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Abstract

This paper proposes a novel equity‐price‐tree‐based convertible bond (CB)

pricing model based on the first‐passage default model under stochastic

interest rates. By regarding equity values as down‐and‐out call options on firm

values (FVs), at each tree node, we solve the implied FV and equity‐price
volatility (EPV), and then endogenously settle the default probability (DP) and

also the dilution effect subject to CB conversions with the implied FV and

capital structure. Our model captures the stylized negative (positive)

relationships between the stochastically evolving DP and FV or EP (EPV) that

cannot be fully achieved by existing CB pricing models.
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1 | INTRODUCTION

A convertible bond (CB) is a kind of corporate bond that allows bondholders to share the profits and growth of the
issuer by converting the bond into a predetermined number of the issuer's equity shares at certain stipulated time
points before maturity. With the upside potential of the embedded conversion option, investors buy CBs even if they
are issued at higher prices or carry lower yields. On the other hand, a CB issuer can raise debt capital with less funding
costs at the expense of possible equity dilutions due to CB conversions. CBs are widely issued and frequently traded in
financial markets, but it is difficult to price CBs precisely since there are many factors (which can be intercorrelated or
interactive with each other) that influence CB prices. Most CBs grant issuers the right to call back the bonds at
prespecified call prices; this embedded call option can either save interest expenses due to occurrences of unexpected
interest rate drops or force CB holders to convert their CBs into equity shares. Since both conversion and call‐back
provisions embedded in CBs are analogous to the early exercise provision of American options, optimal conversion and
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call‐back boundaries are simultaneously evaluated when pricing CBs. Tree models are widely used to determine the
path dependencies of the equity and short rate processes for touching the optimal conversion and call‐back boundaries.
Moreover, a CB is subject to the issuer's default risk, which is theoretically time varying and negatively (positively)
related to the stochastically evolving issuing firm value (FV)1 and equity price (equity‐price volatility [EPV]).

However, past structural and reduced‐form CB pricing models2 fail to fully capture the relationships among factors
that affect CB values, including the default risk, issuing FV, equity value (defined as the product of the equity price and
the number of outstanding shares), EPV, and dilution effect. A CB pricing model that can neither take all those factors
into account nor formulate proper relationships among them is unlikely to generate economically reasonable pricing
results. The contribution of this paper is to address this problem by proposing an equity‐price‐tree‐based CB pricing
model3 based on Black and Cox's (1976) first‐passage default model. As a result, the proposed model properly
formulates the stylized relationships among the default probability (DP), issuing FV, stochastic‐volatility equity price,
and dilution effect under a stochastic interest rate environment when pricing CBs.

CB pricing models can be categorized by how default risks are modeled.4 The first approach naively models default
probabilities by decomposing a CB value into the equity and the debt components (e.g., Cheung & Nelken, 1994;
McConnell & Schwartz, 1986; Tsiveriotis & Fernandes, 1998; Yigitbasioglu, 2002). The equity component is evaluated
under the risk‐neutral valuation method that discounts future cash flows with the risk‐free rate, and the debt
component is evaluated by discounting its cash flow with the risky rate to reflect the default risk. Many empirical
pricing studies adopt decomposition CB pricing models due to their lower data requirements. However, the risky
discount rates employed by this category of models are independent of the stochastic evolving firm and equity value, or
are even simply constant, and those models actually take neither default and recovery rates nor the dilution effect due
to CB conversions into consideration since the issuer's capital structure is not modeled. In addition, a CB is in essence a
hybrid security of equity and debt and subject to the default risk as a whole. Consequently, it is difficult to estimate the
pricing error from decomposition CB pricing models.

To price CBs while simultaneously modeling the aforementioned capital structures, default rates, and dilution
effects, the second category of structural default models can be adopted, where the evolution of an issuer's capital
structure is simulated and different conditions leading to defaults are considered (e.g., Ballotta & Kyriakou, 2015;
Brennan & Schwartz, 1977; Chen et al., 2013; Ingersoll, 1977; Sarkar, 2003). For example, Ingersoll (1977) and Brennan
and Schwartz (1977) model the evolution of the issuing FV process and develop no‐arbitrage arguments applied to
derive PDEs for pricing CBs. Ingersoll (1977) focuses only on special cases that can be analytically solved, whereas
Brennan and Schwartz (1977) numerically solve the PDE using the finite difference method to solve the free boundary
problem caused by the embedded convertible and callable options. Brennan and Schwartz (1980) extend their work to
model the stochastic interest rate by incorporating the Vasicek (1977) interest rate model into their pricing method.
Sarkar (2003) extends the models in Ingersoll (1977) and Brennan and Schwartz (1977) by taking corporate taxes and
premature defaults into account. Chen et al. (2013) price callable CBs with a nonzero‐sum‐game framework under the
structural default model; Ballotta and Kyriakou (2015) numerically evaluate CBs by modeling the issuing FV as an
exponential jump‐diffusion process with correlated stochastic interest rates. Explicitly modeling the issuer FV process
allows these structural default approaches to endogenously determine capital structures, recovery rates, and dilution
effects due to CB conversions. The main criticism of the CB pricing models based on structural default models is that
the FV of the issuer cannot be directly observed and traded, which limits the practicability of this approach. In addition,
failing to calibrate equity prices5 that can be directly observed in markets complicates accurate evaluations of CBs and
embedded conversion options.

1In this paper, the term firm value refers to the market value of a firm's total assets.
2To simplify the wording, throughout this paper we refer to CB pricing models based on structural default models (reduced‐form default models) as
structural (reduced‐form) CB pricing models.
3In the literature, it is also possible to solve the partial differential equation (PDE) of derivatives (either with respect to the FV or the equity price)
with the finite difference or element methods or apply the least‐squares Monte Carlo simulation in Longstaff and Schwartz (2001) to evaluate CBs. To
name but a few, Brennan and Schwartz (1977, 1980), Tsiveriotis and Fernandes (1998), Takahashi et al. (2001), Yigitbasioglu (2002), Ayache et al.
(2003), and Lau and Kwok (2004) price CBs with the finite difference method, and Lvov et al. (2004), Wilde and Kind (2005), Kimura and Shinohara
(2006), Yang et al. (2010), and Batten et al. (2018) employ the Monte Carlo simulation to evaluate CBs.
4Batten et al. (2014) survey various provisions in CB contracts and different CB pricing models.
5Structural default models, such as Vassalou and Xing (2004), Duffie et al. (2007), and Bharath and Shumway (2008), propose a more robust approach
to infer the firm asset value today and estimate the FV volatility by calibrating historical equity prices. To our knowledge, this stream of approaches
has not been adopted in prior CB pricing models.
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The third stream of CB pricing approaches is based on reduced‐form default models in which default events are
simulated by jump‐to‐default processes and corresponding default probabilities can be calibrated by matching credit
spreads of an issuer's outstanding bonds (e.g., Chambers & Lu, 2007; Coonjobeharry et al., 2016; Finnerty, 2015; Hung
& Wang, 2002; Jarrow & Turnbull, 1995; Kimura & Shinohara, 2006; Wang & Dai, 2017; Yang et al., 2010).6 However,
existing reduced‐form CB pricing approaches focus on simulating the equity‐price process but lack a clear theoretical
link between default events and the equity price (or the FV). Take, for example, the tree‐based approaches suggested by
Hung and Wang (2002) and Chambers and Lu (2007). They model the evolution of equity prices with a CRR (Cox, Ross,
and Rubinstein's, 1979) binomial tree and the issuer's default risk by introducing the jump‐to‐default process of Jarrow
and Turnbull (1995). The fraction of the bond face value received by the holder as the issuer defaults (i.e., the recovery
rate) is exogenously determined. The DP is modeled to calibrate the credit spread without considering the magnitudes
of equity and debt values of the issuing firm. However, a higher equity price (and thus a higher equity value), ceteris
paribus, generally implies that the bond issuer is in better financial shape and has a lower default risk, and vice versa.
Improperly assigning a CB issuer's DP without considering its financial status may mislead corresponding call‐back
and conversion strategies. In addition, dilution effects due to CB conversions also cannot be modeled due to the failure
to take into account issuers' capital structures. These disadvantages render this stream of approaches less intuitive.

Different from prior structural CB pricing models, our CB pricing model, somewhat similar to prior reduced‐form CB
pricing models, is constructed based on an equity‐price tree. At the same time, our CB pricing model exploits the first‐
passage default model that treats the issuer's equity value as a down‐and‐out call option on the issuing FV to calibrate the
implied FV for each node of the proposed equity‐price tree. As a result, in contrast to the time‐varying default probabilities
used in prior reduced‐form CB pricing models, our CB pricing model takes stochastic default probabilities into account by
determining the DP of each node with the calibrated implied FV. More specifically, we first follow Black and Cox (1976) in
assuming that the FV follows a geometric Brownian motion process. To estimate the FV process, we apply Vassalou and
Xing's (2004) approach (but base it on the first‐passage default model rather than Merton's (1974) default model) to
determine the FV today and estimate the constant FV volatility by calibrating a historical time series of equity prices. Second,
for each node in our equity‐price tree, the implied issuing FV and EPV are endogenously solved by applying the down‐and‐
out call option pricing formula to calibrate the equity value at that node. We thus determine the DP and also the dilution
effect due to CB conversions by taking advantage of the implied issuing FV and capital structure at each node. Finally, to
model the resulting stochastic drift and volatility of the equity price, our tree is constructed by modifying and combining the
generalized autoregressive conditional heteroskedasticity (GARCH) trinomial tree proposed in Ritchken and Trevor (1999)
and the mean‐tracking method in Dai (2009).7 Numerical experiments suggest that our CB pricing tree model captures the
stylized negative (positive) relationships between the stochastically evolving equity price (EPV) and the DP that cannot be
captured by past CB pricing models.

To consider the interest rate risk under our core idea for pricing CBs, we construct a two‐factor (the equity price and
the short‐term interest rate) tree by elegantly combining the aforementioned equity‐price tree, Hull and While (1994)
stochastic interest rate tree (for implementing Vasicek's (1977) interest rate model), and the first‐passage default model
with stochastic interest rates. Here the relationship between the equity value and the issuing FV is modeled by the
semiclosed‐form formulas for pricing down‐and‐out call options under the Vasicek model in Bernard et al. (2008); in
addition, the first‐passage DP is solved by the formula provided in Collin‐Dufresne and Goldstein (2001). We address
the correlation between the equity price and the interest rate by using the orthogonal method suggested in Wang and
Dai (2017) to adjust the branching probabilities.

Several sensitivity analyses are employed to illustrate how the proposed CB pricing tree can reasonably examine the
impacts of several important parameters on CB values. We also price a real CB contract issued by Danaher Corporation
(DHR)—the empirical case studied in Wang and Dai (2017)—to demonstrate how the proposed tree produces
reasonable CB values.

6Although Unal et al. (2003), Carr and Linetsky (2006), Linetsky (2006), Duffie et al. (2007), Carr and Wu (2009), Das and Hanouna (2009), and
Mendoza‐Arriaga et al. (2010) extend the reduced‐form default model to consider the relations between default risks and equity price (volatility) or
other relevant economic variables, to our knowledge, such sophisticated designs have not been employed to price CBs.
7Note that extremely high default or risk‐free interest rates result in unexpectedly high drift terms for the equity‐price process which cause the
classical binomial tree model in Cox et al. (1979) to produce invalid, negative branching probabilities, as mentioned in Lyuu and Wang (2011) and
Chambers and Lu (2007). The mean‐tracking method proposed by Dai (2009) and Dai and Lyuu (2010), which produces valid branching probabilities
by allowing the trinomial branch structure to adjust with the stochastic drift term of the equity‐price process, is adopted to solve this negative
probability problem.
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The rest of the paper is organized as follows. Section 2 shows how to model the equity value as an option on the
issuing FV and then describes the corresponding equity‐price process used to develop the tree model proposed later.
Section 3 describes the construction of our stochastic‐volatility equity‐price tree that endogenously settles the default
risk, early redemption, and dilution effect with the issuer's equity price and implied FV at each tree node. To highlight
the advantages of the proposed model, we also illustrate the differences and similarities of the tree structures and
schemes for modeling default events among structural, reduced‐form, and our equity‐price‐tree‐based CB pricing
models in Section 3. Section 4 formally proposes our CB pricing model by incorporating the Vasicek interest rate model
into the tree proposed in Section 3. Section 5 examines the reasonability and the robustness of our tree via sensitivity
analyses and results on an empirical case. Section 6 concludes the paper.

2 | MODELING THE ISSUER'S EQUITY VALUE AND EQUITY‐PRICE
PROCESS

According to the first‐passage model (see Black & Cox, 1976), an arbitrary firm, say a CB issuer, may default before
maturity if its stochastically evolving FV falls below a default boundary VB. Then the equity value of the issuer can be
treated as a down‐and‐out call option on its value with the payoff function as




E
V D V V

=
( − ) if > ,

0 otherwise,
T

T
+

min B
(1)

where Et denotes the equity value at time t , Vt denotes the issuing FV at time t , D denotes total debt amount of the
issuer due at the CB maturity date T , and Vmin is the realized minimal issuing FV from now to the maturity T . The
(prior‐maturity) default occurs once Vt reaches the default boundary VB (i.e., ≤V Vmin B). We follow Longstaff and
Schwartz (1995) by setting the default boundaryV xD=B , where ∈x [0,1], to reflect acceleration bond covenants . Since
our model is complicated and uses many parameters, all definitions and notations of the parameters used in this paper
are summarized in Table A1 in Appendix A for quick reference.

Note that the equity price can be applied to infer the FV and the corresponding default risk as well as the
conversion value that is useful for evaluating CBs. In addition, unlike the unobservable issuing FV, the equity price St
(which equals the equity value Et divided by the number of outstanding shares) and its volatility can be directly
observed and estimated from the market. Thus, instead of the FV which is nonobservable and nontradable, the equity
price is employed to develop our tree model that discretely simulates the price at time 0, ∆t, ∆t2 , … (i.e., S0, ∆S t, ∆S t2 ,
…). The equity value at each node of our tree can be used to infer the corresponding FV while the DP and the stochastic
EPV associated with the inferred FV in turn are used to infer the drift and the volatility of the equity‐price process for
the subsequent tree construction. To accommodate the prior‐maturity default of the first‐passage model and the
stochastic volatility and interest rate, we model the one‐step CB issuer's equity‐price evolution under the risk‐neutral
measure as the following general form:
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S t

S t S tB
,

2
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(2)

where rt denotes the risk‐free short rate, q denotes the dividend yield,8 S Vϵ ( , )t t B denotes the DP (or the probability for
the lognormal process Vt to reach the default boundary VB) within the time span t t t( , + Δ ], S Vϑ ( , )t t B denotes the drift
adjustment term, σS t, denotes the equity‐price volatility, and ZΔ S t, is the discrete counterpart of dZS t, , the standard
Wiener process for the equity price. The drift adjustment, S Vϑ ( , )t t B , makes the discounted defaultable equity‐price

8The dividend could be an important driver of CB prices. This paper adopts the continuous dividend yield setting since it is widely adopted in the
literature and it keeps the overall model derivation simple. Besides, it can be easily estimated from the financial reports. The constant cash divided
setting may be modeled by the stair tree model proposed in Dai (2009), which is also used later in this paper to develop the equity‐price tree. In
addition, Dai (2009) can be extended to handle the case in which the dividend is defined as a function of the prevailing equity price. On the other
hand, complex and stochastic dividend settings might be more proper for long‐term CBs, although it is not easy to calibrate the associated parameters
given infrequent dividend data. More proper settings for dividends might be an interesting future research issue.
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process a martingale process. Finally, the conditional expectation and the variance of the log return of the equity price
from time t to ∆t t+ can be expressed as

∆∆







E S S r S r q S V

σ
t[ln | , ] = ln + − + ϑ ( , ) −

2
t t t t t t t t

S t
+ B

,
2

(3)

and

∆∆S S r σ tvar(ln | , ) = ,t t t t S t+ ,
2

(4)

respectively.

3 | PRICING CONVERTIBLE BONDS WITH A ONE ‐FACTOR
(EQUITY ‐PRICE) TREE MODEL

To clearly convey our main idea, we first construct a stochastic‐volatility equity‐price tree without interest rate risk as
illustrated in Figure 1a that will be detailed in Section 3.1. The short rate rt in Equations (2)–(4) is set as a constant r in
this section for ease of description. For simplicity, we also shorten the notations of ∆E S S r[ln | , ]t t t t+ and

∆S S rvar(ln | , )t t t t+ in Equations (3) and (4) to be ∆E S S[ln | ]t t t+ and ∆S Svar(ln | )t t t+ , respectively, in Section 3. This
constraint will be relaxed in Section 4.

(a)

(b)

FIGURE 1 Trinomial equity‐price tree with prior‐to‐maturity default branches. In Panel (a), the probability that an arbitrary node X
defaults within a time step as illustrated by the dashed curve in Panel (b) is ϵX. The probabilities for the upward, middle, and downward
moving branches emitting from node X to its successor nodes are PU

X, PM
X, and PD

X, respectively; these branching probabilities are assumed to
be independent to ϵX. The equity price for each node at time ∆t2 is listed next to that node. By combining Dai (2009) and Ritchken and
Trevor (1999) to account for stochastic drift and the volatility of the equity price, the three nondefault descendant nodes at the next time step
may not be simply one grid tick higher than, equal to, and lower than the equity price of the examined node on the log‐price plane. Panel (b)
illustrates the default case (with probability ϵX) and the survival case defined in the first‐passage default model by the dashed and solid
curves, respectively, where VX denotes the firm value of node X.
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Suppose that a CB issuing FV follows a log‐normal process r ϕ dt σ dZ= ( − ) +
dV

V V V t,
t

t
under the risk‐neutral

measure, where ϕ is the cash payment yield from the FV,9 σV is a constant volatility for the FV, and dZV t, is the
standard Wiener process for the issuing FV. Given V V>t B (i.e., the issuer survives at time t), the equity value at time t
can be expressed as the value of a down‐and‐out call option on the issuing FV as
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where ⋅N ( ) denotes the cumulative distribution function of standard normal random variables,
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To solve the stochastically evolving FV Vt and the EPV σS t, at each tree node located at a time point t , we
additionally take advantage of the relation among the issuing FV, its volatility, the equity value, and the EPV proposed
in Merton (1974) as10

∂
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Specifically,Vt and σS t, are solved by substituting the prevailing equity value Et (derived by St) at each tree node and
the constant σV into Equations (5) and (6). The conditional DP over the time period t s( , ] can then be calculated by
taking advantage of the reflection principle in Shreve (2004) as
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where ≥ ≤τ u t V V= inf{ : }u B denotes the first time that the log‐normal FV process falls to VB.

3.1 | Employing the equity price as the main factor

Our CB pricing model employs the equity price (rather than the FV) as the main factor and simulates its dynamics with
a defaultable equity‐price tree introduced later for the following reasons. First, the conversion option in CBs directly
depends on the equity price, only indirectly linking to the FV. Second, the FV is nontradable as argued in Chen et al.
(2013); thus it is difficult for market participants to utilize the Greek letters generated by firm‐value‐based CB pricing
models for risk management. Third, even though one can still obtain the corresponding equity price of each node via
Equation (5) in a firm‐value‐based CB pricing tree to proceed with the CB pricing procedure, in the context of the tree
structure it is almost impossible to accommodate the stochastic volatility of the equity price that significantly influences
the conversion decision, default risk, and thus CB value. Given these concerns, we propose a defaultable stochastic‐
volatility equity‐price‐tree‐based CB pricing model. Even though our CB pricing model considers the equity price as the
main factor, it possesses the advantages of structural default models, such as the modeling of dilution effects and
default probabilities, by inferring the FV with the first‐passage default model.

9This is defined as the sum of the dividend payments and interest expenses divided by the market value of the firm assets.
10Note that in the first‐passage default model, the only source of uncertainty is the Wiener process for issuing FV. As a result, Merton's (1974)
derivation associated with Equation (6) also implies that the essence underlying the Wiener process for the equity price (dZS t, ) in Equation (2) should
be the Wiener process for the issuing FV (dZV t, ).
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3.1.1 | Structure of defaultable equity‐price tree

Our main innovation is to construct an equity‐price tree like that depicted in Figure 1a that endogenously determines the
changing issuer's capital structure to theoretically model default risks, dilution effects, and call/conversion decisions. A tree
divides the time span from now (time 0) to the CB's maturity (timeT) into n equal time steps. Then the length of each time
step tΔ isT n/ and the ith time step is mapped to time i tΔ . The equity price represented by a node, say A at time 0, moves to
any of nodes B, C, or D at time tΔ , or becomes 0 due to default. For an arbitrary node at time t , the issuing FV Vt and the
EPV σS t, are derived by solving the system of Equations (5) and (6) given the simulated equity price at that node and the
constant issuing FV volatility σV . As illustrated in Figure 1b, the probability for that node (with aforementioned calculated
Vt) to default within a time step, S Vϵ ( , )t t B , is calculated by substituting t t+ Δ for s in Equation (7) to obtain ≤p τ t t( + Δ )t .
It is worth noting that we transform the touch‐to‐DP of the first‐passage default model in the FV space to the jump‐to‐DP in
the equity‐price space. Finally, to compensate for the deduction in the conditional expected equity price at t t+ Δ due to the
possibility of default, the drift adjustment S Vϑ ( , )t t B of that node is derived as

∆
S V

S V

t
ϑ ( , ) =

−ln(1 − ϵ ( , ))
t t

t t
B

B
(8)

to make the equity‐price process a martingale process under the risk‐neutral measure.

3.1.2 | Mean‐tracking and GARCH methods for stochastic default and volatility

The time‐varying characteristic of S Vϑ ( , )t t B and σS t, causes the conditional expectation and the variance of the log
return of the equity price, ∆E S S[ln | ]t t t+ and ∆S Svar(ln | )t t t+ in Equations (3) and (4), respectively, to be stochastic. To
construct an equity‐price tree with stochastic drift and volatility, we develop a feasible trinomial tree model by
combining the mean‐tracking method in Dai (2009) and the GARCH option pricing tree in Ritchken and Trevor (1999)
described as follows.

First, the trinomial tree is constructed on the log‐price plane, with a unit interval in the grid determined by the constant
issuer‐firm‐value volatility δ σ t= ΔS V . Specifically, the possible levels of Sln t are selected among Sln( )0 , S δln( ) ± S0 ,

S δln( ) ± 2 S0 ,…. Next, the middle descendant node of an arbitrary node with log‐equity‐price Sln t at time t is selected by the
mean‐tracking method proposed in Dai (2009). Specifically, the middle descendant node at time t t+ Δ is found by
determining the integer k that makes the middle node's log‐equity‐price S kδln + S0 the closest one to ∆E S S[ln | ]t t t+ .

To model the stochastic‐volatility feature, we follow Ritchken and Trevor (1999) by setting the distance between the
log prices of the upper and middle descendant nodes (or the middle or lower descendant nodes) as ηδS, where η is the
smallest positive integer satisfying

≤ ≤
η σ t

δ
η

2

Δ
− 1 .

S t

S

, 2 (9)

The proposed tree‐building method is illustrated in Figure 2. Finally, the trinomial branching probabilities can be
solved by calibrating the first and second moments (Equations (10) and (11)) of the log‐equity‐price process and by
ensuring that the sum of the branch probabilities equals 1 (Equation (12)) as follows:

P α P β P γ+ + = 0,U M D (10)

∆∆P α P β P γ S S σ t+ + = var(ln | ) = ,t t t S tU
2

M
2

D
2

+ ,
2

(11)

P P P+ + = 1,U M D (12)

where α ( β ηδ= + S), β, and γ ( β ηδ= − S) denote the relative log‐price differences between the upper, middle, and
lower descendant nodes and ∆E S S[ln | ]t t t+ , respectively. Then PU, PM, and PD are solved as
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The proposed method guarantees that PU, PM, and PD always fall within [0,1] regardless of stochastic variations from
rt, S Dϑ ( , )t t , σS t, , and changes of ∆t as proved in Appendix B.

In Figure 1a, we illustrate three possible branching scenarios constructed by the aforementioned approach. First,
for node B, suppose the drift and volatility terms of the equity price of those nodes do not cause negative branch
probabilities, so the equity prices of three descendant nodes are one grid tick higher than, equal to, and one grid tick
lower than S δS0 , respectively, on the log‐price plane (i.e., they are S δS0

2, S δS0 , and S0). Second, for nodes C and D, the
equity volatility may be so high that one positive and negative grid tick on the log‐equity price is not wide enough to
generate positive branch probabilities; thus the descendant nodes that are, for example, two grid ticks higher and lower
than the middle descendant node are employed to overcome this problem, as suggested by Ritchken and Trevor (1999).
Take node C, for example: its three descendant nodes are nodes E, G, and I, corresponding to the equity prices of S δS0

2,
S0, and S δS0

−2, respectively. Third, for node D, it may possess high equity drift in addition to high volatility, so the mean‐
tracking method in Dai (2009) suggests that the middle descendant node should be, for example, tilted up by one grid
tick to avoid negative branch probabilities. Together with using Ritchken and Trevor's (1999) method to deal with high
equity volatility, the three descendant nodes of node D are therefore nodes E, G, and I.

3.2 | Pricing CBs with our equity‐price tree

Equipped with the aforementioned trinomial tree that models the relationship among the stochastic equity price, the
corresponding capital structure, and the DP for each node of the tree, the CB price and the corresponding call‐back,
put‐back, and conversion strategies can be evaluated by standard backward induction as described below.

At the last time step (i.e., the maturity date), given the issuer is not defaulting, CB holders decide whether to convert
their CBs into θ equity shares. If not, the issuer redeems the CB at its par value F (normalized to 100 dollars in this
paper) plus the coupon payment if any. The conversion value at maturity is evaluated as the product of the conversion

FIGURE 2 Proposed trinomial tree structure. We combine Dai (2009) and Ritchken and Trevor (1999) to develop this trinomial tree
structure. Descendant nodes B, C, and D are connected by outgoing trinomial branches emitting from node A. The middle descendant node
is chosen in the grid of equity prices to make its corresponding logarithmic equity price the closest to ∆E S S[ln | ]t t t+ . We further define α, β,
and γ as the differences between the log‐equity prices of the upper, middle, and lower descendant nodes and ∆E S S[ln | ]t t t+ , respectively.
Adopting the mean‐tracking property in Dai (2009) ensures that ∈β δ δ(− , )S S . The difference between nodes B and C (or nodes C and D) is
determined by the method in Ritchken and Trevor (1999) as ηδS, where η is the smallest positive integer satisfying ≤ ≤ η − 1

η σ t

δ2

Δ 2S t

S

, .
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ratio (θ) and the diluted equity price ST
AC, which will be further discussed in Section 3.3. Thus the CB value for an

arbitrary node X at maturity can be expressed as




 


 


CV

c
F θS= max 1 +

2
, ,T

X B AC
(13)

where CVX denotes the value of the CB at node X, and cB denotes the annual coupon rate of the CB. For an arbitrary
node Y located at a time t other than the maturity date, the issuer calls back the CB if the “holding value” HVY—the
value of the CB provided that it is not converted or called back yet at node Y—is larger than the call price. Note that CB
holders may exercise their conversion options to maximize their benefits or put back the CB to the issuer even when
the call‐back option is initiated; thus the CB value at node Y is

( )CV HV CP θS PP= max min( , ), , ,t t t
Y Y AC

(14)

where CPt and PPt denote the call and put price at time t , respectively.
In our tree model, the holding value can be calculated as the discounted expected future CB values of the three

descendant nodes. For example, the holding value for node A in Figure 1 is evaluated as

∆ ( )( )HV e ωxF P CV P CV P CV= ϵ + (1 − ϵ ) + + ,r tA − A A
U
A B

M
A C

D
A D

(15)

where ∈ω [0, 1] represents the effective recovery rate, and PU
A, PM

A, and PD
A denote the probabilities of the upper, middle,

and lower branches, respectively, of node A. In addition, if the examined node (e.g., node A in Equation 15) is on a
coupon‐payment date, the resulting holding value in Equation (15) is adjusted upward by F

c

2
B to reflect the coupon

income received by the CB holders.

3.3 | Dilution effect

Converting a CB into equity shares increases the number of outstanding shares and dilutes the equity price. Ignoring such
dilution effects overprices conversion values and hence CBs. Nevertheless, dilution effects are difficult to incorporate into
reduced‐form‐based pricing models, such as Hung and Wang (2002) and Chambers and Lu (2007), as the FV and the capital
structure of the issuer are not explicitly modeled. The structural model embedded in our method, however, explores the
inner relationships among the prevailing equity value, the FV, and the outstanding debt value to model changes in the firm's
capital structure and the wealth transfer among different claim holders due to CB conversions.

Specifically, we adopt Brennan and Schwartz's (1980) model to account for the dilution effect. Their settings assume
that the firm's asset value consists of the following three securities: straight bonds, CBs, and equity shares. Before CB
conversion, the FV at time t is

V N B N CV N S= + + ,t t t tB C O
BC

(16)

where NB and NC denote the number of outstanding straight bonds (with a coupon rate cS paid semiannually) and CBs,
respectively, NO denotes the number of outstanding equity shares, Bt denotes the value of straight bonds (given a
normalized face value F = 100) at time t , and St

BC denotes the equity price before CB conversion. The bond price
process (Bt) at each time step can be evaluated simultaneously through our proposed tree by applying standard
backward induction for pricing coupon‐bearing bonds.11 Although the conversion of CBs does not change the FV, it
does change the capital structure to consist of outstanding straight bonds and equity shares (including original shares

11The straight‐bond values for terminal nodes are first set as ( )F1 +
c

2
S , and then backward induction similar to Equation (15) is conducted for all

other nodes by replacing the CB and holding values with the bond values. In addition, if the examined node is on a coupon‐payment date, the
resulting bond value after backward induction is adjusted upward by F

c

2
S to reflect the coupon income received by straight bondholders.
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and newly converted shares). Then the dilution effect from the viewpoint of the firm can be considered by formulating
the conversion value as θN StC

AC as

( )V N B N θN S= + + ,t t tB O C
AC

(17)

where St
AC denotes the equity price after conversion. At each tree node, since the FVVt (inferred by solving Equations 5

and 6) and the value of straight bonds Bt (derived based on standard backward induction) are known, Equation (17)
yields the corresponding diluted equity price ST

AC as

S
V N B

N θN
=

−

+
.t

t tAC B

O C
(18)

3.4 | Determination of σV and V0

One special feature of our equity‐price‐tree‐based CB pricing model is to integrate the relationship between the equity
and FVs in the equity‐price tree. Therefore, we must determine the parameters of the FV volatility σV and the initial
market value of the firm V0 before constructing the equity‐price tree. The FV volatility σV is estimated by adapting the
iterative method proposed in Vassalou and Xing (2004). Roughly speaking, we make an initial guess at σV as
the volatility of the FV and then solve the FV on each trading day for a past period of time by substituting the
corresponding equity prices observed from the market into Equation (5). Then the guess for σV is updated by the
annualized standard derivation of the time series of the obtained FVs. This procedure is repeated until the guess
converges. This σV is assumed to be a constant over the life of the CB. By substituting the market‐observable equity
value E0 (evaluated as the product of S0 and the number of outstanding shares) at time 0 and σV into Equation (5), we
obtain the issuing FV, V0.

3.5 | Illustrative example

Here we price an example of a hypothetical 3‐year CB by a three‐time‐step tree illustrated in Figure 3. As
detailed in the legend, we make assumptions on the variables that can be observed or accessed from the market on
the issuance date (at time 0), such as the numbers of outstanding equities, straight bonds, and CBs, and the
equity price S =0 $30 as well as the volatility σ = 0.3S,0 . The call (put) price is constant (zero) during the CB life,
that is, CP CP= = 113t and PP = 0t . Then the FVV =0 $730.77 thousand dollars and the FV volatility σ = 0.1220V are
derived via Equations (5) and (6).12 Equation (7) is next applied to obtain the DP of 0.06% for the root node.
Then we use the method introduced in Section 3.1 and σS,0 to determine the equity prices $43.2623, $30.0000, and
$20.8033 for the three following successor nodes at time 1. For each node at time 1, the corresponding FV and the
equity value volatility can be derived by substituting the prevailing equity price and the FV volatility
into Equations (5) and (6). Take node D, for example. The equity value, which is estimated as the equity price
$20.8033 multiplied by the number of outstanding shares, 10,000, can be treated as the down‐and‐out call
option value on the FV. By substituting the equity value and the FV volatility 0.1220 into Equations (5) and (6), we
obtain an FV of $661.11 thousand dollars and an EPV of 0.3948. The DP for the subsequent time step can be solved
by Equation (7) to obtain 0.95%. By adopting the method introduced in Section 3.1 and the EPV for each node at
time 1, we construct the successor nodes at time 2. The above procedure is repeatedly applied to construct the
entire tree.

The backward induction procedure in Equations (13)–(15) is then applied to evaluate the CB. The CB value for each
node at maturity is obtained via Equation (13). For example, a CB holder converts her CB at node A to earn the
conversion value $123.8221, which equals the product of the after‐conversion equity price $61.9111 (calculated via
Equation (18)) and the conversion ratio, 2. Otherwise, the bond is redeemed at par value if the prevailing equity price is

12Vassalou and Xing's (2004) iteration method is not used in this hypothetical example since for simplicity, we make no assumption concerning
historical equity prices.
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low, for example, node B, in which case the equity price is $30. The conversion, redemption strategy, and hence the CB
value for the node before maturity is determined by Equation (14). Take node D for example: its holding value is
evaluated via Equation (15) as $88.3866. By substituting its holding value, conversion value (far below than its holding
value due to its low equity price), and the call price into Equation (14), the CB value at node D is solved as $88.3866. By
repeatedly applying the aforementioned backward induction procedure back to the root node of the tree, our tree yields
the CB pricing result $88.9191.

Since our model formulates reasonable relationships among stochastically evolving equity prices, FVs, equity
volatilities, and default probabilities, favorable features that are generally observed in financial markets, such as a

FIGURE 3 Three‐time‐step example of proposed trinomial equity‐price tree. Each tree node at the last time step is represented by a two‐
row rectangle, whose meanings are listed in the upper‐rightmost legend. All other tree nodes are represented by five‐row rectangles, whose
meanings are listed in the upper‐leftmost legend. The parameter values areT = 3 (years), n = 3, F = 100, θ = 2,CP = 113t , PP = 0t , S = 300 ,
σ = 0.3S,0 , r = 5%, N = 10,000O , N = 4800B , N = 200C , ω = 0.32, q c c ϕ= = = = 0B S , D F N N= ( + ) = 500,000B C , and x = 1. The time‐0
firm value V0 ($730.77 thousand dollars) and σV (0.1220) are determined by substituting S0 and σS,0 into Equations (5) and (6). The solid or
gray dashed lines emitting from each node indicate branches to other nodes or reaching to the default boundary, respectively
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higher equity price implying a higher FV, a lower equity volatility,13 and a lower DP can be captured by our model as in
Figure 3. However, these features are not captured well in other CB pricing models in the literature. Taking nodes C
and D at t = 1 for comparison, a high equity price of $43.2623 implies a high FV of $885.04 thousand dollars, a low
equity volatility of 0.2496, and an almost zero low DP, whereas a low equity price of $20.8033 implies a low FV of
$661.11 thousand dollars, a high equity volatility of 0.3948, and a high DP of 0.95%. Note that the proposed model's
ability to capture the negative (positive) relationships between the DP and the FV or the equity price (the EPV) cannot
be fully achieved by existing structural or reduced‐form CB pricing models in the literature.

3.6 | Convergence and time complexity analysis of our CB pricing model

We examine the convergence property and the running time of our tree model in Figure 4 with the hypothetical example
defined in Figure 3. The upper panel suggests that our pricing results converge to around 88.4 quickly as the number of steps

FIGURE 4 Convergence and time complexity analyses of the proposed CB pricing model. The pricing error convergence behavior and
the running time complexity of our CB pricing model with respect to the number of time steps n are analyzed based on the hypothetical
example examined in Figure 3. The upper panel shows that the generated CB value approaches its convergent result quickly and the lower
panel implies that the time complexity of our CB pricing model is O n( )2 . CB, convertible bond.

13The negative relationship between the equity price and its volatility is commonly attributed to the leverage effect. Christie (1982) first termed this
observation the leverage effect.
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increases. Since Equation (14) is checked for each node at every time step to determine whether the call‐back or conversion
decisions are executed, both the numbers of call‐back and conversion opportunities increase with the increment of the number
of time steps, n. Theoretically speaking, the increment of n (or the numbers of call‐back and conversion opportunities) makes
our pricing model's optimal conversion and call‐back boundaries finer and more accurate along the time dimension and thus
generates convergent pricing results, as shown in Figure 4. The running time is proportional to the quadratic of the number of
time steps, as in the CRR binomial tree. Without the recombination property constructed by following Dai (2009) and Ritchken
and Trevor (1999), the number of tree nodes and hence the running time of our equity‐price‐tree‐based CB pricing model
would grow explosively, as argued in Dai and Lyuu (2010).

3.7 | Comparison with traditional structural and reduced‐form CB pricing model

This section explains the theoretical advantages of the proposed equity‐price‐tree‐based CB pricing model by
comparing the lattice structures and schemes for modeling default events among structural, reduced‐form, and our CB
pricing models.14 In the upper‐left of Figure 5, a structural CB pricing model treats a CB as a contingent claim on the
FV Vt , that is, the FV is the most exogenous driver of the value of the firm securities. However, this is improper since
the FV is nontradable, as argued in Chen et al. (2013); therefore, the Greek letters generated by firm‐value‐based CB
pricing models are impractical to use. Besides, since CB contracts are stipulated based on the equity price (treated as a
call on the FV in structural default models) rather than the FV, CBs can be theoretically regarded as a call on a call on
the FV, which complicates the pricing procedure. In the upper‐right panel, in contrast, the conversion option can be
easily modeled as a call option on the equity price in a reduced‐form CB pricing model. However, dilution effects and
default risks related to FVs are hard to model due to the lack of information on FVs and capital structures in a reduced‐
form CB pricing model. This stream of CB pricing models typically employs time‐varying (independent of firm‐value
and equity‐value) default probabilities calibrated from the prevailing risky and riskless term structures of interest rates.

However, our equity‐price‐tree‐based CB pricing model in the bottom panel accommodates advantageous features from
both structural and reduced‐form default models. Our tree structure employs techniques from Dai (2009) and Ritchken and
Trevor (1999) to account for stochastic default intensity and EPV. Thus, the first‐passage default model can be integrated into
our equity‐price tree to infer each node's implied FV and DP. The bottom panel briefly illustrates a cookbook recipe for the tree
construction of our model. Our model first uses the first‐passage default model and historical equity prices (method [M1]) to
calibrate the FV and its constant volatility for the root node. At other nodes of the equity‐price tree, we calibrate the
corresponding FV and EPV with the [M2] method (the first‐passage default model and Equation (6)). Then Equations (7) and
(8) are employed to derive the DP ε and the corresponding jump intensity ϑ given the implied FV of each node.

In Table 1, we compare the pricing results generated by a typical reduced‐form CB pricing model (illustrated in
Figure 6) and our model with or without dilutions. To achieve a fair comparison, the time‐varying DP for each time
step of the reduced‐form CB pricing model is the weighted average of the default probabilities of the tree nodes at that
time step in our model. A comparison of the second and the third columns of Table 1 shows that ignoring the dilution
effect overprices the CB, especially when the conversion is likely to happen due to the high equity price.15 In addition,
unlike our CB pricing model, the reduced‐form CB pricing model adopts time‐varying default rates that are
independent of the stochastically involving equity price or FV. The price differences between these two models are
significant, especially for scenarios with low prevailing equity prices and thus high default risks. Compared with the
results of our CB pricing model without the dilution effect, we believe that the reduced‐form CB pricing model
underprices CBs in this hypothetic example since it ignores the relationship between the equity‐price and default
probabilities and thus overweights (underweights) the default probabilities for nodes with high (low) equity prices. As
mentioned above, for a CB pricing model that fails to capture the negative (positive) relationships between the

14Since decomposition CB pricing models do not actually model default events, we do not discuss this category of models here. In addition, we argue
that the risky discount rates employed by this category of models are independent of the stochastic evolving firm or equity value, or are even simply
constant; thus decomposition CB pricing models clearly overestimate (underestimate) default risks when firm or equity values are high (low).
15It is important to model dilution effects when pricing CBs. Fields and Mais (1991) find that shareholder wealth is related to the size of the private
CB issue; the mean (median) ratio of the issue size divided by the preissue equity value is 23.6% (16.9%). More recently, Kazmierczak (2017) also
suggests that the median ratio of the private/public CB issue size divided by the asset of profitable firms is 22.2%/19.3%. The high ratios of dilution
effects could influence CB holders' conversion policies.
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FIGURE 5 (See caption on next page)
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stochastically evolving default probabilities and issuing FVs or equity prices (EPV), it is likely that the CB pricing model
generates unreasonable CB prices.

4 | EXTENSION TO A TWO ‐FACTOR CB PRICING TREE MODEL

This section describes how to incorporate Vasicek's (1977) interest rate model into the one‐factor model
introduced in Section 3 to construct a two‐factor tree for pricing CBs subject to the interest rate risk without
losing the ability to endogenously model the relationships among the default risk, FV, stochastic‐volatility
equity price, and dilution effect.

Under the risk‐neutral measure, the interest rate stochastic process follows

dr a b r dt σ dZ= ( − ) + ,t t r r t, (19)

and its counterpart in the discrete time framework

r a b r t σ ZΔ = ( − )Δ + Δ ,t t r r t, (19′)

where rt denotes the short rate, σr denotes the instantaneous standard deviation of the short rate, dZr t, is a Brownian
motion, and a and b represent the mean‐reverting speed and long‐term interest rate, respectively. Moreover, the

TABLE 1 Pricing comparison between our CB pricing model and the reduced‐form CB pricing model with time‐varying default
probabilities

CB value Our CB pricing model

Our CB pricing model
without considering
dilution effect

Reduced‐form CB pricing model given
comparable time‐varying default probabilities
(does not consider dilution effect)

S = 100 83.2593 (−0.0000%) 83.2593 78.7978 (−5.3585%)

S = 200 84.3968 (−0.0097%) 84.4050 81.1416 (−3.8663%)

S = 300 88.4294 (−0.0517%) 88.4752 87.1465 (−1.5018%)

S = 400 96.3316 (−0.4497%) 96.7667 96.0070 (−0.7851%)

S = 500 105.8459 (−0.6610%) 106.5502 106.1759 (−0.3513%)

S = 600 119.0785 (−0.7679%) 120.0000 120.0000 (0.0000%)

Note: The default probability for each time step of the reduced‐form CB pricing model illustrated in Figure 6 is the weighted average of the default probabilities
at that time step in our CB pricing model illustrated in Figure 3. Since the design of reduced‐form default models does not involve modeling a firm's asset value
and capital structure, they are unable to estimate the impacts of dilution effects. The examined CB example here is the same as that investigated in Figure 3:
T = 3 (years), F = 100, θ = 2, CP = 113t , PP = 0t , σ = 0.3S,0 (as for the comparative reduced‐form CB pricing model, σ σ= = 0.3S S,0 being a constant over any
time point), r = 5%, N = 10,000O , N = 4800B , N = 200C , ω = 0.32, q c c ϕ= = = = 0B S , D F N N= ( + ) = 500,000B C , x = 1, and n = 144. The figures in
parentheses are the percentage differences relative to the CB values generated by our CB pricing model without considering the dilution effect.

Abbreviation: CB, convertible bond.

FIGURE 5 Illustration of proposed and traditional CB pricing models based on different default models. For simplicity, a constant
riskless interest rate is considered here. For structural CB pricing models illustrated in the upper‐left panel, CBs are derivatives on the firm
value and defaults occur as long as the firm value falls to the default boundary, VB. For reduced‐form CB pricing models in the upper‐right
panel, time‐varying default probabilities are first calibrated by the prevailing risky and riskless term structures of interest rates. Then the
stochastic equity price (the asset class most related to the CB conversion) is employed instead to construct the pricing model since the firm
value is generally nontradable. Our CB pricing model in the lower panel synthesizes the advantages of these two streams of models by
integrating the first‐passage default model (FPM) into an equity‐price tree. First, the framework of stochastic equity prices is still utilized in
our model such that we can deal with the CB conversion precisely and avoid the nontradable issue of the firm value. Second, equipped with
the implied firm value at each node, we follow the structural default model to model dilution effects due to CB conversions and to formulate
the theoretical relationship among default probabilities, firm value, and (stochastic‐volatility) equity prices. CB, convertible bond.
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correlation between ZΔ r t, in Equation (19′) and ZΔ S t, in Equation (2) is assumed to be ρ. Under the stochastic interest
rate framework, the FV process becomes

dV

V
r ϕ dt σ dZ= ( − ) + .t

t
t V V t, (20)

FIGURE 6 Pricing the same three‐time‐step example in Figure 3 based on the reduced‐form CB pricing model given time‐varying
default probabilities. For a fair comparison with Figure 3, the default probability for each time step here is the weighted average of the
default probabilities at the same time step in Figure 3. Specifically, we calculate the weighted average default probability for the time step of
t t( , + 1] by summing the product of the default probability of each node at the time t and the probability of reaching that node, provided no
occurrence of default before t in our CB pricing model. The resulting default probabilities for the time steps of (0, 1], (1, 2], and (2, 3] are
0.06%, 0.32%, and 0.87%, respectively. Moreover, since the reduced‐form CB pricing model does not take the firm value and capital structure
into consideration, the dilution effect due to CB conversions cannot be modeled. CB, convertible bond.
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We adopt Hull and While (1994) interest rate tree construction method to construct an interest rate tree in the
r− t plane of Figure 7 (denoted by gray lines and circles) to implement the Vasicek model in Equation (19′). Then we
incorporate the equity‐price factor by building a three‐dimensional tree based on this interest rate tree. Specifically,
we add the trinomial equity‐price tree introduced in Section 3 to model the equity‐price evolution to form our two‐
factor tree, the branches and the nodes of which are plotted with black lines and rectangles. For example, node a1 in
the two‐factor tree projects to node A in the interest rate tree; nodes b1, b2, and b3 project to node B. Thus the short
rates for nodes a1 and A equal 0.0500; the short rates for b1, b2, b3, and B are all equal to 0.0673. Nine descendant
nodes emit from node a1 in the two‐factor tree. The branches to nodes b1, b2, and b3 reflect the scenarios in which the
short rate moves from 0.0500 (node A) to 0.0673 (node B) and the equity price moves from $30.00 to $43.29, $30.00,
and $20.79, respectively. In addition, we must also modify the down‐and‐out call option formula in Equation (5) and
the first‐passage DP function in Equation (7) by incorporating the Vasicek interest rate model when constructing our
S− r two‐factor CB pricing tree model.

To determine the relationship among the FV, the equity price, and its volatility under the stochastic interest rate
environment instead of the constant one discussed in Section 3, we replace the down‐and‐out call option pricing
formula under the constant interest rate in Equation (5) by the semiclosed‐form pricing formulas in Bernard et al.
(2008) as

FIGURE 7 Three‐time‐step example of two‐factor tree model. The three axes denote the equity price S, short rate r , and time t . Each
tree node at maturity is represented by a rectangle that lists the corresponding CB value. All other tree nodes are represented by four‐row
rectangles, whose meanings are represented in the upper‐leftmost legend. The parameter settings mirror those in Figure 3 in addition to the
settings of the Vasicek short rate model and the correlation as follows: a = 0.05, b = 0.05, σ = 0.01r , r = 5%0 , and ρ = 0.1. V0 ($730.9
thousand dollars) and σV (0.1225) are solved based on Equations (21) and (6) given the values of S0 and σS,0. The interest rate tree is denoted
by gray lines and circles. The two‐factor tree is denoted by black lines and rectangles. The branches representing the scenarios of reaching
the default boundary are omitted for simplicity. CB, convertible bond.
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where P t T( , ) denotes the value at time t of a risk‐free unit‐face‐value zero‐coupon bond that matures at time T
governed by the Vasicek interest rate process, and ⋅E [ ]T represents the expectation under the T ‐forward‐neutral
measure. This equation is numerically evaluated with
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where the interval t T[ , ] is equally subdivided into nT subperiods, and the interest rate space is discretely expressed by
n( + 1)r representative values located equally spaced between the prespecified short rate lower bound rmin and upper
bound rmax. The definition of  ⋅ ⋅ ⋅( , , ) in Equation (22) is
















m σ d m

σ
N

m σ d

σ
( , , ) = exp +

2

+ − ln( )
.

2 2

Here, μ̂t T,j and ût T,j are, respectively, the mean and the variance of Vln( )t conditional on the filtration Ftj

μ E V Fˆ = [ln | ],t T
T

t t,j j

u V Fˆ = var (ln | ),t T
T

t t,j j

and MT and UT are, respectively, the unconditional mean and the variance of Vln( )T under the T ‐forward‐neutral
measure. Finally, term q i j( , )d is computed iteratively according to Bernard et al. (2008). Detailed formulas for μ̂t T,j ,

ût T,j , MT , UT , and q i j( , )d are presented in Appendix C.

Similar to the one‐factor model introduced in Section 3, we employ the equity price and its volatility σS,0 observed or
accessed from the market on the issuance date to derive the FV V =0 $730.9 thousand dollars and its volatility
σ = 0.1225V via Equations (21) and (6).16 Then for each possible short rate at time 1, we construct a trinomial
branching structure by the method introduced in Section 3.1 that connects to b1, b2, and b3 (reflecting the short rate at
node B), c1, c2, and c3 (node C), and d1, d2, and d3 (node D). For each two‐factor‐tree node at time step 1, say b1, the FV
volatility σV and the simulated equity price $43.29 are substituted into Equations (21) and (6) to calculate the implied
FV $870.7 thousand dollars and the EPV 0.2459. The above steps are repeatedly applied to form our two‐factor tree. For
each node of the tree, the DP (or the probability for the continuous process Equation 20 to reach the default boundary
within a time step) under the Vasicek short rate model can be evaluated by the method proposed in Collin‐Dufresne
and Goldstein (2001). Specifically, the probability for the FV Vt to fall below the default boundary VB at time τ before
time s is

≤ ( )p τ s ϖ= ,t
i

n

i

=1
(23)

where

ϖ N a= ( ),1 1

16Again, Vassalou and Xing's (2004) iteration method is not used in this hypothetical example since for simplicity, we make no assumption
concerning historical equity prices.
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The CB value can now be evaluated by the two‐factor tree model in Figure 7 with 10‐nomial backward induction
similar to Equation (15). Taking node a1, for example, its holding value of a CB is

∆
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(24)

where ra1 denotes the short rate 0.0500 at node a1 (or node A at the interest rate tree) and ϵa1, evaluated based on
Equation (23) given t = 0 and s t= Δ , denotes the DP of 0.05% within the subsequent∆t time period. In addition, PUm

X is
the branching probability for node X in which the equity price goes up (denoted by the lower script U) and the interest
rate goes to the middle (denoted by the lower script m) without involving defaults at the next time step; for example,
PUm

a1 denotes the probability of moving from node a1 to c .1 Other branching probabilities PIj
X for I = U, M, D and

j = u, m, d can be interpreted in the same way. In addition, if the examined node (e.g., node a1 in Equation 24) is on a
coupon‐payment date, the resulting holding value in Equation (24) is adjusted upward by F

c

2
B to reflect the coupon

income received by CB holders.
To determine the nine branching probabilities that simultaneously calibrate the correlation ρ between the

logarithmic equity price and the short rate, we modify the method proposed in Wang and Dai (2017).17 Specifically,
each branching probability is first derived by multiplying the corresponding marginal probability of the equity price
with that of the interest rate as if they were independent, after which the term ε is added to or subtracted from some
branching probabilities to calibrate the correlation without changing the marginal probabilities of the equity price and
the interest rate as illustrated in Table 2. The intuitions for the three possible ε probability adjustments illustrated in
panels A, B, and C are as follows. Since PU and PD (Pu and Pd) are smaller than PM (Pm) in the mean‐tracking method in
Figure 2 (Hull & While 1994 model),18 the adjusted branching probabilities P P P ε= × −Ij I j could be negative for

17Wang and Dai (2017) simulate Black et al. (1990) lognormal interest rate process with a binomial tree, whereas this paper employs Hull and While
(1994) trinomial tree model to simulate the Vasicek interest rate process.
18Note that in the two‐factor model, one must modify the approach to determine PU, PM, and PD in Section 3.1.2 by replacing the constant r with the
stochastic evolving rt when calculating E S S r[ln | , ]t t t t+Δ .
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I = U, D and j = u, d. To address this negative probability problem, we adjust the middle branching probabilities
associated with Sln M instead of the corner branching probabilities as in panel B or C. Our numerical experiments
verify that this approach generates feasible branching probabilities under all of our parameter settings.

For an arbitrary node with equity price St and interest rate rt,

ρ
E S r S r E S S r E r S r

S S r r S r
=

[ln( ) | , ] − [ln | , ] [ | , ]

var(ln | , )var( | , )

t t t t t t t t t t t t t t

t t t t t t t t

+Δ +Δ +Δ +Δ

+Δ +Δ

for the equity price and the interest rate at the next time step. In addition, based on the two‐factor tree structure, one
can express

E S r S r P S r P S r P S r

P S r P S r P S r

P S r P S r P S r

E S S r P S P S P S

E r S r P r P r P r

S S r P S P S P S E S S r

[ln( ) | , ] = ln( ) + ln( ) + ln( )

+ ln( ) + ln( ) + ln( )

+ ln( ) + ln( ) + ln( ) ,

[ln | , ] = ln + ln + ln ,

[ | , ] = + + ,

var(ln | , ) = (ln ) + (ln ) + (ln ) − ( [ln | , ]) ,

t t t t t t d

t t t t

t t t t

t t t t t t t t

+Δ +Δ Uu U u Um U m Ud U

Mu M u Mm M m Md M d
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r S r P r P r P r E r S rvar( | , ) = + + − ( [ | , ]) ,t t t t t t t t+Δ u u
2

m m
2

d d
2

+Δ
2

where the outgoing branches from the node with the equity price St (interest rate rt) connect to three equity prices SU,
SM, and SD (interest rates ru, rm, and rd) with probabilities PU, PM, and PD (Pu, Pm, and Pd), respectively, in the individual
equity‐price (interest rate) tree. By substituting the above expressions of E S r S r[ln( ) | , ]t t t t t t+Δ +Δ , E S S r[ln | , ]t t t t+Δ ,
E r S r[ | , ]t t t t+Δ , S S rvar(ln | , )t t t t+Δ , and r S rvar( | , )t t t t+Δ into the definition of ρ, the adjustment term can be solved as

ε
ρ S S r r S r

γ
=

var(ln | , )var( | , )
,

t t t t t t t t+Δ +Δ

TABLE 2 Branching probability adjustment to calibrate correlation between logarithmic equity price and interest rate

S \ rt t t t+Δ +Δ ru rm rd Marginal probability for St t+Δ

Panel A: Normal case

Sln U P P P ε= −Uu U u P P P=Um U m P P P ε= +Ud U d PU

Sln M P P P=Mu M u P P P=Mm M m P P P=Md M d PM

Sln D P P P ε= +Du D u P P P=Dm D m P P P ε= −Dd D d PD

Marginal probability for rt t+Δ Pu Pm Pd 1

Panel B: If PUu is negative in the normal case

Sln U P P P=Uu U u P P P=Um U m P P P=Ud U d PU

Sln M P P P ε= −Mu M u P P P=Mm M m P P P ε= +Md M d PM

Sln D P P P ε= +Du D u P P P=Dm D m P P P ε= −Dd D d PD

Marginal probability for rt t+Δ Pu Pm Pd 1

Panel C: If PDd is negative in the normal case

Sln U P P P ε= −Uu U u P P P=Um U m P P P ε= +Ud U d PU

Sln M P P P ε= +Mu M u P P P=Mm M m P P P ε= −Md M d PM

Sln D P P P=Du D u P P P=Dm D m P P P=Dd D d PD

Marginal probability for rt t+Δ Pu Pm Pd 1

Note: In the three panels, the term ε is added to or subtracted from different branching probabilities to calibrate the correlation without triggering the infeasible
branching probability problem. Superscript X for the branching probability PIj

X for I = U, M, D and j = u, m, d is omitted for simplicity.
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where







γ

S r S r S r S r

S r S r S r S r

S r S r S r S r

=

−ln( ) + ln( ) + ln( ) − ln( ) for Case A in Table 2,

−ln( ) + ln( ) + ln( ) − ln( ) for Case B in Table 2,

−ln( ) + ln( ) + ln( ) − ln( ) for Case C in Table 2.

U u U d D u D d

M u M d D u D d

U u U d M u M d

5 | NUMERICAL RESULTS

5.1 | Illustrative example for a two‐factor tree model

To better understand how our two‐factor tree model works, Table 3 lists the CB values (CVt), equity‐price volatilities
(σS t, ), default probabilities (ϵt), and FVs (Vt) for each node (except the last period) of the two‐factor tree in Figure 7 for
further analysis. Note that each tree node maps to a prevailing equity price St and short rate rt. Similar to the results in
Figure 3, the negative (positive) relationships between the DP and the FV or the equity price (the EPV) are retained
under the stochastic interest rate environment. For example, at time 1, the increment of the equity price from $20.7908
to $43.2885 increases the FV from $646,523 to $870,735, decreases the DP from 0.95% to 0.00%, decreases the EPV from
0.3889 to 0.2459, and hence increases the CB value from $85.7612 to $98.7379 given a prevailing short rate of 0.0673.

In addition, the impact of the stochastic interest rate can also be examined. A decrement of the prevailing short rate
from 0.0673 to 0.0326 increases the CB value from $85.7612 to $90.1014, increases the EPV from 0.3889 to 0.4011,
decreases the DP from 0.95% to 0.65%, and increases the FV from $646,523 to $675,929 given a prevailing equity price of
$20.7908 at time 1. However, it can also be found in Table 3 that the positive relationship between the risk‐free interest
rate and the DP may not hold at time 2, the time step just before the maturity. This is because there are two opposite
impacts on the DP caused by a decrement of the risk‐free interest rate. One is the smaller‐discount‐rate effect: a smaller
risk‐free interest rate (thus a smaller discount rate) yields a higher FV (a phenomenon evident in Table 3), which
reduces the likelihood of default since the distance between the FV and the default boundary increases. The other is the
smaller‐drift‐term effect: a smaller risk‐free interest rate means a smaller drift term for the FV in Equation (20), which
increases the probability of the FV reaching the default boundary in the subsequent tΔ period of time. The smaller‐
drift‐term effect only influences the subsequent single time step, whereas the smaller‐discount‐rate effect can be
accumulated in multiple time steps backward from the maturity and thus plays a dominating role to determine the DP
with respect to the change of the risk‐free interest for most nodes. Nonetheless, for nodes at the time step just before
the maturity, both the smaller‐discount‐rate and smaller‐drift‐term effects take effect only for the remaining tΔ period
of time. These two opposite forces may even result in a nonmonotonic relationship between the risk‐free interest rate
and the DP especially when the equity price is relatively low. For example, for time 2 in Table 3, the default
probabilities are 6.06%, 6.03%, and 6.04% for the interest rates being 0.0846, 0.0672, and 0.0499, respectively, given an
equity price of $12.7508.

5.2 | Sensitivity analyses

The respective impacts of changing initial equity prices S0, equity‐price volatilities σS,0, recovery rate ω, correlations
between logarithmic equity prices and short rates ρ, and the parameters of Vasicek's interest rate models (a, b, σr, and
r0) on CB values are analyzed in Table 4.

Recall that a CB possesses attributes of both equity and debt, as it is a bond with a conversion option. Therefore,
increments in the CB's underlying equity price S0 significantly raise the values of both the embedded conversion option
and hence the CB value. On the other hand, increments in the long‐term interest rate level b and the initial short rate r0
reduce the CB (debt) value. Increasing the underlying EPV σS,0 results in the following two effects: First, it increases the
value of the conversion option and thus the CB value. Second, a higher σS,0 implies a higher probability of encountering
a relatively low equity price, which yields a higher DP and thus diminishes the CB value. The net of these two different
effects results in the hump‐shaped CB values with respect to σS,0. To our knowledge, our CB pricing model is the first to
appropriately capture these two different effects associated with the equity volatility. In contrast, the CB value
monotonically decreases with the interest rate volatility σr. Increments in the mean‐reversion parameter a implicitly
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TABLE 3 Details for pricing 3‐year CB with a two‐factor tree in Figure 4

t = 0

S = 30.0000t , r = 0.0500t

CVt 88.4514

σS t, 0.3000

ϵt 0.05%

Vt 730,868

t = 1

S \ rt t 0.0673 0.0499 0.0326 S \ rt t 0.0673 0.0499 0.0326

CVt σS t,

43.2885 98.7379 99.7614 101.8251 43.2885 0.2459 0.2500 0.2543

30.0000 89.6933 91.0953 93.9679 30.0000 0.3011 0.3069 0.3130

20.7908 85.7612 87.1659 90.1014 20.7908 0.3889 0.3947 0.4011

ϵt Vt

43.2885 0.00% 0.00% 0.00% 43.2885 870,735 885,409 900,575

30.0000 0.02% 0.02% 0.02% 30.0000 737,893 752,558 767,711

20.7908 0.95% 0.79% 0.65% 20.7908 646,523 660,973 675,929

t = 2

S \ rt t 0.0846 0.0672 0.0499 0.0326 0.0153

CVt

62.4630 123.7320 123.7568 123.7814 123.8057 123.8297

43.2885 98.9096 100.054 101.2644 102.544 103.8959

33.9004 91.8919 93.4973 95.1307 96.7925 98.4834

30.0000 91.8896 93.4944 95.1271 96.7882 98.4781

20.7908 91.7215 93.3079 94.9198 96.5576 98.2214

12.7508 88.1077 89.6648 91.2225 92.7838 94.3513

σS t,

S \ rt t 0.0846 0.0672 0.0499 0.0326 0.0153

62.4630 0.2122 0.2137 0.2153 0.2169 0.2185

43.2885 0.2521 0.2543 0.2565 0.2588 0.2612

33.9004 0.2880 0.2909 0.2937 0.2967 0.2996

30.0000 0.3096 0.3128 0.3160 0.3193 0.3227

20.7908 0.3930 0.3975 0.4021 0.4068 0.4115

12.7508 0.5883 0.5886 0.5904 0.5932 0.5969

ϵt

S \ rt t 0.0846 0.0672 0.0499 0.0326 0.0153

62.4630 0.00% 0.00% 0.00% 0.00% 0.00%

43.2885 0.00% 0.00% 0.00% 0.00% 0.00%

33.9004 0.00% 0.00% 0.00% 0.00% 0.00%

30.0000 0.00% 0.01% 0.01% 0.01% 0.01%
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reduce the interest rate volatility and hence increase the CB value. Additionally, a higher recovery ω leads to a high CB
value as expected. Finally, a CB is slightly more valuable with increments in the correlation between logarithmic equity
prices and interest rates, which is consistent with the findings in Chambers and Lu (2007).

5.3 | Empirical cases

We next apply the proposed CB pricing model to evaluate a CB contract issued by DHR, which is examined in Wang
and Dai (2017). We revisit this empirical case and calculate our CB pricing model for the DHR zero‐coupon CB (thus
c = 0B ) on January 22, 2009. See Wang and Dai (2017) for why the DHR CB contract and the examined date of January
22, 2009 are chosen. The parameter values employed to price the DHR CB on January 22, 2009 are summarized in
Table 5.

TABLE 3 (Continued)

ϵt

S \ rt t 0.0846 0.0672 0.0499 0.0326 0.0153

20.7908 0.27% 0.30% 0.33% 0.36% 0.39%

12.7508 6.06% 6.03% 6.04% 6.09% 6.17%

Vt

S \ rt t 0.0846 0.0672 0.0499 0.0326 0.0153

62.4630 1,084,490 1,092,325 1,100,294 1,108,398 1,116,641

43.2885 892,744 900,579 908,548 916,653 924,895

33.9004 798,864 806,699 814,668 822,772 831,014

30.0000 759,860 767,695 775,664 783,768 792,010

20.7908 667,789 675,619 683,583 691,681 699,918

12.7508 588,338 595,910 603,653 611,560 619,624

Note: The convertible bond value CVt , the equity‐price volatility σS t, , the default probability ϵt , and the FV Vt for each node of the first three time steps of the
two‐factor tree are listed for analysis.

TABLE 4 Sensitivity analysis of CB prices with respect to different parameters

S0 CB value σS,0 CB value ω CB value ρ CB value

20 80.0660 0.2 83.5115 0.1 85.1407 −0.2 85.3553

25 81.9850 0.25 84.7077 0.2 85.2776 −0.1 85.3845

30 85.4420 0.3 85.4420 0.3 85.4146 0 85.4141

35 90.1307 0.35 85.3622 0.4 85.5516 0.1 85.4420

40 95.8399 0.4 84.0967 0.5 85.6886 0.2 85.4694

a CB value b CB value σr CB value r0 CB value

0.025 85.4143 0.03 85.7346 0.0025 88.9563 0.03 89.3265

0.05 85.4279 0.04 85.5864 0.005 87.1775 0.04 87.3151

0.1 85.4420 0.05 85.4420 0.01 85.4420 0.05 85.4420

0.2 85.4566 0.06 85.2957 0.015 83.9643 0.06 83.6648

0.4 85.4712 0.07 85.1474 0.02 82.4884 0.07 81.9862

Note: Parameters not specified in the table follow the base case as follows: S = 300 , σ = 0.3S,0 , n = 6, F = 100, θ = 2, CP = 113, N = 10,000O , N = 4800B ,
N = 200C , a = 0.05, b = 0.05, σ = 0.01r , r = 5%0 , ρ = 0.1, ω = 0.32, ϕ q c c= = = = 0B S , D F N N= ( + ) = 500,000B C , and x = 1.

Abbreviation: CB, convertible bond.
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TABLE 5 Parameters for pricing DHR zero‐coupon CB on January 22, 2009

Name Data source Value and explanation

(a) CB parameters

Market price Bloomberg 84.0000

Years to maturity (T ) 12

Face value (F ) 100 Normalized to 100

Conversion ratio (θ) 1.45352 shares For 100 dollars of face value

Rating and seniority A (senior and unsecured)

Call schedule and call
price (CP)

01/22/10 01/22/11 01/22/12 01/22/13 01/22/14 01/22/15

77.128 78.970 80.857 82.789 84.767 86.792

01/22/16 01/22/17 01/22/18 01/22/19 01/22/20

88.865 90.989 93.162 95.388 97.667

Put schedule and put
price (PP)

01/22/11

78.970

(b) Equity‐price parameters

Prevailing equity price (S )0 Yahoo! finance
website

51.7400

EPV (σS.0) 28.1562% Standard deviation of log differences in daily equity
prices ( SΔ ln t) in the previous 3 years

Dividend yield (q) 0.0725% Ratio of average annual cash dividends over average
equity price in previous 3 years

(c) Interest rate parameters

Correlation between d Sln t

and drt (ρ)
Website of US

Treasury
Department

9.5214% Correlation of daily SΔ ln t and rΔ t in previous
3 years, where rΔ t is calculated as daily difference
of 1‐month treasury yields

Term structure of risk‐free
zero rates (%)

Bloomberg 3M 6M 1Y 2Y 3Y 4Y

0.10 0.29 0.40 0.72 1.10 1.39

5Y 7Y 10Y 12Y 15Y

1.62 2.06 2.69 3.08 3.60

(d) Estimated parameter values in the Vasicek model

a Calibrated by this
study

0.082914 Use best‐fitting algorithm to minimize difference
between prevailing term structure and theoretic
term structure implied by Vasicek interest rate
model

b 0.088458

σr 0.012590

r0 0.000659

(e) Capital structure information, payout ratio, and recovery rate

NO (number of equity shares) Estimated by this
study

354,487,000 shares DHR 2008 Annual Report (p. 68)

NC (number of examined CB
contracts)

6,200,000 contracts (face
value F assumed to
be 100)

DHR 2008 Annual Report (p. 49)

NB (number of virtual coupon‐
bearing bond contracts,
approximating for other
liabilities)

70,615,660 contracts (face
value F assumed to
be 100)

DHR 2008 Annual Report (pp. 49 and 66)

cS (coupon rate for virtual
coupon‐bearing bond)

1.8434% DHR 2008 Annual Report (pp. 65–66)
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Parameters that pertain exclusively to our model are explained as follows. First, given the term structure of risk‐free
zero rates on that day, we can solve a, b, σr, and r0 by minimizing the sum of the squared differences between the
market risk‐free zero rates and theoretical risk‐free zero rates based on the Vasicek model. Next, the theoretical term
structure based on the Vasicek model with the above solved a, b, σr, and r0 is used as input to construct Hull and While
(1994) interest rate tree. Second, according to DHR's annual reports (Danaher Corporation, 2007, 2008, 2009), we can
estimate the parameters related to its capital structure, cash payment yield from FV, and average coupon rate for debts
other than the examined CB. In Danaher Corporation (2009), by the end of 2008, there are 354,487,000 DHR shares
outstanding. The total liability amount is $7,681,566,000, which consists of the examined zero‐coupon CB with a
principal of $620,000,000 and other liabilities of $7,061,566,000. Here we simplify other liabilities as a virtual coupon‐
bearing bond whose coupon rate is 1.8434% (paid semiannually), estimated as the annual interest expenses
($130,174,000) divided by the amount of other liabilities ($7,061,566,000). The cash payment yield from FV 0.6070% is
estimated as the dividends payment ($38,259,000) plus the interest expense ($130,174,000) divided by the market value
of the firm assets, which is approximated as the number of outstanding shares multiplied by the equity price on
December 31 of 2008 ($56.61) plus the total liability amount. We follow Wang and Dai (2017) in assuming that the
recovery rate of DHR is 49.54%, the average recovery rate for an A‐rated firm. Furthermore, we follow Longstaff and
Schwartz (1995) and Wang et al. (2014) to assume the default boundary V D=B .

In addition, we employ Equation (21) to implement Vassalou and Xing's (2004) method to estimate a robust σV
based on the FV over the past 3‐year period, that is, from January 22, 2006 to January 21, 2009. To this end, on each
trading day from January 22, 2006 to January 21, 2009, we collect the daily closing equity price for DHR from the
Yahoo! finance website19 and also the daily risk‐free zero rates from Bloomberg and execute the calibration process to
estimate a, b, σr, and r0 of the Vasicek model. Moreover, the correlation of SΔ ln t and rΔ t,

20 ρ, is calculated based on
daily data over the previous 3 years. Finally, we use the DHR annual report in the previous year (e.g., 2007) to estimate
the corresponding parameters of the capital structure and cash payment yield from the FV used for each trading day in
the following year (e.g., 2008). The estimation methodology is identical to that described in the preceding paragraph.
These parameters are summarized in Table 6. We thus obtain the FV at time 0 (on January 22, 2009) and a constant σV
of $25,395,950,363 and 24.0222%, respectively.

Finally, the theoretical CB value estimated by the proposed tree model is $84.1852 and $83.8555 given the number
of time steps n of 24 and 48, respectively. Compared with the pricing result of $84.3198 in Wang and Dai (2017), our
structural CB model yields pricing results closer to the actual market price of $84.0000 on January 22, 2009, perhaps
due to its superior ability to formulate the stylized relationship among all stochastic processes and thus capture the
consensus of DHR CB traders' default‐event expectations.

6 | CONCLUSION AND FUTURE WORK

It is difficult but critical to price a CB and to simultaneously model the complex relationships among the
DP (unobservable) issuing FV, equity price, EPV, and the dilution effect due to conversion. Our proposed two‐factor
(equity price and interest rate) CB pricing tree treats the issuer's equity value (derived as the product of the equity price
and the number of outstanding shares) as a down‐and‐out call on the issuing FV to endogenously solve for the implied

TABLE 5 (Continued)

Name Data source Value and explanation

ϕ (cash payment yield from
firm value)

0.6070% DHR 2008 Annual Report (pp. 65–67) and DHR
equity price on December 31 of 2008

ω (recovery rate) Wang and
Dai (2017)

49.54%

Abbreviations: CB, convertible bond; DHR, Danaher Corporation.

19On the basis of the same time series of DHR equity prices, the EPV σS,0 on the CB pricing day of January 22, 2009 is estimated as the standard
deviation of the log differences in daily equity prices ( SΔ ln t).
20 rΔ t is calculated as the daily difference of 1‐month Treasury yields.
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TABLE 6 Capital structure and payout ratio parameters for determining σV based on Vassalou and Xing (2004)

Name Data source Value and explanation

(a) Capital structure information and payout ratio used in 2009/01/01–2009/1/21

NO (number of equity shares) Estimated by this
study

354,487,000 shares DHR 2008 Annual Report (p. 68)

NC (number of examined CB contracts) 6,200,000 contracts (face
value F assumed to
be 100)

DHR 2008 Annual Report (p. 49)

NB (number of virtual coupon‐bearing
bond contracts, approximating for
other liabilities)

70,615,660 contracts (face
value F assumed to
be 100)

DHR 2008 Annual Report (pp. 49 and 66)

cS (coupon rate for virtual coupon‐
bearing bond)

1.8434% DHR 2008 Annual Report (pp. 65–66)

ϕ (cash payment yield from firm value) 0.6070% DHR 2008 Annual Report (pp. 65–67) and
DHR equity price on December 31 of
2008 (56.61)

(b) Capital structure information and payout ratio used in 2008/01/01–2008/12/31

NO (number of equity shares) Estimated by this
study

352,608,000 shares DHR 2007 Annual Report (p. 63)

NC (number of examined CB contracts) 6,060,000 contracts (face
value F assumed to
be 100)

DHR 2007 Annual Report (p. 45)

NB (number of virtual coupon‐bearing
bond contracts, approximating for
other liabilities)

77,802,470 contracts (face
value F assumed to
be 100)

DHR 2007 Annual Report (pp. 45 and 61)

cS (coupon rate for virtual coupon‐
bearing bond)

1.4100% DHR 2007 Annual Report (pp. 60–61)

ϕ (cash payment yield from firm value) 0.3661% DHR 2007 Annual Report (pp. 60–62) and
DHR equity price on December 31 of
2007 (87.74)

(c) Capital structure information and payout ratio used in 2007/01/01–2007/12/31

NO (number of equity shares) Estimated by this
study

341,223,000 shares DHR 2006 Annual Report (p. 47)

NC (number of examined CB contracts) 5,940,000 contracts (face
value F is assumed to
be 100)

DHR 2006 Annual Report (p. 33)

NB (number of virtual coupon‐bearing
bond contracts, approximating for
other liabilities)

56,254,910 contracts (face
value F is assumed to
be 100)

DHR 2006 Annual Report (pp. 33 and 45)

cS (coupon rate for virtual coupon‐
bearing bond)

1.4191% DHR 2006 Annual Report (pp. 44–45)

ϕ (cash payment yield from firm value) 0.3375% DHR 2006 Annual Report (pp. 44–46) and
DHR equity price on December 29 of
2006 (72.44)

(d) Capital structure information and payout ratio used in 2006/01/22–2006/12/31

NO (number of equity shares) Estimated by this
study

338,547,000 shares DHR 2006 Annual Report (p. 47)

NC (number of examined CB contracts) 5,820,000 contracts (face
value F assumed to
be 100)

DHR 2006 Annual Report (p. 33)
(approximated)
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FV and stochastic EPV given the simulated equity price in the tree model and the initially endogenously solved FV
volatility. Combining the information of the implied FV and its volatility and the capital structure of the issuing firm
allows us to determine the default rate and the dilution effect when pricing CBs. The proposed model captures the
negative (positive) relationships between the stochastically evolving DP and the FV or the equity price (the EPV).
Sensitivity analyses and empirical studies are presented that attest the robustness and the feasibility of the proposed CB
pricing model.

Interesting yet challenging problems remain that are not well solved in past CB pricing literature or even in this
paper. First, in addition to the standard call‐back and conversion provisions triggered by hitting the optimal call and
conversion boundaries, there are other more complex path‐dependence provisions for pricing CBs. For example, some
CB contracts may incorporate call‐notice periods or soft calls (e.g., x days out of y days above a certain trigger level for
being callable). Since these complex call provisions depend more strongly on the information of the realized price path
than the standard call‐back provision, it requires additional states in each tree node to represent different path‐
dependent call triggers. To our knowledge, modeling call/conversion policies with a call‐notice period are studied in
Grau et al. (2003). Lau and Kwok (2004) examine the impact of the soft call provisions on CB pricing, and Liu and Guo
(2020) propose an approximation to estimate the probability of triggering soft calls. Second, it is also difficult to model a
non‐Markovian interest rate process like the LIBOR market model with the tree‐based model that can easily deal with
the interactive American‐style call/conversion decisions. To our knowledge, no literature prices CBs under LIBOR
models. Third, although we use a constant payout yield to model dividend payouts, sophisticated settings like
stochastic dividends could be more proper for long‐term CBs. However, pricing CBs with stochastic dividends has not
yet been well addressed and is not easy to implement under the tree‐based model. Finally, our CB pricing model does
not consider sequential conversion. Although sequential conversion can be handled by introducing a forest of equity‐
price trees to represent the status of different percentages of CB contracts that have been converted, as proposed in
Liu et al. (2021), it is highly complicated to combine their model with ours, and the high computational cost to combine
these two models makes it almost infeasible.
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collected from its 2006–2008 annual reports, which are publicly available on its website at http://investors.danaher.
com/annual-report-and-proxy/.

TABLE 6 (Continued)

Name Data source Value and explanation

NB (number of virtual coupon‐bearing
bond contracts, approximating for
other liabilities)

35,007,590 contracts (face
value F assumed to
be 100)

DHR 2006 Annual Report (pp. 33 and 45)

cS (coupon rate for virtual coupon‐
bearing bond)

1.2835% DHR 2006 Annual Report (pp. 44–45)

ϕ (cash payment yield from firm value) 0.2895% DHR 2006 Annual Report (pp. 44–46) and
DHR equity price on December 30 of
2005 (55.78)

Abbreviations: CB, convertible bond; DHR, Danaher Corporation.
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APPENDIX A: SUMMARY OF NOTATIONS (TABLE A1)

TABLE A1 Summary of notations

Definition\notation
Our CB pricing

model

Comparative
reduced‐form CB
pricing models

Years to maturity for CB T

Face value for all bonds F

Conversion ratio for CB θ

Call price for CB (at time t) CPt or CP

Put price for CB (at time t) PPt or PP

Equity price St

Dividend yield q

Risk‐free interest rate rt

Correlation between stochastic equity prices and risk‐free
interest rates

ρ

Coupon rate for CB cB

Recovery rate for CB ω

Default probability at time t S Vϵ ( , )t t B ϵt or ϵ

Equity‐price volatility σS t, σS

Implied firm value Vt

Implied firm value volatility σV

Total debt amount D

Default boundary VB

Number of equity shares NO

Number of examined CB contracts NC

Number of virtual coupon‐bearing bond contracts,
approximating for other liabilities

NB

Coupon rate for virtual coupon‐bearing bond cS

Cash payment yield from firm value ϕ

Note: The definitions and notations for all parameters used in this paper are summarized in the following table.

Abbreviation: CB, convertible bond.

APPENDIX B: PROOF OF VALIDITY OF PU, PM, AND PD
The branching probabilities can be solved from Equations (10) to (12) to obtain

P
β βηδ σ t

η δ
=
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β η δ σ t

η δ
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2 2 2
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2

2 2

P
β βηδ σ t

η δ
=

+ + Δ
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D

2
,

2

2 2
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Since the sum of PU, PM, and PD is 1, the validity of the trinomial branch construction method in Figure 2 can be
proved by merely showing that PU, PM, and PD are all larger than or equal to 0 given the condition

≤ ≤ η − 1
η σ t

δ2

Δ 2S t

S

, , where η is a positive integer.

Since the denominator of PU is positive, we simply show that the numerator is also positive as follows:
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where the last inequality is derived due to the inequality ≤
η σ t

δ2

ΔS t

S

, .

For PM, we intend to show that numerator β η δ σ t− + ΔS S t
2 2 2

,
2 is nonpositive:
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where the last inequality is due to ∈β δ δ(− , )S S , a consequence of applying the mean‐tracking method to identify the

middle descendant node. Moreover, since ≤ η − 1
σ t
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, , one can derive
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and obtain the desired result.
The proof of PD is similar to the proof of PU as follows:
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The remaining task is to show that there always exists a positive integer η which satisfies

≤ ≤ η= − 1
η σ t

δ

σ t

σ t2

Δ Δ

Δ
2S t

S

S t

V

, , ( ≡δ σ tΔS V by definition) in Equation (9). As proved in Section V of Merton

(1974), the debt of the issuer should be less risky than the issuer asset as a whole, which implies the equity of a levered
issuer must be at least as risky as its asset (i.e., ≥σ σS t V, ), and the equality between σS t, and σV holds only for an all‐
equity firm. As a result, one can infer that ≥ 1

σ t

δ

ΔS t

S

, and then choose η to be at least 2 to satisfy ≤ ≤ η − 1
η σ t

δ2

Δ 2S t

S

, .

APPENDIX C: EXTENDED FORTET METHOD AND MOMENT CONDITIONS OF
PROCESSES rt AND lt
Define the logarithmic FV process ≡V lln( )t t; the CB issuer defaults once the FV falls belowVB (i.e., ≤ ≡l V hln( )t B ). Note
that l h>0 , as the issuer does not default at the CB issuance date. Then q i j( , )d can be computed by a recursive formula as

 q i j r t q u v r t r t( , ) = Φ( , ) − ( , )Ψ( , , , ),d
i j

v

j

u

n
d

i j u v

=0

−1

=0

r

where

q i r t( , 0) = Φ( , ),d
i 0

DAI ET AL. | 31









r t f r r N

h μ r l r

r l r
Φ( , ) = ( | )

− ( | , )

Σ ( | , )
,r 0

0 0

2
0 0

t







r t r s f r r r N

h μ r l h r

r l h r
Ψ( , , ′, ) = ( | = ′)

− ( | = , ′)

Σ ( | = , ′)
,r s

s

s
2t

given that time points t and s satisfy ≤ ≤t Ts , and frt is the transition density of r defined as f r r e( | ) =r s πσ
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with

m E r r= [ | ]T
t s and σ r r= var ( | )r

T
t s . As for μ r l r( | , )t s s , r l rΣ ( | , )t s s

2 ,m, and σr , the details to derive them are presented as follows.

First, the conditional moments μ r l r( | , )t s s and r l rΣ ( | , )t s s
2 can be calculated as
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In the above formulas, the conditional moments for process lt are
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where B u e( ) = (1 − )a a
au1 − .

Second, by replacing s with 0 in the above expressions, we obtain the first two unconditional moments for the
process lt as
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Last, Bernard et al. (2008) also show the formulas for m E r r= [ | ]T
t s and σ r r= var ( | )r

T
t s as
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