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a b s t r a c t 

Levy (2016) proposes asymptotic first-degree stochastic dominance as a distribution ranking criterion for 

all non-satiable decision makers with infinite investment horizons. Given Levy’s setting, this paper de- 

fines and offers the equivalent distributional conditions for asymptotic second-degree stochastic domi- 

nance, as well as operational asymptotic first- and second-degree stochastic dominance. Interestingly, the 

operational asymptotic stochastic dominance provides a full rank over assets with lognormal returns and 

different means. Empirical applications show that our conditions can be readily implemented in practice. 
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terion for all non-satiable and risk-averse decision makers when 
1. Introduction 

The dramatic increase in life expectancy in many countries

has become a major challenge not only in management, but also

in finance and economics. Searching for the optimal investment

over the long run has become an important issue in the life-

cycle planning for an aging society. In a recent important study,

Levy (2016) proposed incorporating a long investment horizon

with the concept of stochastic dominance to find the preferred in-

vestment strategies. He defined “asymptotic first-degree stochastic

dominance” (asymptotic-FSD, henceforth) as the distribution rank-

ing criterion for all non-satiable investors when the investment

horizon goes to infinity. His approach helps us understand how

preferences affect risky choices in the very long run. 

To find the moment condition for asymptotic-FSD,

Levy (2016) employed the distribution assumption: the log

returns of portfolios follow normal distributions. This assumption

is commonly adopted since, by the central limit theorem, the

terminal wealth distribution is lognormal in the very long run,

assuming that the returns per period are independently and
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dentically distributed. 1 The necessary and sufficient distribution

onditions for asymptotic-FSD under lognormal distribution as-

umptions are found by Huang, Tzeng, Wang, and Zhao (2019) .

hey show that the condition is the same as that for first-degree

tochastic dominance (FSD) when the investment horizon is finite,

.e., higher geometric means together with the same volatili-

ies. While the concept of asymptotic-FSD is helpful for solving

he investment problem in an aging society, the corresponding

istribution condition is too rigid to be applied. 

The purpose of this paper is to extend asymptotic-FSD by plac-

ng common constraints on the preferences to search for consen-

us rules under the lognormal distribution assumption. Three sets

f investors are considered. The first set only contains risk-averse

nvestors since risk aversion is commonly assumed in theoretical

esearch and frequently observed in empirical studies. We propose

 new notion of “asymptotic second-degree stochastic dominance”

asymptotic-SSD, henceforth), which is the distribution ranking cri-
1 Fama and French (2018) examine this prophecy of the central limit theorem 

y conducting bootstrap simulation experiments based on actual long-horizon U.S. 

tock market returns. Their numerical results verify that the distributions of gross 

returns of the U.S. market portfolio converge toward lognormal as the investment 

orizon increases. Moreover, Levy (2016) conducts a goodness-of-fit test of the em- 

irical distribution of the stock returns for 20 possible theoretical distributions. In 

ection 3.2 therein, he finds that “in this horse race, for a horizon of 20 years, the 

lognormal distribution provides the best fit. Moreover, for the 20-year horizon or 

longer, the deviations between the theoretical lognormal distribution and the em- 

irical distribution are negligible.”

https://doi.org/10.1016/j.ejor.2019.06.052
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he investment period goes to infinity. Following the lognormal

ssumption as in Levy (2016) , we find that the necessary and suf-

cient distribution condition in the indefinite long run is the same

s that for a finite investment horizon. That is, the strategy which

enerates a higher geometric mean and a lower volatility is the

ominant strategy for all risk-averse investors. 

The second set of investors has strictly positive and finite

arginal utilities. The constraint of bounded marginal utility on

references is similar to those in almost stochastic dominance pio-

eered by Leshno and Levy (2002) . Leshno and Levy (2002) argue

hat most decision makers have non-extreme preferences, i.e., the

ates of marginal substitution for any wealth level are bounded. 2 

e relax this preference assumption by assuming that marginal

tilities are positive and bounded. We define “operational asymp-

otic first-degree stochastic dominance” (operational asymptotic- 

SD, henceforth) as the distribution ranking rule for all investors

ith positive and bounded marginal utility functions. We find that

he dominant portfolio is the one generating the highest mean of

ealth. 

The third set of investors considered in this paper is not only

haracterized by strictly positive and finite marginal utilities but is

lso risk-averse. “Operational asymptotic second-degree stochastic

ominance” (operational asymptotic-SSD, henceforth) is defined as

he distribution ranking rule for all investors in this set. The dom-

nant portfolio under a lognormal assumption is the one which

ither generates the highest mean of wealth or the highest geo-

etric mean if the means of the wealth are the same. With the

ognormal assumption, operational asymptotic-SSD is a full rank-

ng criterion: it can always rank any two portfolios. 

We explore the applicability of our newly proposed stochastic

ominance rules in practice. For investments in the long run, the

sefulness of these conditions in pairwise comparisons of assets

s illustrated with numerical examples. We further show that op-

rational asymptotic-FSD and -SSD can be conveniently employed

n comparing multiple assets. By adopting the data for 5 industry

ortfolios covering the period from July 1927 to December 2015,

e find that the Healthcare, Medical Equipment, and Drugs In-

ustry dominates other industry portfolios in terms of operational

symptotic-FSD, assuming that the underlying dynamics of the as-

ets persists in the future. For investments in the short run, we

rovide two sufficient conditions ensuring that one asset gener-

tes a larger expected utility than another. The usefulness of these

onditions in pairwise comparisons of assets for finite investment

orizons is also illustrated with numerical examples. 

Our study contributes to the understanding of the dominant

trategy that maximizes the investor’s terminal wealth in the very

ong run. To the best of our knowledge, Levy (2016) was the

rst to propose the notion of asymptotic stochastic dominance,

aking stochastic dominance applicable to the comparison of

he limiting performances with infinite horizons. Later on, Huang

t al. (2019) offered the distribution condition for asymptotic-

SD, whereas Levy (2019) examines the case where marginal util-

ties are bounded from both below and above. Complementary to

his emerging literature, our study offers a more complete picture

f how different utility conditions shape the criterion of asymp-

otic stochastic dominance. We concede that, as in Levy (2016) ,

evy (2019) and Huang et al. (2019) , our study also relies on the

ssumption of a lognormal distribution. However, given that the

ognormal distribution has been the workhorse in traditional in-

estment studies, our study can serve as a standard benchmark for

uture research on this topic. 

The structure of the paper is as follows. Section describes the

odel setting, reviews asymptotic-FSD, and defines and shows
2 They established almost stochastic dominance as the distribution ranking crite- 

ion for all decision makers with non-extreme preferences. 

a  

e

he moment condition of asymptotic-SSD. Section 3 defines and

rovides the moment conditions of operational asymptotic-FSD

nd -SSD. Section 4 provides empirical applications of different

otions of asymptotic stochastic dominance in ranking assets.

ection 5 discusses the practicability of operational asymptotic

tochastic dominance in finite investment horizons. Section 6 con-

ludes the paper. All proofs are relegated to the Appendix. 

. Asymptotic-FSD and -SSD 

Assume that an investor adopts a buy-and-hold strategy to

aximize her utility of wealth at time T . Let x t denote the rate

f gross portfolio return at time t . Thus, the terminal wealth of a

ni-dollar of her investment at T , denoted as W T , should be given

y 

og W T = 

T ∑ 

t=1 

log x t . 

Let F T and G T be two cumulative distribution functions of W T .

et U denote the von Neumann–Morgenstern utility function, and

 

′ and U 

′′ respectively denote the first and second derivatives of

 . Furthermore, let E F U ( W T ) and E G U ( W T ) be the expected utility

f W T under F T and G T , respectively. 

.1. Asymptotic-FSD 

Levy (2016) defined asymptotic-FSD as follows: 

efinition 1. F T dominates G T by asymptotic-FSD if and only if 

lim 

 →∞ 

[ E F U(W T ) − E G U(W T ) ] ≥ 0 f or all U with U 

′ ≥ 0 , 

nd for some non-decreasing U there is a strict inequality. 

To further understand the property of the dominant strategy

n the long run, Levy (2016) placed assumptions on the portfolio

eturn distributions. Assume that the x t ’s are independently and

dentically distributed (i.i.d.) and that log x t follows a normal distri-

ution N ( μ, σ 2 ). Thus, log W T follows a normal distribution N ( T μ,

 σ 2 ). 

Let F T and G T be two lognormal distributions of W T with mean

 

T (μF + σ 2 
F 

/ 2) and e T (μG + σ 2 
G 

/ 2) , respectively. Huang et al. (2019) pro-

ided the necessary and sufficient conditions to rank F T and G T for

symptotic-FSD: 

heorem 1 ( Huang et al., 2019 ) . Assume that F T and G T are lognor-

al distributions. For T → ∞ , F T dominates G T by asymptotic-FSD if

nd only if 

F > μG and σF = σG . 

Theorem 1 confirms that asymptotic-FSD yields exactly the

ame condition as FSD with a finite horizon as found by

evy ( 1973 , Theorem 4). 

.2. Asymptotic-SSD 

Here, we relax the strict requirement σF = σG associated with

symptotic-FSD by concentrating on utility functions exhibiting

isk aversion, which leads us to the notion of asymptotic-SSD. 

efinition 2. F T dominates G T by asymptotic-SSD if and only if 

lim 

 →∞ 

[ E F U(W T ) − E G U(W T ) ] ≥ 0 f or all U with U 

′ ≥ 0 and U 

′′ ≤ 0 ,

(1) 

nd for some non-decreasing and concave U there is a strict in-

quality. 
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Definition 2 is parallel to the standard definition of SSD for

prospects with finite horizons. The utility class used to define

asymptotic-SSD excludes the risk-loving attitudes but allows the

marginal utility to be unbounded when wealth is close to zero.

The equivalent conditions on distributions for asymptotic-SSD are

offered in the following theorem. 

Theorem 2. Assume that F T and G T are lognormal distributions. For

T → ∞ , F T dominates G T by asymptotic-SSD, if and only if 

μF + 

σ 2 
F 

2 

≥ μG + 

σ 2 
G 

2 

, σF ≤ σG , (2)

and at least one of the above inequalities is strict. 

Theorem 2 confirms that relative to the distribution condition

for asymptotic-FSD, the distribution condition for asymptotic-SSD

is less demanding. To ensure that F is preferable to G for all non-

decreasing and concave utility functions, the theorem allows for

σ F < σ G because convex utility functions are removed from the

underlying utility class but still excludes σ F > σ G because other-

wise one can always pick up a CRRA utility function (i.e., a utility

function with constant relative risk aversion) to obtain a contradic-

tion. It is worthwhile noting here that the asymptotic-SSD condi-

tion (2) is exactly the same as the condition for SSD with a finite

horizon found by Levy ( 1973 , Theorem 5). 

3. Operational asymptotic-FSD and -SSD 

To gain insights and tractability, we relax the strict requirement

σF = σG associated with asymptotic-FSD by placing an additional

commonly adopted constraint on marginal utility: the marginal

utility is positive and bounded, i.e., 

0 < inf 
w 

U 

′ ( w ) ≤ sup 

w 

U 

′ ( w ) < ∞ . (3)

Condition (3) is closely related to the growing literature on al-

most stochastic dominance which was pioneered by Leshno and

Levy (2002) , who find that some extreme utility functions may ex-

hibit pathological preferences that violate most decision makers’

choices. 3 They suggest that these pathological and extreme prefer-

ences can be excluded by requiring that the ratio of the sup to the

inf of the marginal utility be bounded. 4 

Almost first-degree stochastic dominance is a decision criterion

for decision makers with preferences satisfying 

0 < sup 

w 

U 

′ ( w ) ≤ inf 
w 

U 

′ ( w ) 

(
1 

ε 
− 1 

)
, (4)

where ε ∈ (0, 1/2). 5 The larger ε represents a smaller set of decision

makers. In particular, in the limit ε → 0, the set of decision makers

includes all preferences with U 

′ (w ) > 0 , while in the limit ε → 1/2,

only preferences with constant marginal utility (i.e., risk-neutral

preferences) are included in the set. Levy (2016) also employs con-

dition (4) and the corresponding almost stochastic dominance rule

in his empirical investigation. Our condition (3) is weaker than (4) ,
3 Almost stochastic dominance has been widely applied in economics and fi- 

nance. For example, Bali, Demirtas, Levy, and Wolf (2009) and Levy (2009) employ 

almost stochastic dominance to evaluate the performance of stocks and bonds in 

the long run. Bali, Brown, and Demirtas (2013) use almost stochastic dominance 

to show that some types of hedge funds outperform stocks and bonds. Post and 

Kopa (2013) derive general linear formulations for almost stochastic dominance. 
4 Following Leshno and Levy (2002) , various types of almost stochastic dom- 

inance have been developed by employing different constraints on preferences. 

Please see Lizyayev and Ruszczynsk (2012) , Tzeng, Huang, and Shih (2013) , and 

Tsetlin, Winkler, Huang, and Tzeng (2013) . 
5 Leshno and Levy (2002) show that E F U ( W ) ≥ E G U ( W ) for all U satisfying (4) if 

and only if 
∫ 

F (w ) >G (w ) [ F (w ) − G (w ) ] dw ≤ ε 
∫ | F (w ) − G (w ) | dw . 

 

 

U  

i  

h

r

t

a

n the sense that (3) always holds true if (4) is satisfied, irrespec-

ive of ε. 6 

.1. Operational asymptotic-FSD 

A variant of asymptotic-FSD, referred to as operational

symptotic-FSD is defined as follows: 

efinition 3. F T dominates G T by operational asymptotic-FSD if

nd only if 

lim 

 →∞ 

[ E F U ( W T ) − E G U ( W T ) ] ≥ 0 (5)

or all increasing U satisfying condition (3) , and for some increas-

ng U subject to (3) there is a strict inequality. 

The following theorem provides the equivalent conditions on

istributions for operational asymptotic-FSD. 

heorem 3. Assume that F T and G T are lognormal distributions. For

 → ∞ , F T dominates G T by operational asymptotic-FSD, if and only if

F + 

σ 2 
F 

2 

> μG + 

σ 2 
G 

2 

. (6)

Condition (6) amounts to requiring that the mean of W T under

 is greater than that under G for all T . Thus, a novel point revealed

y Theorem 3 is that for assets subject to lognormal distributions

nd decision makers subject to (3) , the dominance in utility in the

imit T → ∞ is actually equivalent to the dominance in the mean.

n other words, the ranking implied by risk-neutral preference will

ecome dominant in the very long run, even if the utility function

tself is not neutral (linear) in wealth. 

Without allowing the marginal utility to go to infinity, the util-

ty loss caused by the violation area always becomes dominated

y the utility gain derived from the normal area when T → ∞ un-

er condition (6) . 7 Since condition (6) imposes no restriction on

he size of σ F relative to σ G , operational asymptotic-FSD is strictly

eaker than asymptotic-SSD. 

In Theorem 3 , we have imposed a uniform lower bound on

 

′ (w ) . Levy (2019) imposed the lower bound on U 

′ (w ) from a dif-

erent angle. He finds that for F T to dominate G T as T → ∞ under

F > σ G , μF > μG and μF / σ F < μG / σ G , the lower bound on U 

′ can

ecay according to the power law 

 

′ (w ) > w 

−β as w → ∞ , where 

= 1 + 

1 

2 μF 

(
μF − z 0 

σF 

)2 

− z 0 
μF 

andz 0 = 

μF / σF − μG / σG 

1 / σF − 1 / σG 

. (7)

Our ranking rule (6) is robust to the power-law decay of U 

′ (w )

ith a small exponent. 

roposition 1. Assume that F T and G T are lognormal distributions.

nder condition (6) , F T dominates G T for T → ∞ for all U with 

 

′ > 0 , sup 

w 

U 

′ (w ) < ∞ , and U 

′ (w ) > w 

−β for w → ∞ , 

s long as β ∈ [0, 1) is small enough such that 

(1 − β) 

(
μF + (1 − β) 

σ 2 
F 

2 

)
> μG + 

σ 2 
G 

2 

. (8)

When the exponent β that governs the power-law decay of

 

′ (w ) is big, condition (6) alone would fail to ensure the dom-

nance of F over G in the long run. In particular, when β ≥ 1,
T T 

6 Let U = { U (w ) | U (w ) satisfies (3) } and U ε = { U (w ) | U (w ) satisfies (4) }. There 

olds U = ∪ ε∈ (0 , 1 / 2] U ε . 
7 When σ F 
 = σ G , F T and G T always have an intersection point, which divides the 

egion bounded by F T and G T into two parts. There always exists one part such that 

he FSD condition is violated. The area of the violated part is termed the “violation 

rea”. 
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Table 1 

Moment conditions for F dominate G . 

Stochastic dominance Moment conditions 

Asymptotic-FSD μF > μG & σF = σG 

Asymptotic-SSD μF + σ 2 
F / 2 ≥ μG + σ 2 

G / 2 & σ F ≤σ G , 

with at least one inequality being strict 

Operational asymptotic-FSD μF + σ 2 
F / 2 > μG + σ 2 

G / 2 

Operational asymptotic-SSD μF + σ 2 
F / 2 > μG + σ 2 

G / 2 or 

μF + σ 2 
F / 2 = μG + σ 2 

G / 2 & μF > μG 

Note : log x t follows N 
(
μF , σ 2 

F 

)
and N 

(
μG , σ 2 

G 

)
under F and G , respectively. The 

conditions for asymptotic-FSD and -SSD are exactly the same as the condi- 

tions for FSD and SSD with a finite horizon found by Levy ( 1973 , Theorems 4 

and 5), respectively. 
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Table 2 

Applicability of operational asymptotic stochastic dominance. 

Stochastic dominance Case I ( σ F < σ G ) Case II ( σ F > σ G ) 

Asymptotic-FSD – –

Asymptotic-SSD F �G –

Operational asymptotic-FSD F �G F �G 

Operational asymptotic-SSD F �G F �G 

Note : In Case I, μF = 0 . 0895 , σF = 0 . 1619 , μG = 0 . 0715 and σG = 0 . 1813 . 

In Case II, μF = 0 . 0895 , σF = 0 . 1619 , μG = 0 . 0461 and σG = 0 . 0721 . F �G 

means that the asset F dominates the asset G in terms of the applied 

asymptotic stochastic dominance in the first column. A dash indicates 

that the ranking between the assets F and G is not available based on 

the applied asymptotic stochastic dominance. 
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F > μG is a necessary condition for F T to dominate G T (see

emma A2 in the Appendix). Under μF > μG and σ F > σ G , suffi-

ient conditions for F T to dominate G T in the long run can be ei-

her μF / σ F ≥μG / σ G , as shown by Levy (2016) , or μF / σ F < μG / σ G 

ogether with condition (7) , as shown by Levy (2019) . 

.2. Operational asymptotic-SSD 

Operational asymptotic-SSD is formally defined as follows: 

efinition 4. F T dominates G T by operational asymptotic-SSD if

nd only if 

lim 

 →∞ 

[ E F U ( W T ) − E G U ( W T ) ] ≥ 0 (9) 

or all increasing and concave U satisfying condition (3) , and for

ome increasing and concave U subject to (3) there is a strict

nequality. 

The following theorem provides the equivalent conditions on

istributions for operational asymptotic-SSD. 

heorem 4. Assume that F T and G T are lognormal distributions. For

 → ∞ , F T dominates G T by operational asymptotic-SSD, if and only if

ither (6) holds true or μF + σ 2 
F 
/ 2 = μG + σ 2 

G 
/ 2 with μF > μG . 

Relative to operational asymptotic-FSD, operational asymptotic-

SD only adds in the comparison for the special case where μF +
2 
F 
/ 2 = μG + σ 2 

G 
/ 2 . 

. Empirical illustrations 

A summary of the distribution conditions for various notions of

symptotic stochastic dominance is provided in Table 1 . This sec-

ion is devoted to illustrate the usefulness of these newly proposed

operational) asymptotic stochastic dominance in ranking individ-

al assets. Three cases are examined. In the first two cases, we dis-

uss the comparisons between two assets. In Case I, μF > μG and

F < σ G , whereas in Case II, μF > μG but σ F > σ G . For the third

ase, multiple assets are compared. We employ the returns of 5

ndustry portfolios to illustrate the application of Theorems 2 –4 . 

In Case I, assets F T and G T are chosen as the MSCI World index

nd S&P 500 index based on the data in Bodie, Kane, and Mar-

us (2013) , respectively. Assuming that the gross returns of F T and

 T follow log normal distributions, we have 8 

F = 0 . 0895 , σF = 0 . 1619 ;
G = 0 . 0715 , σG = 0 . 1813 . 

In this example, μF + σ 2 
F 
/ 2 = 0 . 1026 > 0 . 0879 = μG + σ 2 

G 
/ 2 . Ac-

ording to Levy ( 1973 , Theorem 5) and our Theorem 2 , all risk-

verse agents would prefer the MSCI World index to the S&P 500
8 As reported in Bodie et al. (2013 , Fig. 5.3), the annualized means and volatilities 

f the rates of return of these two assets for the period from 1926 to 2010 are 

0.81% and 18.06% for F and 9.19% and 19.96% for G , respectively. 

U

t

ndex not only for any finite T but also when T approaches infinity,

ssuming that the underlying dynamics of the two assets persists

n the future. By Theorems 3 and 4 , decision makers defined by

perational asymptotic-FSD and -SSD also prefer the MSCI World

ndex to the S&P 500 index when T approaches infinity. 

Consider Case II where the asset with the maximum geometric

ean also has a higher volatility. We keep μF and σ F as before

nd assume instead 

G = 0 . 0461 , σG = 0 . 0721 

o capture the mean and volatility of the returns on the long-term

.S. Treasury Bonds as shown in Bodie et al. (2013) . 9 In this case,

symptotic-FSD and -SSD as respectively shown in Theorems 1 and

 cannot serve to provide any investment advice for the long run.

y contrast, operational asymptotic-FSD and -SSD shed light on the

hoice of assets in this case. Since μF + σ 2 
F / 2 = 0 . 1026 > 0 . 0487 =

G + σ 2 
G / 2 , all decision makers defined by operational asymptotic-

SD and -SSD would prefer the MSCI World index to long-term U.S.

reasury Bonds for long-run investments. 

The ranking of assets based on the four notions of asymp-

otic stochastic dominance in the above two cases is summa-

ized in Table 2 . As shown in this table, the asymptotic-FSD pro-

osed by Levy (2016) or the asymptotic-SSD extended by us cannot

ank the assets in both cases. By contrast, operational asymptotic-

SD and -SSD are able to fully rank these assets for investors

ith preferences subject to condition (3) . This contrast justifies

he importance of the notion of operational asymptotic stochastic

ominance. 

Case III simulates the situation where investors make decisions

n choosing among multiple assets. We employ the returns of 5

ndustry portfolios obtained from French’s website. The data pe-

iod extends from July 1927 to December 2015. Table 3 shows that

mong these 5 industry portfolios, their σ are all distinct. In other

ords, investors cannot use the conditions μF > μG and σF = σG 

f asymptotic-FSD in Theorem 1 to select among industry port-

olios. Moreover, none of the industry portfolios has the highest

+ σ 2 / 2 and lowest σ . Thus, investors cannot employ the condi-

ions of asymptotic-SSD in Theorem 2 to select the portfolios. 

Operational asymptotic-FSD and -SSD can provide investment

dvice for retirement. Under the assumption that the log gross re-

urns of these industry portfolios follow normal distributions, in-

estors should invest in the Healthcare, Medical Equipment, and

rugs Industry according to Theorems 3 and 4 , since this industry

ortfolio has the highest μ + σ 2 / 2 . 
9 The annualized means and volatilities of the rates of return of the long-term 

.S. Treasury Bonds for the period from 1926 to 2010 are 4.99% and 7.58%, respec- 

ively. 
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Table 3 

Descriptive statistics of 5 industry portfolios. 

Cnsmr Manuf HiTec Hlth Other 

μ 0.0086 0.0080 0.0078 0.0093 0.0070 

σ 0.0531 0.0552 0.0563 0.0560 0.0638 

Correlation 1.0000 

0.8731 1.0000 

0.8104 0.8086 1.0000 

0.7787 0.7460 0.7094 1.0000 

0.8774 0.8917 0.7988 0.7398 1.0000 

μ + σ 2 / 2 0.0100 0.0096 0.0094 0.0109 0.0090 

Note : Cnsmr includes Consumer Durables, NonDurables, Wholesale, 

Retail, and Some Services. Manuf includes Manufacturing, Energy, and 

Utilities. HiTec includes Business Equipment, Telephone and Televi- 

sion Transmission. Hlth includes Healthcare, Medical Equipment, and 

Drugs. Other includes all other industries. In addition, μ and σ rep- 

resent the mean and volatility of the log gross return, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4 

The upper bound of sup w U 
′ (w ) / inf w U 

′ (w ) . 

Year Case I Case II 

μF > μG and σ F < σ G μF > μG and σ F > σ G 

0.01 1.2098 1.1625 

0.1 1.8276 1.6106 

1 6.8903 4.5683 

2 15.8891 8.7328 

3 30.9009 14.5398 

4 55.2142 22.5819 

5 93.6464 33.5867 

6 153.2561 48.4811 

7 244.3354 68.4509 

8 381.8151 95.0123 

9 587.2560 130.1009 

10 891.6645 176.1834 

20 3.90 × 10 04 2590.1131 

30 1.21 × 10 06 2.85 × 10 04 

40 3.27 × 10 07 2.78 × 10 05 

50 8.08 × 10 08 2.56 × 10 06 

60 1.89 × 10 10 2.27 × 10 07 

70 4.28 × 10 11 1.98 × 10 08 

80 9.43 × 10 12 1.69 × 10 09 

90 2.03 × 10 14 1.44 × 10 10 

100 3.84 × 10 15 1.21 × 10 11 

Note : In Case I, μF = 0 . 0895 , σF = 0 . 1619 , μG = 0 . 0715 

and σG = 0 . 1813 . In Case II, μF = 0 . 0895 , σF = 0 . 1619 , 

μG = 0 . 0461 and σG = 0 . 0721 . 
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5. Implications for short-run investment 

Our study inherits the framework as proposed by Levy (2016) ,

Levy (2019) and Huang et al. (2019) which assumes that investors

only care about their terminal wealth in the very long run. In prac-

tice, investors’ utility may also depend on their wealth in the short

run. 10 In this section, we extend Theorem 3 to give hints on the in-

vestment over a finite horizon. Assuming μF + σ 2 
F 
/ 2 > μG + σ 2 

G 
/ 2 ,

we address two mutually dual questions: (i) given T < ∞ , what is

the preference condition making F T more preferable than G T ? (ii)

Given a preference condition, what is the horizon T required for

investors to prefer F T to G T ? 

5.1. Preference conditions under a finite horizon 

Proposition 2. Assume that F T and G T are lognormal distributions

and that condition (6) holds true. Given T < ∞ , E F U ( W T ) ≥ E G U ( W T ), if

sup w 

U 

′ (w ) 

inf w 

U 

′ (w ) 
≤ �(μF , μG , σF , σG , T ) , (10)

where �( μF , μG , σ F , σ G , T ) increases to infinity faster than

e ( μF + σ 2 
F 

/ 2 −μG −σ 2 
G 

/ 2 ) T . 

Condition (10) is obtained from the proof of Theorem 3 . The ex-

plicit expression of �( μF , μG , σ F , σ G , T ) is given by Eqs. (B5) and

(B6) for the respective cases σ F > σ G and σ F < σ G in the Ap-

pendix. The existing literature has some suggestions on the up-

per bound of the ratio of the sup to the inf of marginal utilities.

Levy, Leshno, and Leibovitch (2010) used experimental data based

on a sample of 200 respondents to estimate ε as shown in (4) .

Their estimated ε is about 5.9%, suggesting that an upper bound of

sup w 

U 

′ (w ) / inf w 

U 

′ (w ) for all decision makers whose preferences

are not pathological is 1 / 5 . 9% − 1 = 15 . 9492 . 

In Table 4 , we numerically calculate �( μF , μG , σ F , σ G , T ) for

different T in Case I and Case II introduced in Section 4 . In Case

I, if the considered investment horizon is 3 years, all non-satiable

investors with sup w 

U 

′ (w ) / inf w 

U 

′ (w ) ≤ 30 . 9009 would prefer F T 
(MSCI World index) to G T (S&P 500 index). This set of investors in-

cludes all non-pathological and non-satiable investors suggested by

Levy et al. (2010) . In Case II, if the considered investment horizon

is 4 years, all non-satiable investors with sup w 

U 

′ (w ) / inf w 

U 

′ (w ) ≤
22 . 5819 would prefer F T (MSCI World index) to G T (long-term

U.S. Treasury Bonds). This set of investors also includes all non-

pathological investors suggested by Levy et al. (2010) . The upper

bound of sup w 

U 

′ (w ) / inf w 

U 

′ (w ) increases quickly in T . For exam-

ple, when T = 10 , the corresponding upper bounds in Cases I and
10 We thank an anonymous referee for drawing our attention to this issue. 

a  

0  

p  
I are 891.6645 and 176.1834, respectively. These two sets of in-

estors are much larger than the sets of non-pathological investors

uggested by Levy et al. (2010) . 

Benartzi and Thaler (1995) proposed a prospect theory value

unction 

(W T ) = 

{
W T − W 0 , if W T > W 0 , 

λ(W T − W 0 ) , if W T < W 0 , 
(11)

here W 0 denotes the initial wealth and λ denotes the loss aver-

ion parameter. For this utility function, sup w 

U 

′ (w ) / inf w 

U 

′ (w ) =
. The commonly adopted value of λ in the literature ranges from

.25 to 5 ( Abdellaoui, Bleichrodt, & Paraschiv, 2007 ). If the con-

idered investment horizon is 1 year, Table 4 shows that investors

ith prospect preferences described as in Eq. (11) would prefer

 T to G T in Case I since sup w 

U 

′ (w ) / inf w 

U 

′ (w ) = 6 . 8903 > 5 when

 = 1 . However, we do not have a conclusion for Case II when the

dopted value of λ is greater than 4.6. If the considered investment

orizon is 2 years, Table 4 indicates that investors with prospect

references described as in Equation (11) and λ≤ 5 would prefer

 T to G T in both cases. 

.2. Finite horizon under preference conditions 

roposition 3. Assume that F T and G T are lognormal distributions

nd condition (6) holds true. Given ε ∈ (0, 1/2), E F U ( W T ) ≥ E G U ( W T )

or all U satisfying condition (4) , if T ≥ T ∗, where T ∗ uniquely solves 

(μF , μG , σF , σG , T 
∗) = 

1 

ε 
− 1 . 

Proposition 3 is a dual version of Proposition 2 . To get a sense

f the empirical magnitude of T ∗, we numerically calculate T ∗ for

wo representative sets of investors. The first set includes the util-

ty functions subject to condition (4) with ε = 5 . 9% as suggested

y Levy et al. (2010) , and the second assumes ε = 1 / 6 or equiva-

ently sup w 

U 

′ (w ) / inf w 

U 

′ (w ) = 5 to account for the loss aversion

s described in Eq. (11) . We fix μF = 0 . 0895 and σF = 0 . 1619 as

bove and let μG and σ G take values of 0.02, 0.04, ..., 0.18 and

.04, 0.08, ..., 0.36, respectively. To compare T ∗ with a benchmark

ortfolio in practice, we estimate the average investment period
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Table 5 

Minimal investment horizons to achieve a dominance. 

Panel A. sup w U 
′ (w ) 

inf w U ′ (w ) 
= 15 . 9492 (percentage for the cases of T ∗ < 3.38 is 50.62%) 

σ G \ μG 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 

0.04 2.56 † 4.47 9.71 34.55 1464.64 49.17 11.65 5.06 2.81 † 

0.08 1.23 † 2.19 † 4.98 20.30 4982.92 18.20 4.71 2.12 † 1.20 † 

0.12 0.36 † 0.66 † 1.62 † 8.51 96.71 3.37 † 1.02 † 0.49 † 0.33 † 

0.16 0.00 † 0.00 † 0.00 † 0.04 † 0.04 † 0.00 † 0.00 † 0.00 † 0.00 † 

0.20 0.43 † 0.92 † 3.27 † 233.03 5.57 1.20 † 0.51 † 0.28 † 0.18 † 

0.24 2.43 † 6.14 36.14 171.24 10.26 3.31 † 1.61 † 0.95 † 0.63 † 

0.28 8.47 28.41 698.23 55.30 11.91 5.02 2.75 † 1.73 † 1.19 † 

0.32 27.64 162.25 250.70 33.16 11.97 6.08 3.66 2.44 † 1.74 † 

0.36 104.47 1285.58 73.86 23.69 11.33 6.59 4.29 3.01 † 2.23 † 

Panel B. sup w U 
′ (w ) 

inf w U ′ (w ) 
= 5 (percentage for the cases of T ∗ < 3.38 is 66.67%) 

σ G \ μG 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 

0.04 0.90 † 1.57 † 3.42 12.41 793.37 17.85 4.11 1.77 † 0.98 † 

0.08 0.43 † 0.77 † 1.74 † 7.15 2818.18 6.40 1.65 † 0.74 † 0.42 † 

0.12 0.12 † 0.23 † 0.57 † 2.98 † 34.11 1.18 † 0.36 † 0.17 † 0.10 † 

0.16 0.00 † 0.00 † 0.00 † 0.02 † 0.01 † 0.00 † 0.00 † 0.00 † 0.00 † 

0.20 0.15 † 0.32 † 1.14 † 82.92 1.95 † 0.42 † 0.18 † 0.10 † 0.06 † 

0.24 0.85 † 2.15 † 12.78 63.11 3.60 1.16 † 0.56 † 0.33 † 0.22 † 

0.28 2.98 † 10.14 333.02 20.11 4.20 1.76 † 0.96 † 0.60 † 0.42 † 

0.32 10.01 67.36 110.99 12.09 4.25 2.14 † 1.29 † 0.86 † 0.61 † 

0.36 43.44 741.88 29.44 8.68 4.05 2.33 † 1.51 † 1.06 † 0.78 † 

Note : For each pair of ( μG , σ G ), the horizon T ∗ (in years) required to guarantee E F U ( W T ) ≥ E G U ( W T ) 

or E G U ( W T ) ≥ E F U ( W T ) is reported given that μF and σ F are fixed to be 0.0895 and 0.1619, respec- 

tively. The figures in italic typeface indicate that E F U ( W T ) ≥ E G U ( W T ), and the other figures indicate that 

E G U ( W T ) ≥ E F U ( W T ). The superscript dagger † indicates that T ∗ is shorter than 3.38 years, which is the typ- 

ical investment holding period for large-value-stock funds calculated as the inverse of the size-weighted 

turnover ratios of the U.S. large-value-stock funds. 
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f large-value-stock funds in the U.S. based on the data provided

y the investment research company Morningstar. 11 Since the in-

estment targets of large-value-stock funds are usually large and

ong-life firms, it is plausible that their managers adopt strategies

o maximize the long-term returns, the goal of which is closely re-

ated to that of operational asymptotic-FSD. 

To implement the estimation, we calculate a size-weighted

urnover ratio for the collected 304 U.S. large-value-stock funds as

9.6% and derive its inverse to obtain the average asset holding pe-

iod of 3.38 years. This number suggests that for large-value-stock

unds, once an investment decision is made, the chosen assets are

eld for the following 3.38 years on average. Or, it could be viewed

s the case where managers of large-value-stock funds make in-

estment decisions by maximizing the terminal payoffs of assets

or an average investment horizon of 3.38 years. 12 

The results of T ∗ corresponding to the two values of

up w 

U 

′ (w ) / inf w 

U 

′ (w ) are shown in Panels A and B of Table 5 ,

here italic and upright typefaces indicate E F U ( W T ) ≥ E G U ( W T ) and

 G U ( W T ) ≥ E F U ( W T ), respectively. In Table 5 , a superscript dagger

eside the figure of T ∗ indicates the situation where T ∗ < 3.38.

ore than half the values of T ∗ are shorter than 3.38 years. The

ercentages are 50.62% and 66.67% for sup w 

U 

′ (w ) / inf w 

U 

′ (w ) to

e 15.9492 and 5 in Panels A and B, respectively. This evidence

mplies that in the majority of scenarios, investors can apply the

oment condition of operational asymptotic-FSD to make invest-

ent decisions based on a relatively short horizon. 
11 The classification of different types of funds and the data for the asset size and 

urnover ratio of each fund can be found on the Morningstar website ( http://news. 

orningstar.com/fund- category- returns ). All data are updated to and collected at 

he end of August in 2018. 
12 If we alternatively focus on funds that are larger in size, we will derive a lower 

urnover ratio. For example, the turnover ratios of the three largest-size value-stock 

unds of which the sum of the asset values represents 25.26% of the total asset 

alue of the whole sample are 25%, 13%, and 9%. The corresponding investment 

olding periods are 4.00 years, 7.69 years, and 11.11 years, respectively. 

r  

s  

d  

t

t

f

μ

a

There are two interesting observations worth discussing in

able 5 . First, although most values of T ∗ are within reasonable

evels, the values of T ∗ on the diagonal from the left bottom to the

ight top are extremely large. This is because for those entries, the

ifferences between μF + σ 2 
F / 2 and μG + σ 2 

G / 2 are so small that a

ong enough period is needed to achieve a dominance in expected

tility. If the difference between μF + σ 2 
F 
/ 2 and μG + σ 2 

G 
/ 2 is not

o small, then these T ∗ will be at reasonable levels as shown in

he off-diagonal entries. 13 Second, the values of T ∗ are particularly

hort for the scenarios with σG = 0 . 16 , which is approximately

qual to σF = 0 . 1619 . This is because the moment conditions in

hese scenarios are quite close to those for the asymptotic-FSD

nd FSD provided that the difference between σ F and σ G can be

gnored. Since the FSD should hold for all investment horizons T ,

t can be expected that extremely short periods T ∗ are sufficient

o guarantee operational asymptotic-FSD for the scenarios with

G = 0 . 16 . 

To sum up, while the operational asymptotic-FSD proposed is

riginally defined for an infinite horizon, we discover that the dis-

ribution condition of operational asymptotic-FSD can also be em-

loyed to achieve a dominance for a finite horizon, if a ratio-

al value of sup w 

U 

′ (w ) / inf w 

U 

′ (w ) for investors is considered. For

xample, suppose that μF = 0 . 0895 , σF = 0 . 1619 , μG = 0 . 02 and

G = 0 . 08 . Table 5 , Panel A, shows that for 1.23 years, all non-

athological investors as suggested by Levy et al. (2010) would pre-

er F T to G T . Thus, all non-pathological investors could follow our

ule to hold portfolio F T instead of G T for at least 1.23 years. As-

ume that after 2 years of investment, portfolio G T starts to pay

ividends and results in a change in the estimated μG and σ G ,
13 Let us illustrate this with two examples. For (μG , σG ) = (0 . 1 , 0 . 04) in Panel A, 

he values of μF + σ 2 
F / 2 and μG + σ 2 

G / 2 are 0.1026 and 0.1008, respectively. Due to 

he small difference, more than 10 0 0 years are needed to obtain E F U ( W T ) ≥ E G U ( W T ) 

or all U subject to condition (4) . By contrast, for (μG , σG ) = (0 . 02 , 0 . 04) in Panel A, 

G + σ 2 
G / 2 = 0 . 0208 differs from μF + σ 2 

F / 2 = 0 . 1026 to a large extent. As a result, 

 relatively short horizon of 1.23 years is sufficient to achieve the dominance. 

http://news.morningstar.com/fund-category-returns
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e.g., μG = σG = 0 . 04 . From Table 5 , our rule suggests that all non-

pathological investors could keep holding portfolio F T for another

4.47 years. 

6. Conclusion 

In this article, by assuming that the return is independent and

identically lognormally distributed, we have extended the concept

of asymptotic-FSD in three ways. For non-satiable and risk-averse

investors, we have defined asymptotic-SSD and provided the cor-

responding distribution conditions. For most decision makers with

positive and bounded marginal utility, we have defined opera-

tional asymptotic-FSD. We have demonstrated that the necessary

and sufficient condition for operational asymptotic-FSD is equiva-

lent to choosing the highest mean of final wealth among invest-

ment strategies. Furthermore, for most risk-averse decision makers

with positive and bounded marginal utility, we have defined oper-

ational asymptotic-SSD and provided the corresponding necessary

and sufficient condition. We have investigated the applicability of

the proposed operational asymptotic-FSD and -SSD for fully rank-

ing assets, and analyzed the possibility to apply the operational

asymptotic stochastic dominance over a reasonably short horizon.

The numerical findings support the view that our conditions could

be practically crucial for the investment decision with either infi-

nite or finite horizons, particularly for investors with rational up-

per and lower bounds of their marginal utilities. 

Overall, our contribution is to clarify what kinds of moment

conditions are relevant to long-run performance in a setting with-

out precise knowledge on preferences. Although our paper are

helpful in theoretically understanding the distribution ranking cri-

teria in the long run, our analysis inherits two limitations in

this line of research as Levy (2016) , Levy (2019) and Huang

et al. (2019) : the log-normal distribution and the buy-and-hold

strategy. These assumptions are useful in theoretical analyses but

may be over-simplistic for applications. 

A potential extension of the notions of (operational)

asymptotic-FSD and -SSD is to assume more general distribu-

tions beyond lognormals. Denote the mean and variance of the

i.i.d. random variables x t by μ and σ 2 , and the cumulative distri-

bution function of 
log W T −μT 

σ
√ 

T 
by P T ( y ). The central limit theorem

has justified the fact that lim T →∞ 

P T (y ) = �(y ) for every y , where

the latter is the cumulative distribution function of the standard

normal distribution N (0, 1). Unfortunately, as clarified by Merton

and Samuelson ( 1974 , p. 79), this does not necessarily imply that 

lim 

T →∞ 

∫ ∞ 

−∞ 

U 

(
e T μ+ 

√ 

T σy 
)

dP T (y ) = lim 

T →∞ 

∫ ∞ 

−∞ 

U 

(
e T μ+ 

√ 

T σy 
)

d�(y ) . 

In other words, it is not condition-free to say that the expected

utility generated by general distributions, EU ( W T ), should converge

to the expected utility generated by the limiting lognormal distri-

bution in the long run. However, if for both assets F and G , P T ( y )

converges to �( y ) quickly and uniformly across all utility functions

within the defined utility class, in the sense that for any ε > 0,

there exists a constant T ε such that ∣∣∣∣
∫ ∞ 

−∞ 

U 

(
e T μ+ 

√ 

T σy 
)

d(P T (y ) − �(y )) 

∣∣∣∣ < ε (12)

holds true for all T > T ε and all underlying utility functions, then

one can adapt the proof slightly by plugging a triangle inequal-

ity to show that our Theorems 1 –4 extend straightforwardly to

such distributions (see Appendix C). Better extensions with weaker

restrictions on distributions are promising avenues for future

research. 

Another potential extension of the notions of (operational)

asymptotic-FSD and -SSD is to allow for dynamic strategies in

asset comparisons. In the practice of asset-liability management
ALM), institutional investors such as pension insurance firms com-

only require a dynamic investment plan to meet their liabilities

hile pursuing profit. Dynamic programming allows researchers

o study the strategy of asset allocation by incorporating various

ransaction costs and risks. However, the existing approaches rely

n a precise specification of preferences ( Gondzio & Kouwenberg,

0 01; Kouwenberg, 20 01; Sodhi, 20 05 ), and the results are usu-

lly sensitive to preference parameters. Our approach, which re-

uires no specific parametrization of preferences, calls for more

esearch in ALM to relax the preference assumptions. For example,

ouwenberg (2001) uses parameters to take into consideration risk

version of the pension funds in developing stochastic program-

ing models. A starting point to incorporate the stochastic domi-

ance idea in ALM could be examining the efficient/optimal asset

llocation ( Longarela, 2015; Bruni, Cesarone, Scozzari, & Tardella,

017; Kallio & Hardoroudi, 2019 ) for a set of investors whose de-

ree of risk aversion is not precisely known. 
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ppendix 

. Preliminary results 

Let �( x ) denote the cumulative distribution function of the

tandard normal distribution and �(x ) = 1 − �(x ) . 

emma A1. Let F T and G T be lognormal distributions. 

(i) If μF + 

σ 2 
F 
2 > μG + 

σ 2 
G 
2 , then lim T →∞ 

(E F W T − E G W T ) = ∞ . 

ii) If μF + 

σ 2 
F 
2 < μG + 

σ 2 
G 
2 , then lim T →∞ 

(E F W T − E G W T ) = −∞ . 

roof. This lemma follows straightforwardly from the fact that

 F W T − E G W T = e ( μF + σ 2 
F 

/ 2 ) T − e ( μG + σ 2 
G 

/ 2 ) T . �

emma A2. Let F T be a lognormal distribution, M > 0, and 

 M 

(w ) = 

{
w, if w ≤ M, 

M log 
(

w 

M 

)
+ M, if w > M. 

hen, lim T →∞ 

1 
T E F U M 

(W T ) = MμF . 

roof. Simple manipulation yields 

 F U M 

(W T ) = 

∫ ∞ 

−∞ 

U M 

(
e T μF + 

√ 

T σF y 
)

1 √ 

2 π
e −

1 
2 y 

2 

dy = I + I I , 

here 0 < I = 

∫ log M−TμF √ 
T σF −∞ 

e T μF + 
√ 

T σF y 1 √ 

2 π
e −

1 
2 

y 2 dy < M�
(

log M−T μF √ 

T σF 

)
,

nd 

I = 

∫ ∞ 

log M−TμF √ 
T σF 

[
M 

(
T μF + 

√ 

T σF y 
)

+ M(1 − log M) 
] 1 √ 

2 π
e −

1 
2 y 

2 

dy 

= M(T μF + 1 − log M)�

(
−
(

log M − T μF √ 

T σF 

))

+ MσF 

√ 

T 

2 π
e 

− 1 
2 

(
log M−TμF √ 

T σF 

)2 

. 

Since lim T →∞ 

I 
T = 0 and lim T →∞ 

II 
T = MμF , we obtain the

esult. �

emma A3. Let F T and G T be lognormal distributions satisfying μF +
1 σ 2 > μG + 

1 σ 2 . Let w 0 be the intersection point of F T and G T such
2 F 2 G 
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E  
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b

EG T 
hat 

 T (w 0 ) = G T (w 0 ) ⇔ w 0 = e 
T 

(
μF 
σF 

− μG 
σG 

)
/ 

(
1 
σF 

− 1 
σG 

)
. 

Denote I = 

∫ w 0 
0 

[ G T (w ) − F T (w )] dw and II = 

∫ ∞ 

w 0 
[ G T (w ) −

 T (w )] dw . 

(i) If σ F < σ G , then I > 0 and II < 0 . Let m > 0 satisfy μF + 

1 
2 σ

2 
F 

=
G + 

1 
2 σ

2 
G 

+ m (σG − σF ) . We have 

I = e ( μG + 1 2 σ
2 
G ) T 

×
[ 

e m (σG −σF ) T �
(√ 

T 

(
m + 

σG − σF 

2 

))
−�

(√ 

T 

(
m − σG − σF 

2 

))] 
, 

I = e ( μG + 1 2 σ
2 
G ) T 

×
[ 

e m (σG −σF ) T �
(√ 

T 

(
m + 

σG − σF 

2 

))
−�

(√ 

T 

(
m − σG − σF 

2 

))] 
. 

(ii) If σ F > σ G , then I < 0 and II > 0 . Let m > 0 satisfy μF + 

1 
2 σ

2 
F 

=
G + 

1 
2 σ

2 
G + m (σF − σG ) . We have 

I = e ( μG + 1 2 σ
2 
G ) T 

×
[ 

e m (σF −σG ) T �
(√ 

T 

(
m + 

σF − σG 

2 

))
−�

(√ 

T 

(
m − σF − σG 

2 

))] 
, 

I = e ( μG + 1 2 σ
2 
G ) T 

×
[ 

e m (σF −σG ) T �
(√ 

T 

(
m + 

σF − σG 

2 

))
−�

(√ 

T 

(
m − σF − σG 

2 

))] 
. 

roof. Simple manipulations yield 

 = 

∫ w 0 

0 

[ G T (w ) − F T (w )] dw = 

∫ w 0 

0 

wd[ F T (w ) − G T (w )] 

= 

∫ √ 

T 

(
μF −μG 
σG −σF 

)
−∞ 

(
e T μF + 

√ 

T σF y − e T μG + 
√ 

T σG y 
)

1 √ 

2 π
e −

1 
2 y 

2 

dy 

= e 

(
μF + 

σ2 
F 
2 

)
T 

�
(√ 

T 

(
μF − μG 

σG − σF 

− σF 

))

−e 

(
μG + 

σ2 
G 
2 

)
T 

�
(√ 

T 

(
μF − μG 

σG − σF 

− σG 

))
nd 

I = 

∫ ∞ 

w 0 

[ G T (w ) − F T (w )] dw = 

∫ ∞ 

w 0 

wd[ F T (w ) − G T (w )] 

= 

∫ ∞ 

√ 

T 

(
μF −μG 
σG −σF 

)
(

e T μF + 
√ 

T σF y − e T μG + 
√ 

T σG y 
)

1 √ 

2 π
e −

1 
2 y 

2 

dy 

= e 

(
μF + 

σ2 
F 
2 

)
T 

�
(√ 

T 

(
μF − μG 

σG − σF 

− σF 

))

−e 

(
μG + 

σ2 
G 
2 

)
T 

�
(√ 

T 

(
μF − μG 

σG − σF 

− σG 

))
. 

The results follow straightforwardly. �

. Proofs of theorems and rropositions 

roof of Theorem 2. To prove the necessity, we look for a con-

radiction to Definition 2 if condition (2) is violated. If, by con-

radiction, σ F > σ G , we can choose γ < 2 min { μG −μF 

σ 2 −σ 2 , 0 , −μG 

σ 2 } such

F G G 
hat μF + 

γ
2 σ

2 
F < μG + 

γ
2 σ

2 
G < 0 . Since E( 1 γ ) W 

γ
T 

= 

1 
γ e γ (μ+ γ

2 
σ 2 ) T ,

e further have E F ( 
1 
γ ) W 

γ
T 

< E G ( 
1 
γ ) W 

γ
T 

for any T and, moreover,

im T →∞ 

[ E F ( 
1 
γ ) W 

γ
T 

− E G ( 
1 
γ ) W 

γ
T 

] = −∞ , which is a contradiction of

efinition 2 . Therefore, it must be the case that σ F ≤σ G . If this is

n equality, then μF > μG must hold. If σ F < σ G , then μF + 

1 
2 σ

2 
F 

≥
G + 

1 
2 σ

2 
G 

is necessary, because otherwise we take U(w ) = w and

ill obtain a contradiction. 

To prove the sufficiency, we differentiate between two cases. 

Case 1. σF = σG . In this case, μF > μG and F T dominates G T by

SD. Since FSD is stronger than asymptotic-SSD, F T naturally dom-

nates G T . 

Case 2. σ F < σ G . In this case, F T intersects G T from below. Due

o the concavity of U , we have for all y ∈ (−∞ , ∞ ) that 

U 

(
e T μF + 

√ 

T σF y 
)

− U 

(
e T μG + 

√ 

T σG y 
)

U 

′ 
(

e T μF + 
√ 

T σF y 
)[ 

e T μF + 
√ 

T σF y − e T μG + 
√ 

T σG y 
] 

U 

′ 
(

e 
T 

(
μF σG −μG σF 

σG −σF 

))[ 
e T μF + 

√ 

T σF y − e T μG + 
√ 

T σG y 
] 
, 

hich leads us to 

E F U(W T ) − E G U(W T ) 

 

∫ ∞ 

−∞ 

(
U 

(
e T μF + 

√ 

T σF y 
)

− U 

(
e T μG + 

√ 

T σG y 
))

1 √ 

2 π
e −

1 
2 y 

2 

dy 

≥U 

′ 
(

e 
T 

(
μF σG −μG σF 

σG −σF 

))
(E F W T − E G W T ) ≥ 0 , (B1) 

rovided that μF + 

σ 2 
F 
2 ≥ μG + 

σ 2 
G 
2 . This proves that

im T →∞ 

[ E F U(W T ) − E G U(W T )] ≥ 0 for all U satisfying U 

′ ≥ 0 and

 

′′ ≤ 0. Moreover, since σ F < σ G , then 0 > μF + 

γ
2 σ

2 
F 

> μG + 

γ
2 σ

2 
G 

s long as γ < 2 min { μF −μG 

σ 2 
G 

−σ 2 
F 

, 0 , −μF 

σ 2 
F 

} . Since E 
(

1 
γ

)
W 

γ
T 

=
1 
γ e γ (μ+ γ

2 
σ 2 ) T , we further have E F 

(
1 
γ

)
W 

γ
T 

> E G 
(

1 
γ

)
W 

γ
T 

for any

 and, moreover, lim T →∞ 

[ E F 
(

1 
γ

)
W 

γ
T 

− E G 
(

1 
γ

)
W 

γ
T 

] = + ∞ . This fact

hows that we can choose a utility function such that (1) is strict.

n both cases, we have verified the sufficiency. �

roof of Theorem 3. To prove the necessity, we look for a contra-

iction of Definition 3 if μF + 

σ 2 
F 
2 ≤ μG + 

σ 2 
G 
2 . Indeed, if μF + 

σ 2 
F 
2 <

G + 

σ 2 
G 
2 , then agents with U(w ) = w would strictly prefer G T to

 T when T → ∞ according to Lemma A1 . If μF + 

σ 2 
F 
2 = μG + 

σ 2 
G 
2 , we

ifferentiate between three cases. 

Case 1. μF = μG . In this case, σF = σG and F T becomes identical

o G T . There exists no utility function such that (5) could become

 strict inequality. 

Case 2. μF > μG . In this case, we take U(w ) = 2 w − U M 

(w ) ,

here U M 

(w ) is specified in Lemma A2 . It is easy to see that U(w )

atisfies 1 ≤ U 

′ (w ) < 2 for all w ≥ 0 . Moreover, 

 F U(W T ) − E G U(W T ) = −T 

(
1 

T 
E F U M 

(W T ) − 1 

T 
E G U M 

(W T ) 
)
, 

n which 

1 
T E F U M 

(W T ) − 1 
T E G U M 

(W T ) → M(μF − μG ) > 0 as T → ∞
y Lemma A2 , which in turn implies that lim T →∞ 

E F U(W T ) −
U G (W T ) = −∞ . 

Case 3. μF < μG . In this case, we take U(w ) = w + U M 

(w ) , where

 M 

(w ) is specified in Lemma A2 . It is easy to see that U(w ) satis-

es 1 < U 

′ (w ) ≤ 2 for all w ≥ 0 . Moreover, 

 F U(W T ) − EU G (W T ) = T 

(
1 

T 
E F U M 

(W T ) − 1 

T 
E G U M 

(W T ) 
)
, (B2)

n which 

1 
T E F U M 

(W T ) − 1 
T E G U M 

(W T ) → M(μF − μG ) < 0 as T → ∞
y Lemma A2 , which in turn implies that lim T →∞ 

E F U(W T ) −
 U(W ) = −∞ . 
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To prove the sufficiency, we also differentiate between three

cases. 

Case 1. σF = σG . In this case, we have μF > μG and F T dominates

G T by FSD for all T , which naturally implies that F T dominates G T 

by asymptotic-FSD. 

Case 2. σ F > σ G . We have 

E F U(W T ) − E G U(W T ) 

= 

∫ w 0 

0 

[ G T (w ) − F T (w )] U 

′ (w ) dw 

+ 

∫ ∞ 

w 0 

[ G T (w ) − F T (w )] U 

′ (w ) dw 

≥ sup 

w 

U 

′ (w ) 

∫ w 0 

0 

[ G T (w ) − F T (w )] dw 

+ inf 
w 

U 

′ (w ) 

∫ ∞ 

w 0 

[ G T (w ) − F T (w )] dw. 

By Lemma A3 , we further have 

E F U(W T ) − E G U(W T ) 

≥ sup 

w 

U 

′ (w ) e ( μG + 1 2 σ
2 
G ) T 

×
[ 

e m (σF −σG ) T �
(√ 

T 

(
m + 

σF − σG 

2 

))
−�

(√ 

T 

(
m − σF − σG 

2 

))] 
+ inf 

w 

U 

′ (w ) e ( μG + 1 2 σ
2 
G ) T 

×
[ 

e m (σF −σG ) T �
(√ 

T 

(
m + 

σF − σG 

2 

))
−�

(√ 

T 

(
m − σF − σG 

2 

))] 
= e [ ( μG + 1 2 σ

2 
G ) + m (σF −σG ) ] T inf 

w 

U 

′ (w ) X (T ) , 

where 

X (T ) = 

sup w 

U 

′ (w ) 

inf w 

U 

′ (w ) 

[ 
�

(√ 

T 

(
m + 

σF − σG 

2 

))

−
�

(√ 

T 
(
m − σF −σG 

2 

))
e m (σF −σG ) T 

] 

+ 

[ 

�
(√ 

T 

(
m + 

σF − σG 

2 

))
−

�
(√ 

T 
(
m − σF −σG 

2 

))
e m (σF −σG ) T 

] 

→ 1 > 0 , asT → ∞ . (B3)

Thus, lim T →∞ 

[ E F U(W T ) − E G U(W T )] = ∞ as long as U(w ) satis-

fies (3) . 

Case 3. σ F < σ G . Similar to the above, we have 

E F U(W T ) − E G U(W T ) 

≥ inf 
w 

U 

′ (w ) 

∫ w 0 

0 

[ G T (w ) − F T (w )] dw 

+ sup 

w 

U 

′ (w ) 

∫ ∞ 

w 0 

[ G T (w ) − F T (w )] dw. 

By Lemma A3 , we further have 

E F U(W T ) − E G U(W T ) ≥ e [ ( μG + 1 2 σ
2 
G ) + m (σG −σF ) ] T inf 

w 

U 

′ (w ) X (T ) , 

where 

X (T ) = 

[ 

�
(√ 

T 

(
m + 

σG − σF 

2 

))
−

�
(√ 

T 
(
m − σG −σF 

2 

))
e m (σG −σF ) T 

] 

+ 

sup w 

U 

′ (w ) 

inf w 

U 

′ (w ) 

[ 
�

(√ 

T 

(
m + 

σG − σF 

2 

))
−
�

(√ 

T 
(
m − σG −σF 

2 

))
e m (σG −σF ) T 

] 

→ 1 > 0 , asT → ∞ . (B4)

hus, lim T →∞ 

[ E F U(W T ) − E G U(W T )] = ∞ as long as U(w ) satisfies

3) . �

roof of Proposition 1. The case where σF = σG is trivial, since

ondition (6) implies that μF > μG and F T dominates G T by FSD for

ll T . When σ F 
 = σ G , we adopt the notation in Lemma A3 to write

 F U(W T ) − E G U(W T ) = 

∫ w 0 
0 

[ G T (w ) − F T (w )] U 

′ (w ) dw + 

∫ ∞ 

w 0 
[ G T (w ) −

 T (w )] U 

′ (w ) dw . We differentiate between two cases. 

Case 1. σ F > σ G . 
∫ w 0 

0 
[ G T (w ) − F T (w )] U 

′ (w ) dw is negative and

atisfies 
 w 0 

0 

[ G T (w ) − F T (w )] U 

′ (w ) dw 

≥ sup 

w 

U 

′ (w ) 

∫ w 0 

0 

[ G T (w ) − F T (w )] dw 

= sup 

w 

U 

′ 
(

μF + 
σ2 

F 
2 

)
T 

�
(√ 

T 

(
m + 

σF − σG 

2 

))

− sup 

w 

U 

′ 
(

μG + 
σ2 

G 
2 

)
T 

�
(√ 

T 

(
m − σF − σG 

2 

))
. 

o evaluate 
∫ ∞ 

w 0 
[ G T (w ) − F T (w )] U 

′ (w ) dw, we differentiate between

wo cases. First, μF / σ F ≤μG / σ G so that w 0 ≥ 1 . We have for β ∈ [0,

) that 
 ∞ 

w 0 

[ G T (w ) − F T (w )] U 

′ (w ) dw 

≥
∫ ∞ 

w 0 

w 

−β [ G T (w ) − F T (w )] dw 

= 

1 

1 − β
e 
(1 −β) 

(
μF +(1 −β) 

σ2 
F 
2 

)
T 

�
(√ 

T 

(
m + 

σF − σG 

2 

− βσF 

))

− 1 

1 − β
e 
(1 −β) 

(
μG +(1 −β) 

σ2 
G 
2 

)
T 

�
(√ 

T 

(
m − σF − σG 

2 

− βσG 

))
. 

ombining the two terms and noticing that μF + (1 − β) σ 2 
F 
/ 2 >

G + (1 − β) σ 2 
G / 2 implies m + (σF − σG ) / 2 − βσF ≥ (1 −

)(σF − σG ) / 2 > 0 , we see that condition (8) is sufficient for

im T →∞ 

E F U(W T ) − E G U(W T ) ≥ 0 . Second, μF / σ F > μG / σ G so that

 0 → 0 as T → ∞ . We have for β ∈ [0, 1) that 
 ∞ 

1 

[ G T (w ) − F T (w )] U 

′ (w ) dw 

≥
∫ ∞ 

1 

w 

−β [ G T (w ) − F T (w )] dw 

= 

1 

1 − β
[ F T (1) − G T (1)] 

+ 

1 

1 − β
e 
(1 −β) 

(
μF +(1 −β) 

σ2 
F 
2 

)
T 

�
(√ 

T 

(
μF 

σF 

+ (1 − β) σF 

))

− 1 

1 − β
e 
(1 −β) 

(
μG +(1 −β) 

σ2 
G 
2 

)
T 

�
(√ 

T 

(
μG 

σG 

+ (1 − β) σG 

))
. 

herefore, condition (8) is sufficient for lim T →∞ 

E F U(W T ) −
 G U(W T ) ≥ 0 . 

Case 2. σ F < σ G . 
∫ ∞ 

w 0 
[ G T (w ) − F T (w )] U 

′ (w ) dw is negative, and

atisfies 
 ∞ 

w 0 

[ G T (w ) − F T (w )] U 

′ (w ) dw ≥ sup 

w 

U 

′∞ 

w 0 
[ G T (w ) − F T (w )] dw 

= sup 

w 

U 

′ ( μF + 1 2 σ
2 
F ) T �

(√ 

T 

(
m + 

σG − σF 

2 

))
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L  
− sup 

w 

U 

′ ( μG + 1 2 σ
2 
G ) T �

(√ 

T 

(
m − σG − σF 

2 

))
. 

nder condition (6) , it must be the case that μF > μG , which in

urn implies that w 0 → ∞ as T → ∞ . Thus, we have for β ∈ [0, 1)

hat 
 w 0 

0 

[ G T (w ) − F T (w )] U 

′ (w ) dw ≥
∫ w 0 

1 

w 

−β [ G T (w ) − F T (w )] dw 

= 

1 

1 − β
[ F T (1) − G T (1)] 

+ 

1 

1 − β
e 
(1 −β) 

(
μF +(1 −β) 

σ2 
F 
2 

)
T 

�
(√ 

T 

(
m + 

σG − σF 

2 

+ βσF 

))

− 1 

1 − β
e 
(1 −β) 

(
μG +(1 −β) 

σ2 
G 
2 

)
T 

�
(√ 

T 

(
m − σG − σF 

2 

+ βσG 

))

− 1 

1 − β
e 
(1 −β) 

(
μF +(1 −β) 

σ2 
F 
2 

)
T 

�
(√ 

T 

(
μF 

σF 

+ (1 − β) σF 

))

+ 

1 

1 − β
e 
(1 −β) 

(
μG +(1 −β) 

σ2 
G 
2 

)
T 

�
(√ 

T 

(
μG 

σG 

+ (1 − β) σG 

))
. 

herefore, condition (8) is sufficient for lim T →∞ 

E F U(W T ) −
 G U(W T ) ≥ 0 . �

roof of Theorem 4. We only need to deal with the special case

here μF + σ 2 
F / 2 = μG + σ 2 

G / 2 that is excluded from Theorem 3 . 

To prove the necessity, we look for a contradiction of

efinition 4 if μF ≤μG . If μF = μG , then σF = σG and F T becomes

dentical to G T . There exists no utility function such that (9) could

ecome a strict inequality. If μF < μG , then we take U(w ) = w +
 M 

(w ) , where U M 

(w ) is specified in Lemma A2 . It is easy to

ee that U(w ) is increasing, concave, and satisfies 1 < U 

′ (w ) ≤
 for all w ≥ 0 . By (B2) , lim T →∞ 

[ E F U(W T ) − E G U(W T )] = −∞ , a

ontradiction. 

To prove the sufficiency, notice that μF > μG implies that

F < σ G . In this case, by (B1) , we have lim T →∞ 

[ E F U(W T ) −
 G U(W T )] ≥ 0 for all concave U . Moreover, we take U(w ) = w +
 M 

(w ) and use Lemma A2 to get lim T →∞ 

[ E F U(W T ) − E G U(W T )] =
 , a strict inequality in (9) . �

roof of Proposition 2. From the proof of Theorem 3 , we see

hat under condition (6) , if X ( T ) ≥ 0, then E F U ( W T ) ≥ E G U ( W T ).

imple manipulation yields X ( T ) ≥ 0 if and only if 
sup w U 

′ (w ) 
inf w U ′ (w ) 

≤
(μF , μG , σF , σG , T ) , where 

(μF , μG , σF , σG , T ) = 

�
(√ 

T 
(
m + 

σF −σG 

2 

))
− �( 

√ 

T ( m − σF −σG 
2 ) ) 

e m (σF −σG ) T 

�( 
√ 

T ( m − σF −σG 
2 ) ) 

e m (σF −σG ) T 
− �

(√ 

T 
(
m + 

σF −σG 

2 

))
(B5) 

ith m satisfying μF + 

1 
2 σ

2 
F 

= μG + 

1 
2 σ

2 
G 

+ m (σF − σG ) when

F > σ G , and 

(μF , μG , σF , σG , T ) = 

�
(√ 

T 
(
m + 

σG −σF 

2 

))
− �( 

√ 

T ( m − σG −σF 
2 ) ) 

e m (σG −σF ) T 

�( 
√ 

T ( m − σG −σF 
2 ) ) 

e m (σG −σF ) T 
− �

(√ 

T 
(
m + 

σG −σF 

2 

))
(B6) 

ith m satisfying μF + 

1 
2 σ

2 
F 

= μG + 

1 
2 σ

2 
G 

+ m (σG − σF ) when

F < σ G . Standard calculus shows that �( μF , μG , σ F , σ G , T ) is

trictly increasing in T , and satisfies lim T →∞ 

�(μF ,μG ,σF ,σG ,T ) 

e m | σF −σG | T ≥
 . �

. The triangle inequality 

For assets F and G , let P FT and P GT be the cumulative distri-

ution functions of 
log W T −μF T 

σ
√ 

T 
and 

log W T −μG T 

σ
√ 

T 
, respectively. By the
F G 
riangle inequality, we have 
 ∞ 

−∞ 

U 

(
e T μF + 

√ 

T σF y 
)

dP F T (y ) −
∫ ∞ 

−∞ 

U 

(
e T μG + 

√ 

T σG y 
)

dP GT (y ) 

≤
∣∣∣∣
∫ ∞ 

−∞ 

U 

(
e T μF + 

√ 

T σF y 
)

d(P F T (y ) − �(y )) 

∣∣∣∣
+ 

∣∣∣∣
∫ ∞ 

−∞ 

U 

(
e T μG + 

√ 

T σG y 
)

d(P GT (y ) − �(y )) 

∣∣∣∣
+ 

∫ ∞ 

−∞ 

U 

(
e T μF + 

√ 

T σF y 
)

d�(y ) −
∫ ∞ 

−∞ 

U 

(
e T μG + 

√ 

T σG y 
)

d�(y ) 

≤ 2 ε + 

∫ ∞ 

−∞ 

U 

(
e T μF + 

√ 

T σF y 
)

d�(y ) −
∫ ∞ 

−∞ 

U 

(
e T μG + 

√ 

T σG y 
)

d�(y ) 

or all T > T ε , and similarly 
 ∞ 

−∞ 

U 

(
e T μF + 

√ 

T σF y 
)

dP F T (y ) −
∫ ∞ 

−∞ 

U 

(
e T μG + 

√ 

T σG y 
)

dP GT (y ) 

≥ −2 ε + 

∫ ∞ 

−∞ 

U 

(
e T μF + 

√ 

T σF y 
)

d�(y ) −
∫ ∞ 

−∞ 

U 

(
e T μG + 

√ 

T σG y 
)

d�(y )

or all T > T ε . Letting T → ∞ first and ε → 0 next, we have that 

lim 

 →∞ 

[∫ ∞ 

−∞ 

U 

(
e T μF + 

√ 

T σF y 
)

dP F T (y ) −
∫ ∞ 

−∞ 

U 

(
e T μG + 

√ 

T σG y 
)

dP GT (y ) 

]
≥0

(C7) 

f and only if 

lim 

 →∞ 

[∫ ∞ 

−∞ 

U 

(
e T μF + 

√ 

T σF y 
)

d�(y ) −
∫ ∞ 

−∞ 

U 

(
e T μG + 

√ 

T σG y 
)

d�(y ) 

]
≥0 .

(C8) 

Since our Theorems 1 –4 provide the conditions for (C8) , all

hese theorems can be applied equally well to (C7) under the as-

umption of (12) . 
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