN

i¼1. Finally, the Q-statistic is defined as

Q jð Þ � N � jð ÞhM̂ jð Þ � hA0
h

h i
=V

1=2
0 ;

where

M̂ jð Þ �
ð1

0

ð1

0

½ĝj z1; z2ð Þ � 1�2dz1dz2;

A0
h � h�1 � 2ð Þ

ð1

�1

k2 uð Þduþ 2

ð1

0

ðb

�1

k2
bðuÞdudb

" #2

� 1;

V0 � 2

ð1

�1

ð1

�1

k uþ vð ÞkðvÞdv

" #2

du

24 352

;

and kb

�
�Þ � k

�
�Þ=
Ð b
�1 kðvÞdv. Under correct model specification, as N !1,

Q jð Þ ! NDð0; 1Þin distribution:

When Q jð Þ is computed, the larger the Q-statistic, the larger the departure from the true

model. Moreover, Hong and Li (2005) mention that the first lag j ¼ 1 is often the most in-

formative and important, so in our empirical analysis we report the Q-statistic with j equal

to 1.

Since the actual variance process is nonobservable,12 a possible alternative to apply the

Q-test for model specification of the SV models examined in this paper is to utilize the ac-

tual time series fYt ¼ ln Stð Þg that can be observed from the market. Under this constraint,

12 Note that Hong and Li’s (2005) Q-test utilizes discretely observed times series fYtg for testing the

model specification. If one employs the inferred variance Vt to be Yt when conducting Hong and

Li’s (2005) Q-test, since the inferred variance Vt is merely an approximation for the actual
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our idea to apply the Q-test to the examined three SV models is as follows: as long as an SV

model with an parameter set of Ĥ (estimated based on the proposed method in this paper)

infers more appropriate variances (closer to the actual ones if they were observable), the

corresponding l Yt; t; Ĥ
� �

and r Yt; t; Ĥ
� �

should be closer to the true l0 Yt; tð Þ and

r0 Yt; tð Þ of the spot price process, which results in fZi Ĥð Þg being more inclined to follow

i.i.d. U½0; 1� and thus obtaining a lower Q jð Þ. Based on the above inference, a superior

model specification of an SV model can also be identified according to its lower Q jð Þ calcu-

lated based on fYt ¼ ln Stð Þg.
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