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Options can be priced by the lattice model, the results of which converge to the theoretical option value as the lattice’s number of
time steps n approaches in�nity.�e time complexity of a common dynamic programming pricing approach on the lattice is slow
(at least O(n2)), and a large n is required to obtain accurate option values. Although O(n)-time combinatorial pricing algorithms
have been developed for the classical binomial lattice, signi�cantly oscillating convergence behavior makes them impractical. �e
�exibility of trinomial lattices can be leveraged to reduce the oscillation, but there are as yet no linear-time algorithms on trinomial
lattices. We develop O(n)-time combinatorial pricing algorithms for polynomial options that cannot be analytically priced. �e
commonly traded plain vanilla and power options are degenerated cases of polynomial options. Barrier options that cannot be
stably priced by the binomial lattice can be stably priced by ourO(n)-time algorithm on a trinomial lattice. Numerical experiments
demonstrate the e�ciency and accuracy of our O(n)-time trinomial lattice algorithms.

1. Introduction

Options are important �nancial derivatives whose values
depend on other more fundamental �nancial assets, which
are called the underlying assets, for instance, stocks, indexes,
and currencies [1]. In this study, for convenience, the un-
derlying asset is assumed to be a stock. To improve the
market completeness and e�ciency, many complex options
have been structured to meet speci�c �nancial goals.
However, most complex options do not have analytical
pricing formulae and must be priced using numerical
methods [2]. Exploring e�cient and accurate numerical
pricing methods is thus important in both theory and
practice.

�e lattice method is a popular numerical pricing
method. It can easily deal with American-style features like
early redemption and early exercise that are found in many
option contracts. It is also �exible, since only nominal
changes are needed to price complex, nonstandard options,
which do not have simple closed-form solutions [3] (Indeed,
the �exibility of the lattice method makes it widely adopted
in recent literature, such as the evaluation of American stock
options [6], variable annuity products [7, 8], catastrophe
equity puts [9], employee stock options [10], swing options
[11], or corporate bonds [12–15]). Technically speaking, a
lattice divides the option life into n discrete equal-length
time steps and simulates stock price movements discretely at
each time step. Four-time-step binomial and trinomial
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lattices are shown in Figure 1. While each node (except the
nodes at the last time step) in the binomial lattice has two
branches connected to the two following nodes at the next
time step, each node in the trinomial lattice has three
branches. ,e most classical binomial lattice is proposed by
Cox, Ross, and Rubinstein [4] (CRR model hereafter)
(Rubinstein [16] reviews the relation between binomial and
trinomial lattices and shows that they are equivalent to
explicit finite difference methods.), where a node with stock
price S can move to SU or SD (UD � 1) at the next time step
with probabilities PU and PD, respectively. Similarly, a node
with price S in a trinomial lattice can move to Su, S, and Sd

(assuming ud � 1 in Figure 1) at the next time step with
probabilities pu, pm, and pd, respectively. ,e branching
probabilities and the stock price multiplicative factors (like
PU, PD, U, and D in the binomial lattice and pu, pm, pd, u,
and d in the trinomial lattice) are determined to match the
first two moments of distribution of the stock price process,
so that the pricing results generated by lattice models
converge to the theoretical value as n⟶∞ [4, 5].

Pricing options on the lattice model can be achieved by
dynamic programming.,e value for each node in the lattice
is recursively evaluated from the last-time-step back to the
root node. ,us, it takes at least O(n2) time (or quadratic
time of n) (For an O(n2)-time pricing method, the com-
putational time quadruples when n doubles) to price options
on both the binomial and trinomial lattice models, since
there are O(n2) nodes on an n-time-step lattice. ,e dy-
namic programming approach can be quite inefficient as the
pricing results may converge slowly in n, and thus, a large

value for n is required. Fortunately, Dai et al. [3] and Lyuu
[17] proposed combinatorial approaches that can efficiently
price a variety of options on the CRR binomial lattice in
O(n) time (or linear time of n). ,e computational time of
an (O(n))-time pricing method doubles when O(n) doubles.
(therefore, an O(n)-time pricing method runs much faster
than a O(n2 ) one when n is large.)

However, option pricing results generated by the lattice
may oscillate wildly with n [18, 19]. For instance, when
applying the CRR binomial lattice to price barrier options,
the significant oscillation renders it impractical, as shown in
Figure 2. To suppress this oscillation, the lattice structure
should be adjusted to fit the option’s specifications. Since the
trinomial lattice is more flexible than the binomial lattice,
the structure of the trinomial lattice can be adjusted
according to the option contacts to suppress the oscillation
[2, 5, 19] (In the literature, various methods are used to
mitigate the oscillating convergent behavior of the CRR
binomial model; for example, Tian [22] and Klassen [23] for
pricing vanilla options and Bolye and Lau [24] for pricing
barrier options. Note that the modifications in Tian [22] and
Klassen [23] lead to a nonhorizontal binomial tree, i.e., the
asset price layers are no longer parallelly horizontal. How-
ever, the wide applications of combinatorial option pricing
approaches depend crucially on the existence of horizontal
layers, especially when they are used to price barrier-de-
pendent options. Consequently, this study develops combi-
natorial option pricing algorithms based on trinomial lattices
consisting of a set of parallelly horizontal layers. Bolye and
Lau [24], meanwhile, proposed a method to locate a layer of
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Figure 1: Illustration of binomial and trinomial lattice models. Four-time-step binomial (a) and trinomial (b) lattices are shown.,e initial
stock prices for both lattices are S0. In the binomial lattice, the upward and downward multiplicative factors for the stock price are U andD,
respectively, whereUD� 1 based on Cox et al. [4], and the upward and downward branching probabilities are PU and PD, respectively. In the
trinomial lattice, the upward and downward multiplicative factors for the stock price are u and d (assuming ud� 1), respectively, and the
upward, middle, and downward branching probabilities are pu, pm, and pd, respectively.
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nodes as close as possible to the barrier. Nevertheless,
Ritchken [19] demonstrated that the trinomial lattice adopted
in this study outperforms Bolye and Lau’s [24] method in
terms of a faster convergence rate. In addition, the expo-
nential error convergence rate of Fourier transform methods
has led to their wide adoption in recent derivative pricing
literature, such as discretely monitored barrier options
[25, 26], continuously monitored barrier options [27],
α-quantile and perpetual early exercise options [28], and
Asian options [29]. Although lattice methods have slow error
convergence rates as in Talponen and Turunen [30], their
flexibility has led to their wide adoption in recent literature, as
mentioned in footnote 1.). Although the trinomial lattice can
alleviate the price oscillation problem, no efficient combi-
natorial algorithms for the trinomial lattice have been pro-
posed and the inefficient dynamic programming approach,
which takes at least O(n2) time, must be applied. To address
this problem, we develop combinatorial pricing algorithms on
the trinomial lattice, such that this novel option pricing
framework inherits both the efficiency of the combinatorial
algorithm and the accuracy of the trinomial lattice.

Developing a combinatorial algorithm for the trinomial
lattice is much more difficult than that for the binomial one
because the additional middle branch in the trinomial lattice
complicates combinatorial formulae. Consider, for example,
the number of price paths that start at the root and then
finally reach the terminal stock price S0 at the fourth-time-
step, as shown in Figure 1. ,e number of price paths based

on the binomial lattice (Figure 1(a)) is 4
2􏼠 􏼡 because all price

paths in this case should consist of exactly two upward and
two downward movements. In contrast, the number of price
paths based on the trinomial lattice (Figure 1(b)) is
4
0􏼠 􏼡

4
2􏼠 􏼡 +

4
2􏼠 􏼡

2
1􏼠 􏼡 +

4
4􏼠 􏼡

0
0􏼠 􏼡, where each term

represents a different composition of upward, middle, and
downward movements for the price paths reaching the
terminal node S0. For instance, the second term indicates
that the price paths consist of two middle movements, one
upward movement, and one downward movement. ,is
complicated nature might be why no linear-time algorithm
has been proposed for the trinomial lattice before this paper.

We address this first by noting that the option pricing
formulae for a wide range of options on the trinomial lattice
can be decomposed into certain regular summation forms.
,en, we prove in two theorems that each term in the
summation form can be represented by a simple recursive
formula of its preceding term; thus, the summation form can
be evaluated in O(n) time. We take polynomial options as
the first example to develop an O(n)-time combinatorial
algorithm for the trinomial lattice because polynomial op-
tions are general and able to accommodate widely traded
power and vanilla call or put options as special cases, but
polynomial options do not have closed-form solutions
unless their payoffs satisfy certain restricted criteria [31, 32]
(Kim et al. [33] and Zhang et al. [34] price power options as
special cases of polynomial options). Other reasons moti-
vating us to consider polynomial options are their flexible
applications in practice. For instance, since the unusual
payoff functions of exotic path-independent options (or
even option portfolios) can be approximated by a polyno-
mial function, the pricing method for the polynomial option
can be employed to approximate the values of those exotic
options that might not have closed-form solutions. In ad-
dition, if a portfolio is exposed to a risk factor in a nonlinear
manner, the polynomial option can provide a more ap-
propriate payoff to hedge this portfolio; such a hedge
strategy is usually much cheaper than hedging with a
combination of more fundamental derivatives. As a result,
developing efficient and accurate algorithms for pricing
polynomial options is an important and valuable issue.
Furthermore, to demonstrate the versatility of the theorems
proposed in this study, we develop the reflection principle on
the trinomial lattice and then extend the combinatorial
pricing algorithms on the binomial lattice in the study by Dai
et al. [3] to evaluate barrier options on the trinomial lattice.
,e numerical results verify that our pricing algorithms run
in O(n) time and show that our algorithms are superior in
terms of accuracy and efficiency.

,e structure of this study is as follows. We introduce
fundamental knowledge about option pricing and the
combinatorial approach in Section 2 and propose two novel
combinatorial theorems for option pricing in Section 3. In
Section 4, we apply these theorems to develop linear-time
algorithms for polynomial, power, plain vanilla, and barrier
options. We present the experimental results in Section 5
and conclude in Section 6.

2. Preliminaries

2.1. Basic Framework

2.1.1. Stock Price Process. Suppose an option initiates at time
0 and matures at time T. Let St denote the stock price at time
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Figure 2: Comparison of convergence behavior between binomial
and proposed trinomial lattice models for pricing barrier options.
,e x-axis and y-axis denote the number of time steps n and the
option values, respectively. ,e dotted and dashed lines denote the
pricing results generated by the binomial and our trinomial lattices,
respectively. ,e solid line stands for the theoretical value based on
the analytical pricing formula [20, 21]. Clearly, the trinomial lattice
model alleviates the price oscillation problem with respect to the
number of time steps, n.
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t, where 0≤ t≤T. In addition, this study adopts the most
common assumption for the St process on option pricing,
which states that under the risk-neutral measure, St follows a
log-normal diffusion process with drift μ � r − σ2/2 (this
paper takes a non-dividend-paying stock for example. It is
straightforward to extend our model to consider a stock
paying a continuously compounding dividend yield) and
volatility σ, where r is the risk-free rate.

2.1.2. Kamrad and Ritchken Lattice (KRL) Model.
Kamrad and Ritchken [5] proposed a trinomial lattice
model, as shown in Figure 1(b). Denote Δt � T/n as the
length of each time step. ,e KRL model parameterizes
upward and downward multiplication factors u and d as

u � e
λσ

��
Δt

√

,

d � u
− 1

,
(1)

where λ is the stretch parameter that can be adjusted to fit the
option’s specification to alleviate the oscillation problem. To
ensure that the trinomial lattice matches the drift (μ) and
volatility (σ) of the stock price process, Kamrad and
Ritchken set the upward, middle, and downward branching
probabilities pu, pm, and pd as

ρu �
1
2λ2

+
μ

��
Δt

√

2λσ
,

pm � 1 −
1
λ2

,

pd �
1
2λ2

−
μ

��
Δt

√

2λσ
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)

According to Ritchken [19], the oscillation problem can
be significantly reduced by causing the lattice to coincide with
a certain price level Y. Following this idea, we define λ as

λ �

1.224745, if Y � S0orY is not available,

In Y/S0( 􏼁/σ
��
Δt

√􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

In Y/S0( 􏼁( 􏼁/σ
��
Δt

√
􏼄 􏼅

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
, otherwise.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(3)

Note that when Y � S0 (there must be a stock price layer
coinciding with Y) or Y is not available (there is no specific
level in the option contract to fit), we follow Kamrad and
Ritchken [5] in setting λ as 1.224745, such that all branching
probabilities converge to 1/3 when n⟶∞, which
streamlines convergence for pricing options.

2.2. Polynomial Option. One major contribution of this
study is the pricing of polynomial options—which do not
have closed-form solutions unless polynomial payoffs satisfy
some restricted criteria [31, 32]—with the trinomial lattice
model in linear time. A general payoff form is considered as

Payoff � max A ST( 􏼁 − X, 0( 􏼁, (4)
where ST denotes the stock price on the maturity date T, and
A(ST) can be any polynomial function defined as
A(ST) ≡ α1S

q1
T + α2S

q2
T + · · · + αDS

qD

T , where αi’s can be any
real numbers and qi’s are the nonidentical real numbers.
Typically, the A(ST) − X curve may intersect the ST-axis
several times as shown in Figure 3. Consequently, there may
be several separate regions that can generate positive payoffs,
such as regions i, ii, and iii in Figure 3.

2.3. Power Option. A power option grants the holder a right
to buy or sell the power of the stock price for the exercise
price X at the maturity date T. On the other hand, the holder
can junk the call option (or the put option) if the power of
the stock price is lower (or higher) than the exercise price X

at time T. ,e payoff of a power option can be defined as

Payoff � max θS
q

T − θX, 0( 􏼁, (5)

where q can be any real number and θ equals 1 for call
options and − 1 for put options.

2.4. Vanilla Option. A vanilla option, a special case of the
power option by setting q � 1, is a standard option without
unusual features. ,e payoff for a vanilla option at time T is

Payoff � max θST − θX, 0( 􏼁, (6)

where θ equals 1 for call options and − 1 for put options.
Since the payoff function of the polynomial option can
accommodate the payoffs of the power and vanilla options as
special cases, it is straightforward to employ our combi-
natorial pricing algorithm for the polynomial option to
evaluate these two options. Moreover, to alleviate the os-
cillation problem when pricing power and vanilla options,
the KRL lattice requires a price level that coincides with X

(i.e., Y � X in equation (3)) [23].

2.5. Barrier Option. A barrier option is an option whose
payoff depends on whether the stock price path ever hits a
certain price level H called a barrier. Our study focuses on
“up-and-in” barrier options; the extension to other types of
barrier options is straightforward. Furthermore, we consider

0
i ii

Payoff

λ1 λ2 λ3 λ4

iii
ST

A (ST)–X

Figure 3: Illustration of payoff function of polynomial option.,is
figure shows that the holder of this polynomial option can receive a
positive payoff if ST belongs to regions i, ii, or iii, which in this paper
are termed positive-payoff regions. Each positive-payoff region can
be represented by a closed interval [λl, λu]; therefore, regions i, ii,
and ii can be represented by [0, λ1], [λ2, λ3], and [λ4,∞],
respectively.
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the case of H> S0 for convenience. ,us, an “up-and-in”
barrier option can only be exercised at maturity when the
stock price path has risen to hit the barrier during the option
life. Define Ssup � sup

0≤t≤T
St. ,e payoff function for a barrier

option at time T is

Payoff �
max θST − θX, 0( 􏼁, if Ssup ≥H,

0, otherwise,
􏼨 (7)

where θ equals 1 for call options and − 1 for put options.
To alleviate the oscillation problem, Ritchken [19]

suggests that a price level of the lattice should coincide with
the barrier H (i.e., Y � H in equation (3)).

2.6. Option Pricing Based on the KRL Model. ,e theoretical
value of an option equals the discounted expected payoff of
the option under the risk-neutral measure:

e
− rT

E[payoff]. (8)

,e above formula can be evaluated via dynamic pro-
gramming by computing the option value of each node on
the lattice model from time step n back to time step 0. Take
the polynomial option, for example. ,e value of each node
at maturity can be evaluated by equation (4). In Figure 4, the
examined node, say D, has three descendant nodes, say A, B,
and C. Define Vy as the option value for any node y. ,e
value VD of nodes other than the nodes at maturity can be
computed by following backward induction formula.

,e pricing result is the value of the root of the lattice
computed recursively by the aforementioned formula. ,is
naive pricing method takes at least O(n2) time as there are

O(n2) nodes in the n-time-step KRL model. When pricing
barrier options, one must consider not only the stock price
but also other path-dependent variables; thus, the dynamic
programming approach is more complex, and the order of
computational time complexities could be higher than two
[4, 35].

Instead of evaluating the option value of each node, the
combinatorial approach improves efficiency by grouping
stock price paths with the same payoff and calculating their
contribution to the option value. Define G as the set of all
possible stock paths from time step 0 to time step n. If we
define πk,z as a subset of G that contains price paths with
n − kmiddle movements, x ≡ k − z upwardmovements, and
z downward movements, then the set of subsets
{πk,z|0≤ z≤ k≤ n} forms a partition of G. ,us, the theo-
retical value of a polynomial option can be expressed as

e
− rT

E[payoff]

� 􏽘
τ∈G

prob(τ)payoff(τ)

� 􏽘
πk,z

πk,z

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌p

k− z
u p

n− k
m p

z
dmax A S0u

k− z
d

z
􏼐 􏼑 − X, 0􏼐 􏼑,

(9)

where payoff(τ) denotes the payoff corresponding to path τ
at maturity and

πk,z

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 �

n

n − k
􏼠 􏼡

k

z
􏼠 􏼡, (10)

denotes the number of paths in the subset πk,z. ,e second
equality is based on the fact that the probability of each path
in πk,z is pk− z

u pn− k
m pz

d and the payoff of each path in πk,z is the
same as max(A(S0u

k− zdz) − X, 0). ,e following sections
will show how to evaluate equation (9) in linear time of n.
Moreover, similar techniques plus the reflection principle
can also be applied to develop O(n) time pricing algorithms
for barrier options.

2.7. Reflection Principle on the KRL Trinomial Lattice Model.
,e reflection principle efficiently counts the number of
paths that hit a specific price level before reaching a certain
node at maturity in the KRLmodel.,is principle is essential
when pricing barrier options using combinatorial methods.

Δt

D
(VD)

A
(VA)

B
(VB)

C
(VC)

pu

pm

pd

Figure 4: Dynamic programming approach for trinomial lattice.
,e node D has three outgoing branches to nodes A, B, and C with
probability pu, pm, and pd, respectively. Vy denotes the option value
for any node (y). ,e length of each time step is denoted as Δt. In
the dynamic programming approach, the value VD can be com-
puted by the following backward induction formula:
VD � e− rΔt(puVA + pmVB + pdVC), where r is the risk-free interest
rate.

(0, a) A1

B (n, –b)(0, –a)A

(0, 0)
J

H

Figure 5: Reflection principle on trinomial lattice. ,e reflection
principle can be applied to the trinomial lattice; it asserts that the
number of paths that hit barrier H before arriving at node B from
node A is equal to the number of paths from node A1 to node B.
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In contrast to applying the reflection principle on the bi-
nomial lattice to price barrier options in the study by Dai
et al. [3] and Lyuu [17], this study extends their work to the
trinomial lattice. ,e grid in Figure 5 represents the
structure of the KRL model, where x and y-axes denote the
time step and the stock price level, respectively. Each node
(i, j) can move to node (i + 1, j + 1) (upward movement),
node (i + 1, j) (middle movement), or node (i + 1, j − 1)

(downward movement) at the next time step. ,e reflection
principle can help us count the number of paths from node
A(0, − a) to node B(n, − b) that hit the barrier H. Without
loss of generality, we assume that a, b≥ 0. Consider one such
path, 􏽤AJB, that hits barrier H at node J for the first time. We
can reflect the path 􏽣AJ with respect to barrier H to obtain
􏽣A1J (the dashed path). Each path from node A to node J

maps to a unique path from node A1 to node J and vice
versa. ,us, the number of paths from node A to node J

equals the number of paths from node A1 to node J. As a
result, the desired number of paths moving from node A to
node B and hitting barrier H equals the number of paths
from node A1 to node B. ,is is the celebrated reflection
principle.

Suppose the number of upward and downward move-
ments is x and z, respectively, and the sum of upward and
downward movements is k (given the number of middle
movements to be n − k). ,ereby,

x + z � k,

z − x � a + b.

⎧⎪⎨

⎪⎩
(11)

,e first equation is from the definition of x, z, and k,
and the second equation ensures that the number of
downward movements exceeds the number of upward
movements by a + b, which is the distance in y-axis between
node A1 and node B. By solving the aforementioned system
of equations for x and z, we have

x �
(k − (a + b))

2
,

z �
(k +(a + b))

2
.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(12)

,us, the number of paths that hit barrier H before
arriving node B from A and that have n − k middle
movements is

n

n − k

⎛⎝ ⎞⎠
k

x

⎛⎝ ⎞⎠ �

n

n − k

⎛⎝ ⎞⎠

k

(k − (a + b))

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (13)

where k

(k − (a + b))/2􏼠 􏼡 ≡ 0 if (k − (a + b))/2 is not a

nonnegative integer. ,us, the total number of paths hitting
barrier H before arriving B from A is

􏽘
n

k�0

n

n − k

⎛⎜⎜⎝ ⎞⎟⎟⎠

k

(k − (a + b))

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (14)

3. Linear-Time Algorithms for Evaluating
Summations in Option Pricing Formulae

Trinomial lattice option pricing formulae such as equation
(9) can be expressed in terms of a linear combination of
summations 􏽐

n
k�c ω(k), where ω(k) follows certain forms

(introduced later) and c is a nonnegative integer smaller than
n, the number of time steps in the lattice model. ,ese
summations can be evaluated in linear time (i.e., in O(n)

time) if the first term ω(c) can be evaluated in O(n) time and
each following term (i.e., ω(k) for c< k≤ n) can be iteratively
evaluated in O(1) time. ,e aforementioned linear-com-
putation property is the main idea to construct our linear-
time option pricing algorithms. Define the set F to contain
all the sequences (e.g., ω(k){ }) that have this linear-com-
putation property. ,e following proofs show that the series
expressed in certain forms (this will be used to develop
pricing algorithms later) belong to F.

Lemma 1. Define V(k) as β n

k
􏼠 􏼡αk, where β can be

evaluated in O(n) time, α is a real number, and k is a
nonnegative running integer variable. Fen, the sequence
V(k){ } belongs to the set F.

Proof. Suppose V(c) � β n

c
􏼠 􏼡αc � βn!/c!(n − c)!αc is the

first term of the sequence V(k){ }, where c is a nonnegative
integer smaller than n. ,en, V(c) can be evaluated in O(n)

time since β, n!, c!, (n − c)!, and αc can all be evaluated in
O(n) time. In addition, each following term V(k) can be
iteratively computed in O(1) time by the recurrence formula
V(k) � V(k − 1)α(n − k + 1)/k for c< k≤ n. Consequently,
we can obtain V(k){ } ∈ F, and thus, 􏽐

n
k�c V(k) can be

evaluated in O(n) time. □

Lemma 2. Defineω(k) ≡ V(k) 􏽐
M(k)
z�0

k

z
􏼠 􏼡azbk− z, where k

and z are the nonnegative running integer variables, a and b

are the real-number constants, and M(k) is a nonnegative
integer-valued function. Fen, the following formula holds:

V(k) 􏽘

M(k)

z�1

k + 1

z
􏼠 􏼡a

z
b

k+1− z
� (b + a)ω(k) − V(k)

k

0
􏼠 􏼡a

0
b

k+1

− V(k)
k

M(k)
􏼠 􏼡a

M(k)+1
b

k− M(k)
.

(15)

Proof. First, bω(k) and aω(k) can be expressed as
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bω(k) � V(k) 􏽘

M(k)

z�0

k

z
􏼠 􏼡a

z
b

k+1− z

� V(k)
k

0
􏼠 􏼡a

0
b

k+1
+ V(k) 􏽘

M(k)

z�1

k

z
􏼠 􏼡a

z
b

k+1− z
.

(16)

aω(k) � V(k) 􏽘

M(k)

z�0

k

z
􏼠 􏼡a

z+1
b

k− z

� V(k) 􏽘

M(k)− 1

z�0

k

z
􏼠 􏼡a

z+1
b

k− z
V(k)

k

M(k)
􏼠 􏼡a

M(k)+1
b

k− M(k)
.

(17)

,e sum of the second term in equation (16) and the first
term in equation (17) can be simplified as

V(k) 􏽘

M(k)

z�1

k

z
􏼠 􏼡a

z
b

k+1− z
+ V(k) 􏽘

M(k)− 1

z�0

k

z
􏼠 􏼡a

z+1
b

k− z

� V(k) 􏽘

M(k)

z�1

k

z
􏼠 􏼡a

z
b

k+1− z
+ V(k) 􏽘

M(k)

z�1

k

z − 1
􏼠 􏼡a

z
b

k− (z− 1)

� V(k) 􏽘

M(k)

z�1

k

z
􏼠 􏼡 +

k

z − 1
􏼠 􏼡􏼢 􏼣a

z
b

k− z+1

� V(k) 􏽘

M(k)

z�1

k + 1

z
􏼠 􏼡a

z
b

k− z+1
,

(18)

where the third equality is due to the combinatorial addition
identity. ,us,

(b + a)ω(k) � V(k)
k

0
􏼠 􏼡a

0
b

k+1
+ V(k) 􏽘

M(k)

z�1

k + 1

z
􏼠 􏼡a

z
b

k− z+1

+ V(k)
k

M(k)
􏼠 􏼡a

M(k)+1
b

k− M(k)
.

(19)

As a result, Lemma 2 can be obtained by rewriting the
above formula.

,e following theorems and corollaries show that the
summation in certain formats can be evaluated in O(n) time,
which is useful for deriving linear-time combinatorial option
pricing algorithms. □

Theorem 1. If the sequence V(k){ } ∈ F, then the sequence
ω(k){ } defined in Lemma 2 also belongs to F under the
premise that M(k + 1) − M(k) � 1, that is, 􏽐

n
k�c ω(k) can be

evaluated in O(n) time given that c is a nonnegative integer
smaller than n.

Proof. To show that ω(k){ } ∈ F, we first prove that the first

term of the sequence, ω(c) � V(c) 􏽐
M(c)
z�0

c

z
􏼠 􏼡azbc− z, can be

evaluated inO(n) time.,is can be achieved by showing that

the sequence δ(z) ≡ c

z
􏼠 􏼡azbc− z􏼨 􏼩, the terms in the

summation, belongs to F. Since δ(0) �
c

0􏼠 􏼡a0bc− 0 � bc can

be evaluated in O(n) time and δ(z) � δ(z − 1)(c − z+

1/z)(a/b) suggests that each δ(z) can be evaluated in O(1)

time given δ(z − 1) is known, we can infer that δ(z){ } ∈ F.

,us, ω(c) � V(c) 􏽐
M(c)
z�0

c

z
􏼠 􏼡azbc− z � V(c) 􏽐

M(c)
z�0 δ(z) can

be evaluated in O(n) time since both V(c) and 􏽐
M(c)
z�0 δ(z)

can be evaluated in O(n) time.
,e next task is to express ω(k + 1) in terms of ω(k),

such that ω(k + 1) can be iteratively computed in O(1) time
given the value of ω(k). Rewrite ω(k + 1) as

ω(k + 1) � V(k + 1) 􏽘

M(k+1)

z�0

k + 1

z

⎛⎝ ⎞⎠a
z
b

k+1− z

�
V(k + 1)

V(k)
V(k) 􏽘

M(k)+1

z�0

k + 1

z

⎛⎝ ⎞⎠a
z
b

k+1− z⎛⎝ ⎞⎠

�
V(k + 1)

V(k)

V(k)
k + 1

0
⎛⎝ ⎞⎠a

0
b

k+1
+ V(k) 􏽘

M(k)

z�1

k + 1

z

⎛⎝ ⎞⎠a
z
b

k+1− z

+V(k)
k + 1

M(k) + 1
⎛⎝ ⎞⎠a

M(k)+1
b

k− M(k)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(20)
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By replacing V(k) 􏽐
M(k)
z�1

k + 1
z

􏼠 􏼡azbk+1− z with Lemma

2, ω(k + 1) can be expressed in terms of ω(k) as

ω(k + 1) �
V(k + 1)

V(k)

V(k)

k + 1

0

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠a

0
b

k+1
+(b + a)ω(k) − V(k)

k

0

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠a

0
b

k+1

− V(k)

k

M(k)

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠a

M(k)+1
b

k− M(k)
+ V(k)

k + 1

M(k) + 1

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠a

M(k)+1
b

k− M(k)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�
V(k + 1)

V(k)
(b + a)ω(k) + V(k)

k

M(k)

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠

k − M(k)

M(k) + 1
a

M(k)+1
b

k− M(k)⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠

�
V(k + 1)

V(k)
(b + a)ω(k) + V(k + 1)

k

M(k)

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠

k − M(k)

M(k) + 1
a

M(k)+1
b

k− M(k)
.

(21)

Define functions f1 and g1 as

f1(k) �
V(k + 1)

V(k)
􏼠 􏼡(b + a),

g1(k) � V(k + 1)

k

M(k)

⎛⎝ ⎞⎠
k − M(k)

M(k) + 1
a

M(k)+1
b

k− M(k)

� g1(k − 1)
V(k − 1)

V(k)

ak

M(k) + 1
.

(22)

,en, we have f1(k)􏼈 􏼉 ∈ F, since V(k){ } ∈ F and each
f1(k) can be parallelly evaluated in constant time during the
calculation of V(k + 1) given V(k). Following the same
logic, g1(k)􏼈 􏼉 ∈ F because given g1(k − 1), g1(k) can be
evaluated in constant time in parallel when evaluating V(k +

1) given V(k).

Since ω(k + 1) can be expressed in terms of ω(k) as

ω(k + 1) � f1(k)ω(k) + g1(k), (23)

􏽐
n
k�c ω(k) can be computed in O(n) time through equation

(23) by evaluating f1(k)􏼈 􏼉 and g1(k)􏼈 􏼉 in parallel.
In the following corollaries, we consider the different

integer-valued function M(k) and show the resulting se-
quence ω(k){ } ∈ F. □

Corollary 1. 􏽐
n
k�c ω(k) can be computed in O(n) time when

M(k + 1) − M(k) � 0.

Proof. Similarly, ω(k + 1) can be expressed as equation (20)
except that M(k + 1) � M(k):

ω(k + 1) �
V(k + 1)

V(k)
V(k) 􏽘

M(k)

z�0

k + 1

z

⎛⎝ ⎞⎠a
z
b

k+1− z⎛⎝ ⎞⎠

�
V(k + 1)

V(k)
V(k)

k + 1

0
⎛⎝ ⎞⎠a

0
b

k+1
+ V(k) 􏽘

M(k)

z�1

k + 1

z

⎛⎝ ⎞⎠a
z
b

k+1− z⎛⎝ ⎞⎠.

(24)

By replacing V(k) 􏽐
M(k)
z�1

k + 1
z

􏼠 􏼡azbk+1− z with the

formula in Lemma 2, ω(k + 1) can be further expressed as
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ω(k + 1) �
V(k + 1)

V(k)

V(k)

k + 1

0

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠a

0
b

k+1
+(b + a)ω(k) − V(k)

k

0

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠a

0
b

k+1

− V(k)

k

M(k)

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠a

M(k)+1
b

k− M(k)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�
V(k + 1)

V(k)
(b + a)ω(k) − V(k + 1)

k

M(k)

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠a

M(k)+1
b

k− M(k)
.

(25)

Define g2(k) to be a function as follows:

g2(k) � V(k + 1)
k

M(k)

⎛⎝ ⎞⎠a
M(k)+1

b
k− M(k)

� g2(k − 1)
V(k + 1)

V(k)

bk

k − M(k)
.

(26)

Clearly, g2(k)􏼈 􏼉 ∈ F since V(k){ } ∈ F and g2(k) can be
evaluated in constant time given g2(k − 1) in parallel with
the calculation of V(k + 1) given V(k). Since ω(k + 1) can
be expressed in terms of ω(k) as

ω(k + 1) � f1(k)ω(k) − g2(k), (27)

􏽐
n
k�c ω(k) can be computed in O(n) time via equation (27)

by parallelly evaluating f1(k)􏼈 􏼉 and g2(k)􏼈 􏼉. □

Corollary 2. 􏽐
n
k�c ω(k) can be computed in O(n) time when

M(k + 1) − M(k) � 0 or 1 (Note that the value M(k + 1) −

M(k) is determined by the nonnegative integral running
variable k. It is not a random variable).

Proof. Since f1(k)􏼈 􏼉, g1(k)􏼈 􏼉, g2(k)􏼈 􏼉 ∈ F, and the first
term of ω(k){ } and ω(c), can be evaluated in O(n) time as
mentioned in ,eorem 1, each following term ω(k + 1)

(note that k + 1> c.) can be recursively evaluated from the
precedent term ω(k) in O(1) time by equation (21) or (23) if
M(k + 1) − M(k) � 1 or 0, respectively.,us, 􏽐n

k�c ω(k) can
be computed in O(n) time. □

Theorem 2. Let V(k){ } belonging to F, k, and z be the
nonnegative running integer variables, a and b be the real-
number constants, and both M(k) and m(k) be the non-
negative integer-valued functions with the properties M(k +

1) − M(k) � 0 or 1 and m(k + 1) − m(k) � 0 or 1. Fen, a

more general series ω′(k)􏼚 􏼛 with the definition

ω′(k) ≡ V(k) 􏽐
M(k)
z�m(k)

k

z
􏼠 􏼡azbk− z belongs to F, given that c

is a nonnegative integer smaller than n.

Proof. We can rewrite ω′(k) as

ω′(k)
� V(k) 􏽘

M(k)

z�0

k

z
􏼠 􏼡a

z
b

k− z
− V(k) 􏽘

m(k)− 1

z�0

k

z
􏼠 􏼡a

z
b

k− z
.

(28)

We next define ωM(k) ≡ V(k) 􏽐
M(k)
z�0

k

z
􏼠 􏼡azbk− z and

ωm(k) ≡ V(k) 􏽐
m(k)− 1
z�0

k

z
􏼠 􏼡azbk− z, since both 􏽐

n
k�c ωM(k)

and 􏽐
n
k�c ωm(k) can be evaluated in O(n) time by specifying

the upper bounds of the running variable z to be M(k) and
m(k) − 1 in ,eorem 1 (including Corollary 1 and 2), re-
spectively. As a consequence, 􏽐

n
k�c ω′(k) can be evaluated in

O(n) time and ω′(k)􏼚 􏼛 ∈ F. □

3.1. Combinatorial Option Pricing Algorithms. We will first
develop a linear-time pricing algorithm for polynomial
options (with the payoff in equation (4)) by calculating the
discounted expected payoffs with the aforementioned the-
orems and corollaries. Since power and vanilla options are
special cases of polynomial options (their payoffs are shown
in equations (5) and (6), respectively), our pricing algorithm
for polynomial options can be easily extended to price power
options or vanilla options. In addition, the reflection
principle on the KRL trinomial lattice is applied to price
barrier options. Our algorithms focus on call options; the
extension to put options is straightforward.

4. Linear-Time Algorithm for Polynomial
Options on the KRL Model

For convenience, we first introduce useful notation for
developing our combinatorial pricing algorithm. On the
KRL trinomial lattice, S0, u, and d ≡ u− 1 denote the initial
stock price, the upward and the downward multiplication
factors, respectively. In addition, each price path is described
with n − k middle movements, x(� k − z) upward move-
ments, and z downwardmovements; thus the corresponding
stock price at maturity is S0u

k− zdz � S0u
k− 2z, for

0≤ z≤ k≤ n. As a consequence, there are a total of 2n + 1
attainable stock prices at maturity listed from the highest to
the lowest as follows: S0u

n, S0u
n− 1, . . . , S0u

0,S0u
− 1, . . . ,

S0u
− n. ,us, we number the stock price layer from n to –n
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according to the exponent of u of the attainable stock prices
at maturity. Finally, we identify the stock price layer cl and cu

that makes [S0u
cl , S0u

cu ] a largest interval bracketed by a
positive-payoff region [λl, λu] through the following
formulae:

cl �
ln λl/S0( 􏼁

ln u
􏼦 􏼧,

cu �
ln λu/S0( 􏼁

ln u
􏼤 􏼥.

(29)

Note that neither cl nor cu can be less than –n or greater
than n since the highest and the lowest stock prices attainable
at maturity are S0u

n and S0u
− n, respectively. ,erefore, to

ensure that equation (29) is well-defined under all scenarios,
two extreme cases are considered in our model: if 0≤ λl ≤
S0u

− n, cl is set to –n, and if S0u
n ≤ λu <∞, cu is set to n.

Next, we classify each positive-payoff region of a poly-
nomial option into one of the following three cases:
λl < λu ≤ S0, S0 ≤ λl < λu, and λl < S0 < λu. For each case, we
can develop a combinatorial algorithm to evaluate the option
value contributed by the positive-payoff region in linear time
of n. ,us, the total value of a polynomial option can also be
evaluated in linear time of n by accumulating the option
values contributed by all positive-payoff regions.

Case 1. λl < λu ≤ S0
We first derive the constraints for the price paths that end

up in the positive-payoff region. Due to the conditions
λl < λu ≤ S0, the corresponding price layers c1l and c1u can be
derived based on equation (29), and should satisfy − n≤ c1l ≤
c1u ≤ 0. Since the stock price at maturity ST can be expressed as
S0u

k− zdz � S0u
k− 2z, and ST must be within the range

[S0u
c1l , S0u

c1u ], we derive the first constraint for k and z as

c1l ≤ k − 2z≤ c1u⇒
k − c1u

2
≤ z≤

k − c1l

2
. (30)

In addition, since the number of downward movements z

should be no less than 0 and no larger than the sum of the
numbers of upward and downward movements, k, we derive
the second constraint for k and z as 0≤ z≤ k. Finally, a stock
price path should have at least − c1u downward movements to
ensure that ST ≤ S0u

c1u ; thus the sum of the numbers of
upward and downward movements, k, should be no less than
− c1u and no larger than the number of time steps, n, i.e.,
− c1u ≤ k≤ n, which is the third constraint. ,e option value
contributed from the positive-payoff region [λl, λu] can be
expressed as the sum of the values contributed by the stock
price paths that satisfy the above three constraints as

e
− rT

􏽘

n

k�− c1l

n

n − k
􏼠 􏼡p

n− k
m 􏽘

L k,c1l( )

z�U k,c1u( )

k

z
􏼠 􏼡p

k− z
u p

z
d payoff S0u

k− z
d

z
􏼐 􏼑

+e
− rT

􏽘

− c1l− 1

k�− c1u

n

n − k
􏼠 􏼡p

n− k
m 􏽘

k

z�U k,c1u( )

k

z
􏼠 􏼡p

k− z
u p

z
d payoff S0u

k− z
d

z
􏼐 􏼑,

(31)

where

L(k, c) ≡
(k − c)

2
􏼤 􏼥,

U(k, c) ≡
(k − c)

2
􏼦 􏼧,

(32)

and payoff(S0u
k− zdz) denotes the payoff of the polynomial

option given that the maturity stock price is S0u
k− zdz.

Case 2. S0 ≤ λl < λu

According to the condition S0 ≤ λl < λu and the defini-
tions in equation (29), we can obtain the stock price layers c2l

and c2u corresponding to λl and λu, respectively, and they
should satisfy 0≤ c2l ≤ c2u ≤ n. Similar to Case 1, we can
derive three constraints for k and z as
k − c2u/2≤ z≤ k − c2l/2, 0≤ z≤ k, and c2l ≤ k≤ n. As a con-
sequence, the option value contributed from the region
[λl, λu] can again be expressed as the sum of the values
contributed by the paths that satisfy the above three con-
straints as

e
− rT

􏽘

n

k�c2u

n

n − k
􏼠 􏼡p

n− k
m 􏽘

L k,c2l( )

z�U k,c2u( )

k

z
􏼠 􏼡p

k− z
u p

z
d payoff S0u

k− z
d

z
􏼐 􏼑

+e
− rT

􏽘

c2u− 1

k�c2l

n

n − k
􏼠 􏼡p

n− k
m 􏽘

L k,c2l( )

z�0

k

z
􏼠 􏼡p

k− z
u p

z
d payoff S0u

k− z
d

z
􏼐 􏼑.

(33)

Case 3. λl < S0 < λu

Since λl < S0 < λu, the corresponding stock price layers c3l

and c3u derived from equation (29) should satisfy

A

B (n,–h+(k – 2z)) S0uk-2z

X

x

y

(0, –h) S0

H = S0uh

S0uc

Figure 6: KRL model placed on grid for pricing barrier options.
,e KRL model drawn in solid lines is placed on a dashed line grid,
where x-axis represents the stock price layer that coincides with
barrier H and y-axis represents time step 0. ,e coordinates of root
S0 and node B are (0, − h) and (n, − h + (k− 2z)), respectively.
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− n≤ c3l ≤ 0≤ c3u ≤ n. Next, we simply decompose the posi-
tive-payoff region into two parts: one includes the stock
price layers from c3l to –1 and the other includes the stock
price layers from 0 to c3u. ,e first part can be evaluated as
Case 1 by setting c1u as –1 and c1l as c3l, and the second part
can be evaluated as Case 2 by setting c2u as c3u and c2l as 0.
Finally, the option value contributed from region [λl, λu] can
be evaluated as the sum of the values contributed by the
aforementioned two parts.

To show the efficiency of our algorithm, we next prove
that Case 1 and Case 2 can be evaluated in linear time of n.
Note that this implies that Case 3 can be evaluated in linear
time since Case 3 can be expressed as a combination of Case
1 and Case 2. ,e value of a polynomial option is simply the
sum of the values contributed by all positive-payoff regions
and thus can be evaluated in linear time of n. Our proofs take
advantage of ,eorems 1 and 2 developed in Section 3.

,e linear-time pricing algorithm for each positive-
payoff region can be proved by showing that equations (31)
and (33) can both be evaluated in linear time of n. We first
show that the second summation term in equation (33) can
be evaluated in linear time according to ,eorem 1. ,e
polynomial payoff of this term can be decomposed into the
sum of its (D + 1) component terms as

e
− rT

􏽘

c2u− 1

k�c2l

n

n − k
􏼠 􏼡p

n− k
m 􏽘

L k,c2l( )

z�0

k

z
􏼠 􏼡p

k− z
u p

z
d payoff S0u

k− z
d

z
􏼐 􏼑

� 􏽘

c2u− 1

k�c2l

w1(k) + 􏽘

c2u− 1

k�c2l

w2(k) + · · · + 􏽘

c2u− 1

k�c2l

wD(k) − 􏽘

c2u− 1

k�c2l

φ(k),

(34)

where

wi(k) � e
− rT

n

n − k
􏼠 􏼡p

n− k
m 􏽘

L k,c2l( )

z�0

k

z
􏼠 􏼡p

k− z
u p

z
dαi S0u

k− z
d

z
􏼐 􏼑

qi

� αiS
qi

0 e
− rT

n

n − k
􏼠 􏼡p

n− k
m 􏽘

L k,c2l( )

z�0

k

z
􏼠 􏼡 u

qi pu( 􏼁
k− z

d
qi pd( 􏼁

z
,

(35)

for 1≤ i≤D, and

φ(k) � Xe
− rT

n

n − k
􏼠 􏼡p

n− k
m 􏽘

L k,c2l( )

z�0

k

z
􏼠 􏼡p

k− z
u p

z
d. (36)

Note that each of the (D + 1) summation terms in
equation (34) can be evaluated in O(n) time. Specifically,
􏽐

c2u − 1
k�c2l

wi(k) can be evaluated in O(n) time according to
,eorem 1 by setting a � dqi pd,b � uqi pu,V(k) � αiS

qi

0 e− rT

n

n − k
􏼠 􏼡pn− k

m � αiS
qi

0 e− rTpn
m

n

k
􏼠 􏼡(p− 1

m )k, (According to

Lemma 1, V(k){ } ∈ F can be obtained by setting
β � αiS

qi

0 e− rTpn
m and α � p− 1

m ) and M(k) � L(k, c2l). In ad-
dition, 􏽐

c2u− 1
k�c2l

φ(k) also can be evaluated in linear time by
setting a � pd,b � pu,V(k) � Xe− rT

n

n − k
􏼠 􏼡pn− k

m � Xe− rTpn
m

n

k
􏼠 􏼡(p− 1

m )k, (According to

Lemma 1, V(k){ } ∈ F can be obtained by setting
β � Xe− rTpn

m and α � p− 1
m .) and M(k) � L(k, c2l) in ,eo-

rem 1. As a result, the second summation term in equation
(33) can be evaluated in linear time of n.

For both of the first summation terms in equations (31)
and (33), since the lower bounds for the index z are integer-
valued functions of another running variable k rather than
constants, ,eorem 2 is used to prove that they can be
evaluated in linear time of n. We set M(k) � L(k, cil) and
m(k) � U(k, ciu), for i � 1, 2, and then mimic the method to
evaluate equation (34) by specifying the appropriate terms
for a, b, and V(k) to evaluate each component term in the
polynomial payoff in linear time with ,eorem 2. Similarly,
for the second summation terms in equation (31), we set
M(k) � k, m(k) � U(k, c1u), and a, b, and V(k) to appro-
priate terms and next apply ,eorem 2 to evaluate each
component term in the polynomial payoff in linear time of n.

As a result, each of the four summation terms in equation
(31) of Case 1 and equation (33) of Case 2 can be evaluated in
linear time of n. ,erefore, Case 3 can be evaluated in linear
time of n as well. Since the option value of any polynomial
option contributed from each positive-payoff region can be
computed as either Case 1, 2, or 3 in linear time of n, the total
value of any polynomial option can be obtained in O(n) time
with our combinatorial pricing algorithm.,us our approach
is more efficient than other lattice models, which price
polynomial options in at least O(n2) time.

Note that the above algorithm is quite general and able to
price not only polynomial options but also power and vanilla
call or put options in O(n) time. To the best of our
knowledge, this paper is also the first in the literature to
obtain O(n)-time combinatorial pricing algorithms for
polynomial, power, and vanilla options on the trinomial
lattice model.

4.1. Linear-Time Algorithm for Barrier Options on the KRL
Model. Pricing a barrier option is much more complex than
pricing a polynomial option since the barrier option is a path-
dependent option and can be exercised only if the stock price
has hit H during the life of the option. To mitigate the os-
cillation problem when pricing barrier options on the tri-
nomial lattice model, the parameter λ in equation (3) is
adjusted by setting Y � H, such that the barrier H can co-
incide with a layer of the lattice, as shown in Figure 6. Before
introducing our combinatorial algorithm, we first define h �

ln(H/S0)/ln u to be the number of net upward movements
needed to reach H from S0 and also define c �

min i|i ∈ Z, S0u
i ≥X􏼈 􏼉 where S0u

c can represent the lowest
stock price layer which is above or coinciding with the strike
price X. In the following paragraphs, our linear-time algo-
rithm for barrier options discusses two different cases re-
garding the relation between the strike price X and the barrier
H.

Case 4. X≥H

In this case, a positive payoff (i.e., max(ST − X, 0)> 0) at
maturity guarantees the hit on barrier H during the option
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life, so the barrier option degenerates into a vanilla option.
,e reason behind this phenomenon is explained as follows.

e
− rT

E[payoff] � e
− rT

E max ST − X, 0( 􏼁1 Ssup ≥H{ }􏼔 􏼕

� e
− rT

E ST − X( 􏼁1 ST >X{ }1 Ssup ≥H{ }􏼔 􏼕

� e
− rT

E ST − X( 􏼁1 ST >X{ }􏼔 􏼕

� e
− rT

E max ST − X, 0( 􏼁􏼂 􏼃

� value of a vanilla call option,

(37)

where the first equality is the combination of equations (7)
and (9). Since Ssup ≥ ST is true by definition and X≥H holds
in Case 4, ST >X implies Ssup ≥H. ,us, the second equality
can be reduced to the third one. As a consequence, the
barrier option in the case of X≥H can be priced by the
algorithm for the vanilla option.

Case 5. X<H

In this case, the option value can be further decomposed
into two parts: the value contributed by the terminal nodes
above H (inclusive) and the value contributed by the ter-
minal nodes between H (exclusive) and X (,e value
contributed by the nodes below X is not taken into account
since the option payoff at these nodes is 0.).

First, consider a terminal node, say A in Figure 6,
above or equal to the barrier H. Note that all price paths
reaching node A must also hit the barrier H. ,us, the
payoff for this kind of node is the same as the payoff for the
vanilla call, i.e., max(ST − X, 0). Furthermore, since
X<H≤ ST in this case, the payoff for nodes above H can be
simplified to be ST − X. In addition, for those paths
reaching a node above H (inclusive), we have
S0u

k− 2z ≥ S0u
h, which implies

k − 2z≥ h⇒z≤
k − h

2
⇒z≤􏼤

k − h

2
􏼥 � L(k, h), (38)

where the third inequality is due to the fact that z is an
integer and the last equality is according to the definition in
equation (31). In addition, since the number of downward
movements z is a nonnegative integer, the number of the
sum of the upward and downward movements k should
satisfy

k � x + z≥ (z + h) + z≥ h. (39)

,ereby, the option value contributed by these terminal
nodes is

e
− rT

􏽘

n

k�h

n

n − k
􏼠 􏼡p

n− k
m 􏽘

L(k,h)

z�0

k

z
􏼠 􏼡p

k− z
u p

z
d S0u

k− 2z
− X􏼐 􏼑, (40)

where the lower bound of the first summation is from
equation (39) and the upper bound of the second summation
is from equation (38).

Next, we employ Corollary 1 to develop an O(n)-time
algorithm for evaluating equation (40), which can be re-
written as

􏽘
n

k�h

ω(k) − 􏽘
n

k�h

φ(k), (41)

where

ω(k) � S0e
− rT

n

n − k
􏼠 􏼡p

n− k
m 􏽘

L(k,h)

z�0

k

z
􏼠 􏼡 upu( 􏼁

k− z
dpd( 􏼁

z
,

φ(k) � Xe
− rT

n

n − k
􏼠 􏼡p

n− k
m 􏽘

L(k,h)

z�0

k

z
􏼠 􏼡p

k− z
u p

z
d.

(42)

,e summation term, 􏽐
n
k�c ω(k), can be evaluated in

O(n) time through Corollary 2 by setting a � dpd,b � upu,

V(k) � S0e
− rT n

n − k
􏼠 􏼡pn− k

m �S0e
− rTpn

m

n

k
􏼠 􏼡(p− 1

m )k, and

M(k) � L(k, h), where V(k){ } can be proved to belong to F

through Lemma 1 by setting β � S0e
− rTpn

m and α � p− 1
m .

Similarly, the summation term, 􏽐
n
k�c φ(k), can be evaluated

in O(n) time through Corollary 2 by setting a � pd,

b � pu,V(k) � Xe− rT n

n − k
􏼠 􏼡pn− k

m � Xe− rTpn
m

n

k
􏼠 􏼡(p− 1

m )k,

and M(k) � L(k, h). Note that V(k){ } ∈ F can be proved
using Lemma 1 by setting β � Xe− rTpn

m and α � p− 1
m .

Second, consider terminal nodes that are below the
barrier H (exclusive) but above or equal to X, like node B in
Figure 6. For those terminal nodes, they should satisfy
S0u

c ≤ S0u
k− 2z < S0u

h. ,erefore, a pair of upper and lower
bounds for z can be derived as

c≤ k − 2z< h⇒
k − c

2
≥ z>

k − h

2
⇒􏼤

k − c

2
􏼥≥ z≥􏼤

k − h

2
􏼥

+ 1⇒L(k, c)≥ z≥ L(k, h) + 1.

(43)

In addition, for a price path that first reaches the barrier
H (which takes h upward movements) and then falls below
the barrier at maturity (which takes at least 1 downward
movement), the sum of the number of downward move-
ments and upward movements, k, should satisfy

k≥ h + 1. (44)

Moreover, in order to hit H during the option life, the
number of upward movements, x, must be larger than h,
which suggests another constraint for z:

x≥ h⇒k − z≥ h⇒z≤ k − h. (45)

Finally, the number of paths, which starts from the root
node, hits the barrier H during the option life, and reaches
the terminal node below the barrier H that can be computed
by the reflection principle mentioned in equation (13). Note
that in Figure 6, the root of the lattice is h step lower than H

(i.e., a � h in Figure 5) and the vertical distance between the
terminal node and the root is k − 2z; thus, the y-coordinate
for node B is − h + (k − 2z), which implies b � h − (k − 2z)

in Figure 5. ,e number of the paths that satisfy the
aforementioned constraints can be obtained by substituting
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a and b into equation (13) to get n

n − k
􏼠 􏼡

k

k − z − h
􏼠 􏼡.

,us, the option value contributed by the terminal nodes
that are below the barrier H but above or equal to X is

e
− rT

􏽘
n

k�h+1

n

n − k
􏼠 􏼡p

n− k
m 􏽘

min(k− h,L(k,c))

z�L(k,h)+1

k

k − z − h
􏼠 􏼡p

k− z
u p

z
d S0u

k− z
d
z

− X􏼐 􏼑,

(46)

where the lower bound of the first summation is from
equation (44) and the lower and upper bounds of the second
summation are from equations (43 and 45), respectively.

To evaluate equation (46) in O(n) time, the first step is to
substitute j for k − z − h, and then, we can rewrite equation

(46) by employing j as the running variable for the inner
summation. Because

L(k, h) + 1≤ z≤min(k − h, L(k, c))

⇒max(h − k, − L(k, c))≤ − z≤ − L(k, h) − 1

⇒k − h + max(h − k, − L(k, c))

≤ k − z − h≤ k − h − L(k, h) − 1

⇒(k − h − L(k, c))
+ ≤ j≤U(k, h) − 1,

(47)

where U(k, h) � (k − h)/2⌈ ⌉, equation (46) can be rewritten
as

e
− rT

upu( 􏼁
h

dpd( 􏼁
− h

􏽘

n

k�h+1

n

n − k
􏼠 􏼡p

n− k
m 􏽘

U(k,h)− 1

j�(k− h− L(k,c))+

k

j
􏼠 􏼡p

j
up

k− j

d S0u
j
d

k− j

− e
− rT

p
h
up

− h
d 􏽘

n

k�h+1

n

n − k
􏼠 􏼡p

n− k
m 􏽘

U(k,h)− 1

j�(k− h− L(k,c))+

k

j
􏼠 􏼡p

j
up

k− j

d X

≡ 􏽘
n

k�h+1
ω(k) − 􏽘

n

k�h+1
φ(k),

(48)

where

ω(k) � S0e
− rT

upu( 􏼁
h

dpd( 􏼁
− h n

n − k
􏼠 􏼡p

n− k
m 􏽘

U(k,h)− 1

j�(k− h− L(k,c))+

k

j
􏼠 􏼡 upu( 􏼁

j
dpd( 􏼁

k− j
,

φ(k) � Xe
− rT

p
h
up

− h
d

n

n − k
􏼠 􏼡p

n− k
m 􏽘

U(k,h)− 1

j�(k− h− L(k,c))+

k

j
􏼠 􏼡p

j
up

k− j

d .

(49)

,e first term in equation (48), 􏽐
n
k�h+1 ω(k), can be

evaluated in O(n) time through ,eorem 2 by setting a �

upu, b � dpd,V(k) �S0 e− rT(upu)h(dpd)− h n

n − k
􏼠 􏼡pn− k

m ,

M(k) � U(k, h) − 1, and m(k) � (k − h − L(k, c))+. Note
that V(k){ } ∈ F can be proved via Lemma 1 by rewriting

V(k) �S0 e− rT(upu)h(dpd)− hpn
m

n

k
􏼠 􏼡(p− 1

m )k and setting β �

S0e
− rT(upu)h(dpd)− hpn

m and α � p− 1
m .

Similarly, the second term 􏽐
n
k�h+1 φ(k) can be evaluated

in O(n) time through ,eorem 2 by setting a � pu, b � pd,

V(k) � Xe− rTph
up− h

d

n

n − k
􏼠 􏼡pn− k

m , M(k) � U(k, h) − 1, and

m(k) � (k − h − L(k, c))+. Again, V(k){ } ∈ F can be proved
by Lemma 1 by rewriting V(k) � Xe− rTph

up− h
d pn

m

n

k
􏼠 􏼡(p− 1

m )k and setting β �Xe− rTph
up− h

d pn
m and α � p− 1

m .

,ereby, equations (48) and (46) can be evaluated in O(n)

time.
,e price of the barrier option of Case 5 is the sum of

equations (40) and (46). We hereby propose an O(n)-time
algorithm to price barrier options on the KRL model.

5. Experimental Results

In this section, we compare our linear-time combinatorial
algorithms with the standard backward induction procedure
(which is indeed the dynamic programming approach
mentioned above) for pricing polynomial, vanilla, and
barrier options on the KRL trinomial lattice. ,e results
demonstrate the superiority of our combinatorial model in
terms of efficiency and accuracy.

Since there is no simple closed-form pricing formula for
polynomial options, it is necessary to price them numeri-
cally. However, pricing polynomial options via dynamic
programming suffer from slow convergence, and thus, a
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large number of n is required. Figure 7 shows the com-
parison of the running time between our O(n)-time tri-
nomial combinatorial approach and the O(n2)-time
dynamic programming approach. ,e x and y-axes denote
the logarithmic values of n and running time, respectively.
,e slopes of linear regression formulae denote the esti-
mations for the order of time complexities. Note that the
combinatorial approach (slope � 0.896) is much more ef-
ficient than the dynamic programming approach
(slope � 1.894). Moreover, we compare the convergence
rates of absolute pricing errors for binomial and trinomial
lattices, as shown in Figure 8. Our trinomial lattice generates
smaller absolute pricing errors and shows a faster conver-
gence rate than the CRR binomial lattice for pricing poly-
nomial options. To further confirm the stable and fast
convergence of our combinatorial algorithm, Figure 9 shows
comprehensive sensitivity analyses for the polynomial op-
tion analyzed in Figure 7. ,e absolute pricing errors for the
combinatorial approaches based on both the binomial and
trinomial lattices are much smaller than the dynamic pro-
gramming approach on the trinomial lattice and the explicit
finite difference method (,e implementation issues about
applying the finite difference and Fourier transform
methods to price polynomial options are discussed in Ap-
pendix.) for different settings of the risk-free rates r, stock
price volatilities σ, times to maturity T, exercise prices X, and
payoff functions. In addition, the combinatorial approach
based on the trinomial lattice performs better than that on
the binomial one in terms of less oscillations, as shown in
Figure 10.

A vanilla option is a special case of a polynomial option,
and its value can be analytically evaluated by the Black-
–Scholes formula [36]. With this property, we can analyze
the pricing errors generated by our combinatorial algorithm.
Figure 11 shows the comparison of the absolute pricing
errors and running times between the dynamic

programming approach and the combinatorial approach for
pricing vanilla call options. ,e x and y-axes denote the
running time and absolute pricing errors, respectively. ,e
results show that the absolute pricing errors of the com-
binatorial approach decrease more smoothly and rapidly
than the dynamic programming approach.

Figure 12 shows the relation between the running time
and the number of time steps n for our combinatorial and
dynamic programming approaches on pricing up-and-in
barrier call options. ,e x and y-axes denote the values
after taking the logarithm of the number of time steps and
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Figure 7: Time complexity for pricing polynomial options. ,is figure is a log-log plot of the running time versus the number of time steps.
,e solid and dashed lines denote the combinatorial and the dynamic programming approaches, respectively.,e linear regression formulae
are listed next to the lines. ,e initial stock price is 5, the exercise price is 5, the risk-free rate is 10% per annum, the volatility of the stock
price is 25%, and the time to maturity (T) is one year. ,e payoff of the examined polynomial option is
max(S4T − 22S3T + 179S2T − 638ST + 845 − X, 0). ,e results demonstrate that our combinatorial approach successfully reduces the time
complexity for pricing polynomial options on the trinomial lattice to O(n) time, comparing to the O(n2)-time complexity of the dynamic
programming approach.
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Figure 9: Continued.
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for the corresponding running time, respectively. ,e re-
gression formula for the dynamic programming approach is
y � 2.039x − 7.591, whereas the regression formula for the
combinatorial approach is y � 0.971x − 5.938. ,e slope of
the dynamic programming approach is twice as high as
that of the combinatorial one. ,ese results again dem-
onstrate that we successfully reduce the time complexity
of pricing barrier options on the trinomial lattice from

O(n2) by the dynamic programming approach to O(n) by
this novel trinomial combinatorial approach. Figure 13
shows the comparison of the absolute pricing errors
versus running time for pricing up-and-in barrier call
options between the binomial combinatorial approach
and the trinomial combinatorial and dynamic program-
ming approaches based on the KRL trinomial lattice. ,e
binomial combinatorial approach is the linear-time
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Figure 9: Sensitivity analyses for polynomial options. ,e x and y-axes represent the running time and the absolute pricing error, re-
spectively. ,e black and light gray thin curves denote the pricing errors generated by the combinatorial algorithms based on the KRL
trinomial and CRR binomial lattice, respectively. ,e dark gray and light gray thick curves indicate the pricing errors generated by the
dynamic programming approach on the CRR binomial lattice and explicit finite difference method. All parameters in (a)–(h) are identical to
those in Figure 7 except the parameters specified in the legend. Specifically, the risk-free rates (r) in (a) and (b) are set to 5% and 15%; the
volatilities of the stock price σ in (c) and (d) is 20% and 30%; the times to maturity (T) in (e) and (f) are 0.5 and 1.5 years; the exercise prices
(X) in (g) and (h) are 2.5 and 7.5, respectively.,e benchmark option value for each parameter setting is listed on the top right corner of each
subfigure. (a) r� 5%. (b) r� 15%. (c) σ � 20%. (d) σ � 30%. (e) T� 0.5. (f ) T�1.5. (g) X� 2.5. (h) X� 7.5.
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pricing algorithm developed in Dai et al. [3] based on the
CRR binomial lattice. Even equipped with this efficient
linear-time binomial combinatorial approach, the oscil-
lation problem is clearly more pronounced than the other
two trinomial lattice-based models. Moreover, the tri-
nomial combinatorial approach converges faster and
more smoothly than the trinomial lattice dynamic

programming approach and the binomial combinatorial
approach in terms of running time.

Note that the analyses in Figure 2 demonstrate that the
pricing results of the binomial combinatorial approach are
more inclined to oscillate and less accurate than those of the
trinomial combinatorial approach in terms of both the
number of time steps and running time. ,ese comparisons

0 0.001 0.002 0.003
Dynamic Programming
Combinatorial Approach

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

Ab
so

lu
te

 V
al

ue
s o

f E
rr

or
s

0.005 0.01 0.015 0.02 0.030 0.025
Running Time

0
0.005

0.01
0.015

0.02
0.025

0.03
0.035

0.04
0.045

Figure 11: Comparison of absolute pricing error versus running time for pricing vanilla call options. For the examined vanilla call option,
the initial stock price is 90, the exercise price is 100, the risk-free rate is 10% per annum, the volatility of the stock price is 25%, and the time to
maturity is 1 year. ,e benchmark option price is obtained based on Black and Scholes [36]. ,e black line indicates the absolute pricing
errors of our combinatorial approach, and the gray line represents the absolute pricing errors of the dynamic programming approach. ,e
right-hand side diagram is a more detailed illustration for the running time shorter than 0.003 seconds. Compared with the dynamic
programming approach, our combinatorial approach shows more rapidly decreasing errors and smoother convergence behavior.

0

0.01

0.02

0.03

0.04

0.05

0.06

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035

Benchmark Option Price: 1.023

Combinatorial Approach (Binomial)
Dynamic Programming (Trinomial)
Combinatorial Approach (Trinomial)

Figure 10: Convergence oscillations for pricing polynomial options. ,e x-axis and y-axis represent the running time and the absolute
pricing error, respectively.,e black and light-gray curves denote the pricing errors generated by the combinatorial algorithms based on the
KRL trinomial and CRR binomial lattice, respectively. ,e dark-gray thick curves indicate the pricing errors generated by the dynamic
programming approach on the KRL trinomial lattice. ,e payoff function for the polynomial option is specified as
max((ST − 0.7X)(ST − 1.3X) − 5000, 0), where the initial stock price S0, the exercise price X, the risk-free rate r, the time to maturity T, and
the volatility of the stock price σ are set to 50, 50, 10%, 0.5 years, and 40%, respectively. ,e benchmark option value for each parameter
setting is listed on the top right corner of the figure.
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between binomial and trinomial combinatorial approaches
support the necessity and contribution of proposing com-
binatorial option pricing approaches based on the trinomial
lattice in this study.

6. Conclusion

Although the trinomial lattice framework for option pricing
has been shown to provide better convergence behavior than
the binomial lattice framework, only the dynamic pro-
gramming approach, whose complexity is at least O(n2)

time, has been developed under the trinomial lattice
framework to price options. ,is study proposes a novel
combinatorial approach to reduce the time complexity for
pricing options on the trinomial lattice of Kamrad and
Ritchken [5]. ,e notion is to decompose the complex
option payoff functions into certain regular summation
forms, which can be evaluated in O(n) time by simple re-
cursive formulae. We successfully develop O(n)-time
pricing algorithms for a wide range of options which require
at least O(n2) time when priced by the original dynamic
programming approach.
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Figure 12: Time complexity comparison of pricing up-and-in barrier call options.,is figure represents the log-log plot of the running time
versus the number of time steps. ,e solid and dashed lines denote the results for the combinatorial approach and the dynamic pro-
gramming approach, respectively. ,e linear regression formulae are listed next to the lines. ,e initial stock price is 90, the exercise price is
85, the higher barrier is 95, the risk-free rate is 10% per annum, the volatility of the stock price is 25%, and the time to maturity is 1 year. ,e
results demonstrate that our combinatorial approach successfully reduces the time complexity for pricing barrier options on the trinomial
lattice to O(n) time, whereas the time complexity of the dynamic programming approach is O(n2).
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Figure 13: Comparison of absolute pricing error versus running time for pricing up-and-in barrier call options. ,e black and gray solid
lines indicate the absolute errors of our combinatorial approach and the dynamic programming approach based on the KRL trinomial
lattice.,e dotted line represents the absolute errors of the linear-time binomial lattice combinatorial approach proposed in the study by Dai
et al. [3]. ,e benchmark option price is derived based on Rich [20] and Rubinstein and Reiner [21]. All parameters are the same as those in
Figure 12. ,e right-hand side diagram is a more detailed illustration for the running time shorter than 0.005 seconds. ,e oscillation
problem of the binomial combinatorial approach is more pronounced than those of the other two trinomial lattice-based models. Moreover,
our trinomial combinatorial approach shows most rapidly decreasing errors and smoothest convergence behavior among the three models.

18 Mathematical Problems in Engineering



Appendix

A.IssuesaboutPricingPolynomialOptionswith
the Finite Difference and Fourier
Transform Methods

Note that for vanilla options, since they are deeply in- and
out-of-the-money at the two ends of the examined stock price
range, well-performing boundary conditions can be deter-
mined based on this property for the finite difference method
(abbreviated as the FD method). However, the property may
not hold for complex polynomial payoff functions because the
in- and out-of-the-money regions may distribute alternately.
,erefore, in the FDmethods, it is a challenging task to set the
boundary conditions for pricing polynomial options. Recall
that the payoff of a European call option is (ST − X)+, where
ST and X denote the price of the underlying asset at maturity
and the strike price, respectively. ,us, the option on the
boundary with very high underlying asset value St at time t is
very likely to be in-the-money at maturity; therefore, the
option value on the boundary can be trivially solved as
e− r(T− t)E[ST − X| St] by dropping the “+” operator. How-
ever, taking advantage of this in-the-money property may
lead to pricing errors for complex polynomial option payoff
functions. Feasible settings for the boundary position and
corresponding option values are also nontrivial. In Figure 9,
we set the upper bound to a high stock price level and examine
a considerable number of stock prices to ensure the con-
vergence of option values. Perhaps, this is why the FDmethod
converges slightly slower than the dynamic programming
method shown in Figure 9.

On the other hand, pricing polynomial options with the
Fourier transform method (abbreviated as the FT method)
could be an interesting but challenging future work due to
complex payoff functions and in-the-money regions. ,is
may explain why there are no FT-based pricing methods for
polynomial options to our knowledge. We sketch the FT
derivations proposed in Carr and Madan [38] for pricing a
European-style vanilla call to illustrate the challenge. ,ey
price a European call option with payoff (ST − X)+. In this
study, they argue that the vanilla call option price CT(x) can
be expressed as an inverse Fourier transform

CT(v) �
e

− αx

2π
􏽚
∞

− ∞
e

ivxψT(v)dv, (A.1)

where x ≡ ln(X) and ψT(v) denotes the Fourier transform
of the call price multiplied by eαx, defined as

ψT(v) �
e

− αx

2π
􏽚
∞

− ∞
e

ivx
􏽚
∞

x
e
αx

e
− rT

e
s

− e
x

( 􏼁qT(s)dsdx,

(A.2)

where s ≡ ln(ST) and qT denote the density function of ST.
One can change the integration order of equation (A.2) to
yield

􏽚
∞

− ∞
e

− rT
qT(s) 􏽚

s

− ∞
e

s+αx
− e

(1+α)x
􏼐 􏼑e

ivxdxds, (A.3)

and then analytically evaluate the integration for later
substitution into equation (A.1) to solve the option price.
Now, we replace the payoff function of a vanilla option
(ST − X)+ with

􏽘

n

i�1
biS

i
T − b0

⎛⎝ ⎞⎠

+

, (A.4)

the payoff function of a polynomial option. Note that b0 is
analogous to the strike price X; thus, directly applying the
above approach requires a positive b0 to ensure that x

(≡ln(X)) is defined. However, a nonpositive b0 does not
cause any problem in the lattice-based approach. In addi-
tion, the ranges defined by the lower and upper limits of the
inner integrals like x≤ s≤∞ and − ∞≤ x≤ s in equations
(A.2) and (A.3) reflect the in-the-money region of the vanilla
option. Multiple in-the-money regions of polynomial op-
tions could make the change of the integration order and
analytical integration of equation (A.3) intractable. ,is is
because, on the s-x plane, the contours of in-the-money
regions are disconnected and nonpiecewise linear. In ad-
dition, on pages 587–588 of the study by Kwok et al. [37], we
find that the singularity of the integration function for
pricing vanilla options arises from the kink in the payoff
function. Carr and Madan [38] solved this by multiplying
the payoff with an exponential decay function e− αx. How-
ever, more singularities must be circumvented for pricing
polynomial options due to the multiple roots of equation
(A.4). ,ese reasons all show why developing a fast con-
vergent FT pricing method is a challenging task.
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