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Abstract This paper extends the forwardMonte-Carlomethods, which have been developed
for the basic types of American options, to the valuation of American barrier options. The
main advantage of these methods is that they do not require backward induction, the most
time-consuming and memory-intensive step in the simulation approach to American options
pricing. For these methods to work, we need to define the so-called pseudo critical prices
which are used to determine whether early exercise should happen. In this study, we define
a new and more flexible version of the pseudo critical prices which can be conveniently
extended to all fourteen types of American barrier options. These pseudo critical prices
are shown to satisfy the criteria of a sufficient indicator which guarantees the effectiveness
of the proposed methods. A series of numerical experiments are provided to compare the
performance between the forward and backward Monte-Carlo methods and demonstrate the
computational advantages of the forward methods.

Keywords American barrier option · Forward Monte-Carlo method · Pseudo critical price ·
Sufficient indicator

1 Introduction

Using Monte-Carlo simulation to value American options has a relatively shorter history
because of the complexity caused by their embedded rights of early exercise. Early stud-
ies (see Boyle et al. 1997 for a review) include the bundling algorithm (Tilley 1993), the
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stratified state aggregation algorithm (Barraquant and Martineau 1995), and the stochas-
tic tree-based algorithm (Broadie and Glasserman 1997). More recently, the least-squares
Monte-Carlo method (Longstaff and Schwartz 2001) has gained popularity and become a
standard technique because of its wide applicability to many American-style options. There
have since been many improvements based on this approach. See Areal et al. (2008) for a
typical example.

In the aforementioned methods, we need to use backward induction because we do
not know whether the stock price has entered the exercise region when it evolves for-
wardly. Nevertheless, backward induction is themost time-consuming andmemory-intensive
part of these pricing algorithms. However, it is shown in Miao and Lee (2013) that, for
some basic types of American options, the forward Monte-Carlo method can be devel-
oped for their valuation without requiring backward induction. In the forward method
(FM), a pseudo critical price is defined and used for the determination on whether early
exercise should happen. The usefulness of this method is ensured by the fact that the
pseudo critical price is a sufficient indicator, meaning that it provides the same information
as the real critical price regarding early exercise decision. This FM is shown to outper-
form the least-squares method (LSM) for pricing American vanilla, chooser, and exchange
options.

In this paper, we extend the forward Monte-Carlo method to value American barrier
options. The challenge is that the pseudo critical price extended directly from Miao and Lee
(2013) cannot be proved to satisfy the criteria of a sufficient indicator. To develop a more
general forward method, we propose an alternative form of the pseudo critical price which is
equally effective but more flexible. We show that it is not only workable for vanilla options
but also extendable to barrier options. These pseudo critical prices are derived by taking
advantage of the analytical approximations proposed in Barone-Adesi and Whaley (1987)
and Chang et al. (2007), Chang et al. (2007). They are first applied to vanilla and some types
of out barrier options. With proper adaptations, they can be applied to all fourteen types of
American barrier options.

We provide a series of numerical experiments to compare the performance between the
proposed FM and the standard LSM. The results show that our FM generally achieves better
performance than the LSM, although the improvement varies from case to case. From the
convergence analysis, we see that our FM shows a much better convergence pattern than
the LSM. In particular, for some “hard” cases where the initial stock price is very close
to the barrier and the LSM performs poorly, the proposed FM shows advantages in giving
satisfactorily accurate results with reasonable computing times.

This paper proceeds as follows. Section 2 provides some background on the forward
Monte-Carlomethods andAmerican barrier options. Sections 3 and 4 discuss how the forward
methods are respectively adapted to the American out and in barrier options. Section 5
provides numerical examples to compare the performance between the proposed FM and the
LSM. Finally the paper is concluded in Sect. 6.

2 Some background on the forward method and American barrier options

This section presents the ideas behind the forward method and reviews its vanilla version. In
addition, it gives a classification of all types of American barrier options to which we adapt
our forward method.
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2.1 Ideas behind the forward method

Consider an American option with maturity time T and strike price K . Denote the
current time by t ∈ [0, T ] and time to maturity by τ = T − t . Let S(τ ) (or St ) rep-
resent the underlying asset price when time to maturity is τ (or at time t). For each
τ , early exercise can be determined by the real critical price S∗(τ ) which is estimated
by backward induction in the mainstream Monte-Carlo methods such as the LSM. The
motivation of the FM is to eliminate the need for backward induction. However, cal-
culating S∗(τ ) during the forward evolution of simulation is computationally expensive
and impractical. The central idea of the FM is to find its substitute, the pseudo criti-
cal price Ŝ(τ ). There are two conditions for the FM to be successful: (1) Ŝ(τ ) must
be computationally convenient because it is calculated repeatedly (for each time step),
and (2) Ŝ(τ ) must carry sufficient information regarding the determination of early
exercise.

Below we introduce the definition of pseudo critical price Ŝ(τ ). It is motivated by the
value matching condition for the real critical price S∗(τ ) which can be expressed as S∗(τ ) =
f (S∗(τ )). For example, it can be written as S∗(τ ) = K +C(S∗(τ ), τ ) for an American call
option and S∗(τ ) = K−P(S∗(τ ), τ ) for anAmerican put option, whereC(S, τ ) and P(S, τ )

are the correspondingAmerican option prices. For notational convenience, the dependence of
stock prices (e.g. S(τ ), S∗(τ ), Ŝ(τ )) on τ may also be shown as a function of t if appropriate
(e.g. St , S∗

t , Ŝt ), or may even be dropped when the dependence is not emphasized (e.g. S,
S∗, Ŝ).

Definition 1 The pseudo critical price Ŝ(τ ) = f (S(τ )) is a function of stock price S(τ )

where the function f (·) satisfies f (S∗(τ )) = S∗(τ ).

Note that S∗(τ ) separates the stock price domain into the continuation and exercise regions.
At each τ , the determination on whether the option should be exercised early is equivalent
to the determination on whether S(τ ) > S∗(τ ) or S(τ ) < S∗(τ ) is true (e.g., the American
put option should be exercised if S(τ ) < S∗(τ )). Given below are the conditions such that
early exercise can be determined indirectly by Ŝ(τ ) without requiring S∗(τ ).

Definition 2 For all τ ∈ [0, T ] and S(τ ) ∈ R
+, the pseudo critical price Ŝ(τ ) is a sufficient

indicator if the following properties hold: (1) S(τ ) > Ŝ(τ ) if and only if S(τ ) > S∗(τ ), and
(2) S(τ ) < Ŝ(τ ) if and only if S(τ ) < S∗(τ ).

Figure 1 explains why we introduce the above definitions. Note that the real critical
price S∗(τ ) is fixed for each τ ∈ [0, T ], but the pseudo critical price Ŝ(τ ) is a function of
S(τ ). Definition 1 ensures that S(τ ) = Ŝ(τ ) when S(τ ) hits the real critical price S∗(τ )

and triggers early exercise (see the hitting point in Fig. 1). The conditions in Definition 2
further ensure that S(τ ) > Ŝ(τ ) if the stock price has not yet hit the critical price (e.g.
at τ1 when it remains in the continuation region) and S(τ ) < Ŝ(τ ) if the stock price
has passed through the critical price (e.g. at τ2 when it enters the exercise region). We
see that Ŝ(τ ) actually carries the same information as S∗(τ ) regarding early exercise deci-
sion.

Based on these two definitions, the forward method can be developed using the following
two steps: (1) define an easy-to-calculate Ŝ(τ ) from the value matching condition, and (2)
prove that this Ŝ(τ ) is a sufficient indicator.
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Fig. 1 The relations between S(τ ), S∗(τ ), Ŝ(τ ) for an American vanilla put option. The grey area is the
continuation region (where S(τ ) > S∗(τ )) and the white area is the exercise region (where S(τ ) < S∗(τ ))

2.2 Review of the forward method for American vanilla options

Since calls and puts are dual cases, we take vanilla puts for example. Consider the standard
Black-Scholes model for the stock price (under the risk-neutral measure)

dSt = (r − q)Stdt + σ StdBt , t ∈ [0, T ],

where r, q, σ represent respectively the interest rate, dividend yield, volatility, and Bt is a
standard Brownian motion. In Miao and Lee (2013), the value matching condition (derived
from quadratic approximation) is expressed as

S∗(τ ) = Q1 (K − p(S∗(τ ), τ ))

Q1 − (1 + p′(S∗(τ ), τ ))
,

where Q1 = −(n−1)−
√

(n−1)2+ 4m
k

2 > 0,m = 2r
σ 2 , n = 2(r−q)

σ 2 , k = 1−e−rτ , p(S, τ ) stands for

the European put option price and p′(S, τ ) = ∂p(S,τ )
∂S is its delta (their closed-form formulas

are omitted here). Solving the above nonlinear equation to find S∗(τ ) requires an iterative
procedure which is unsuitable for repeated calculations. In contrast, the pseudo critical price,
which is similarly defined as

Ŝ(τ ) = f (S(τ )) = Q1 (K − p(S(τ ), τ ))

Q1 − (1 + p′(S(τ ), τ ))
, (1)

can be calculated much more efficiently because it is only a function valuation. For the
vanilla put option, Theorem 2 of Miao and Lee (2013) provides conditions for this Ŝ(τ ) to
be a sufficient indicator. It is subsequently proved in Proposition 2 that those conditions are
indeed satisfied, ensuring the usefulness of the Ŝ(τ ) defined in (1). This provides theoretical
support for the vanilla version of the FM algorithm as stated below.
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The Forward Monte-Carlo Algorithm (Vanilla Case)

1. Generate N paths of stock prices, where each path i = 1, · · · , N evolves in discrete time with index
j = 1, · · · , M (time interval �t = T

M ) as follows:

S = Si, j = Si, j−1e
(r−q− σ2

2 )�t+σ
√

�t Zi, j , Zi, j ∼ N (0, 1).

2. If a given path i is alive (option not yet exercised) at time index j − 1 < M , generate the price for
time index j , denoted as S = Si j . If j = M (at maturity time T ), the option is expired with value

Vi = e−rT (K − S)+ and path i is finished. If j < M (prior to maturity time T ), do the following:

2.1 Calculate Ŝ = f (S) to be compared with S.
2.2 If S < Ŝ, the option is exercised with value Vi = e−r t (K − S)+ and path i is stopped. Otherwise,

the option is held and path i continues to live to the next step j + 1.

3. When all the simulated paths are completed, the American option is valued by averaging the discounted
payoff as V = 1

N
∑N

i=1 Vi .

From the above algorithm, it is not difficult to see that, in the extension to American barrier
options, it is Step 2 that must be modified to take into account the barrier features.

2.3 A classification of American barrier options

Because our forward method is meant to cover all types of American barrier options, we
look first at how they are classified in the literature. According to their features, there are 16
combinations of barrier options formed by (let H denote the barrier)

(up, down) × (in, out) × (call, put) × (H < K , H > K )

as summarized in Table 1. Note that two out of the 16 cases are trivial cases (marked with ∗
in Table 1) known to have no value because they are out-of-the-money before being knocked
out. Also note that each call option has a corresponding dual put option whose treatment is
exactly the same. Ignoring these dual cases, the 14 cases are numbered in Table 1 as Cases
1–7 (Cases 1–3 are out barrier options whereas Cases 4–7 are in barriers). It is well known
that the European options pricing formulas for all these cases are available in closed-form
(see Haug 2006 for a summary of these formulas).

Note that the original forward method of Miao and Lee (2013) is based on the analytical
formulas of Barone-Adesi and Whaley (1987) for American vanilla options. In this study,
to extend the FM to price American out barrier options, we employ the analytical formulas

Table 1 Classification of barrier options
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of Chang et al. (2007) which is an extension from Barone-Adesi and Whaley (1987). The
main issue here is how to make use of these analytical results to define the pseudo critical
prices and show that they provide sufficient information in the early exercise decision. As to
American in barrier options, since they become vanilla options once they are knocked in, the
main issue becomes how to handle the relations between the vanilla critical prices and the
knock-in barriers. The FM is then developed from its vanilla version with some adaptations
to take into account these relations.

3 Forward methods for American out barrier options

Although the Ŝ defined in (1) is appealing in that it is indeed a sufficient indicator and
extendable to other (chooser and exchange) options, it faces some difficulties in its extension
to barrier options. In this study we consider a simpler yet more flexible version of Ŝ (i.e. a
redefined f (·) function) and show how it is applied to some types of out barrier options. The
subsequent presentations are based on put options (their dual call options can be handled in
a similar way). For convenience, some notations are redefined and may be slightly different
from those used in the preceding review of the vanilla case.

3.1 American up-and-out put options (Cases 1 and 2)

Let Puo(S, τ ) denote the price of an American up-and-out put option (including Cases 1 and
2). It is known that when S = S∗, the value matching condition K − S∗ = Puo(S∗, τ ) must
hold, and can be written as

S∗ = K − Puo(S
∗, τ ).

We define our pseudo critical price (referring to Definition 1) as the following simple formula

Ŝ = f (S) = K − Puo(S, τ ). (2)

Note that this is different from the Ŝ defined in (1) since (2) comes directly from the value
matching condition without further algebraic manipulation (e.g. collecting the S terms as in
(1)). In fact, it is rather difficult to define Ŝ based on (1) and prove the desired properties
because of the complexity in the formula of Puo(S, τ ) (which will be seen later). As it turns
out, the Ŝ defined in (2) is not only equally effective to the version defined in (1) for the
vanilla cases, but is also effective for the barrier cases.

To examine whether the Ŝ defined in (2) is really a sufficient indicator, we define the
function h(S) = S − Ŝ for the domain S ∈ [0, H) (where the up-and-out option is alive)
and discuss its properties in different cases (H > K and H < K ). The following theorem
provides the conditions on the function h(S) for Ŝ to be a sufficient indicator.

Theorem 1 Consider an American up-and-out barrier put option with barrier H. With Ŝ
defined in (2), if the function h(S) = S − Ŝ satisfies the following three properties: (1)
h(0) < 0, (2) h(H−) > 0 (H− = H − δ where δ > 0 is an infinitesimal amount), and (3)
h(S) = 0 has only one root over S ∈ [0, H), then Ŝ is a sufficient indicator of early exercise,
i.e.,

S > Ŝ (S < Ŝ) if and only if S > S∗ (S < S∗).

Proof According to Definition 1, we have h(S∗) = S∗ − f (S∗) = 0. Because there is only
one root over [0, H), the root must be S∗. Since h(S) is a continuous function of S and
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h(0) < 0, h(H−) > 0, we have h(S) < 0 for S ∈ [0, S∗) and h(S) > 0 for S ∈ (S∗, H).
This means

S > Ŝ (S < Ŝ) iff h(S) > 0 (h(S) < 0) iff S > S∗ (S < S∗)

as claimed. ��
It is clear that the pricing formula of Puo(S, τ ) plays a major role in the valuation of Ŝ.

Below we introduce the pseudo critical prices for the first two cases based on the analytical
results of Chang et al. (2007).

Case 1. H > K
Let p0(S, τ ), P0(S, τ ) denote the analytical pricing formulas of European and American
vanilla options, and p1(S, τ ), P1(S, τ ) denote the analytical pricing formulas of the corre-
sponding up-and-out put option. (The subscript shows the case index: 0 is the vanilla case,
1 represents Case 1, and so on.) It is well known that under the Black-Scholes model, the
European barrier option pricing formula is related to the vanilla formula as (see Haug 2006)

p1(S, τ ) = p0(S, τ ) −
(
H

S

)2λ−2

p0

(
H2

S
, τ

)
, λ = r − q

σ 2 + 1

2
.

In Chang et al. (2007), the quadratic approximation approach is employed to express the
American barrier option price for S ≥ S∗

1 as a sum of the European price and the early
exercise premium, i.e.

P1(S, τ ) = p1(S, τ ) + α(Sβ− − Hβ−−β+ Sβ+) (3)

where α is a constant to be determined, and β− < 0, β+ > 0 are given by β± =
−(N−1)±

√
(N−1)2+4M ′
2 , where N = 2(r−q)

σ 2 , M = 2r
σ 2 , M

′ = M
[
1 + u

(
1

1−e−urτ − 1
)]

.

(Note that the u in M ′ is proposed by Chang et al. (2007) to improve accuracy; it is suggested
to use u = S+5H

H .)
When S = S∗

1 , the value matching condition (P1(S∗
1 , τ ) = K − S∗

1 ) and smooth pasting
condition ( ∂

∂S P1(S
∗
1 , τ ) = −1) must hold. These two conditions are used to find the two

unknown constants α and S∗
1 . Solving these two equations, we see that α must be related to

S∗
1 as follows

α = −1 − ∂
∂S p1(S

∗
1 , τ )

β−(S∗
1 )

β−−1 − β+Hβ−−β+(S∗
1 )

β+−1 .

Replacing S∗
1 by S in the above formula, we define a new function

W1(S) =
−1 + e−qτ N (−d1(S)) +

(
H
S

)2λ [
e−q(T−t)N

(
−d1

(
H2

S

))
− (2λ − 2)p0

(
H2

S , τ
)

S
H2

]

β−Sβ−−1 − β+Hβ−−β+ Sβ+−1

and clearly α = W1(S∗
1 ).

It is worth comparing Case 1 (with finite H ) to its special vanilla case (Case 0, with
H = ∞). Mathematically, when H → ∞, it is easy to check that (3) reduces to its vanilla
version (the analytical pricing formula as given in Barone-Adesi and Whaley 1987). Their
relation can be seen more clearly from Fig. 2. Comparing both plots, we see that the finite
barrier H < ∞ limits the continuation region and in turn pulls the pricing function P1(S, τ )

(see Fig. 2b) slightly downward from P0(S, τ ) (see Fig. 2a). The downward moving pricing
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Fig. 2 Pricing function (P(S, τ ) versus S) for American up-and-out put option when H > K (Case 1): a
H = ∞ (the special vanilla case, i.e., Case 0); b H < ∞ and S∗

1 > S∗
0 . Shaded areas are the continuation

regions

function then causes the critical price S∗
1 to move toward the right from S∗

0 because the value
matching and smooth pasting conditions must still hold.

From (3), we rewrite the value matching condition at S∗
1 as

S∗
1 = K − p1(S

∗
1 , t) − W1(S

∗
1 )(S

∗β−
1 − Hβ−−β+ S∗β+

1 ).

Following (2), we may define the pseudo critical price for Case 1 as (change S∗
1 to S)

Ŝ1 = f1(S) = K − p1(S, τ ) − W1(S)(Sβ− − Hβ−−β+ Sβ+). (4)

In order to show that Ŝ1 is a sufficient indicator, we investigate the properties of the function
h(S) = S − Ŝ1.

Lemma 1 Consider an American up-and-out put option with H > K (Case 1) for which Ŝ1
is defined in (4). The function h(S) has the following properties

h(0) < 0, h(H) = H − K > 0.

Proof Note from (4) that

h(S) = S − Ŝ1 = S − K + p1(S, τ ) + W1(S)(Sβ− − Hβ−−β+ Sβ+).

It is clear that h(0) < 0 (since p1(0, τ ) < K ) and h(H) = H − K > 0 (because of the
boundary condition p1(H, τ ) = 0 and H > K ). ��

The above lemma implies that the first two conditions in Theorem1 are satisfied. It remains
to check the third condition. We first consider the simpler vanilla case with H = ∞ (Case
0). In this case, α = W1(S∗

1 ) becomes

α = W0(S
∗
0 ) = −1 + e−qτ N (−d1(S∗

0 ))

β−(S∗
0 )

β−−1 ,

and the pseudo critical price reduces to

Ŝ0 = f0(S) = K − P0(S, τ ) = K − p0(S, τ ) − −1 + e−qτ N (−d1(S))

β−
S. (5)

The following result follows from the fact that h(S) is an increasing function.

Proposition 1 In the limiting case H = ∞ of an American up-and-out put option with
H > K (i.e. American vanilla put option), Ŝ1 = Ŝ0 is a sufficient indicator of early exercise.
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Proof By observing that

∂h(S)

∂S
= 1 + ∂P0(S, τ )

∂S
= [

1 − e−qτ N (−d1(S))
] (

1 − 1

β−

)
− e−qτn(d1(S))

β−σ
√

τ
> 0,

where β− < 0 and n(x) = N ′(x) is the normal pdf, we see that h(S) is a strictly increasing
function for S ∈ [0,∞). This implies that the third condition in Theorem 1 is satisfied and
hence the claimed result. ��

However, for H < ∞ (Case 1), we cannot claim that h(S) is a strictly increasing function
over [0, H) as above. As seen in Fig. 2b, we are not sure if −1 <

∂P1(S,τ )
∂S < 0 is true for

all S ∈ [0, H), particularly for S close to H (although it appears to be true for S away from
H ). This is because the boundary condition P1(H, τ ) = 0 forces the pricing function to zero
as S → H which may ruin the desired property. Fortunately, this property is not necessary
in proving the third condition of Theorem 1. As seen in the following proposition, what we
need is an idea behind the quadratic approximation formula.

Proposition 2 For an American up-and-out put option with H > K (Case 1), if S∗
1 is the

unique stock price that satisfies the value matching and smooth pasting conditions in the
quadratic approximation, then Ŝ1 is a sufficient indicator of early exercise.

Proof By Lemma 1, the equation h(S) = 0 has at least one root in [0, H). It remains to show
that this root is unique. To this end, let S̃1 be a root of the equation (i.e. h(S̃1) = 0) and we
intend to show S̃1 = S∗

1 . From (4), h(S̃1) = 0 can be expressed back to the following form

K − S̃1 = p1(S̃1, τ ) + W1(S̃1)(S̃
β−
1 − Hβ−−β+ S̃β+

1 ).

By the definition of the function W1(S), we also have

−1 = ∂
∂S p1(S̃1, τ ) + W1(S̃1)(β− S̃β−−1

1 − β+Hβ−−β+ S̃β+−1
1 ).

If we replace S̃1 by S∗
1 , the above two equations can be written as

{
K − S∗

1 = p1(S∗
1 , τ ) + W1(S∗

1 )((S
∗
1 )

β− − Hβ−−β+(S∗
1 )

β+),

−1 = ∂
∂S p1(S

∗
1 , τ ) + W1(S∗

1 )(β−(S∗
1 )

β−−1 − β+Hβ−−β+(S∗
1 )

β+−1).

These are the value matching and smooth pasting conditions that must hold at the critical
stock price. Since S∗

1 is the unique stock price that satisfies these two conditions, we must
have S̃1 = S∗

1 . Therefore, all three conditions in Theorem 1 are satisfied, and thus Ŝ1 is a
sufficient indicator. ��
Remark. While Proposition 2 covers Proposition 1, it is worth discussing their differences.
In the limiting vanilla case, the fact that h(S) is a strictly increasing function can be proved
mathematically. For H < ∞, however, it is difficult to check ∂h(S)

∂(S)
directly because the

formula is too complex to analyze. However, the proof of Proposition 2 does not rely on the
increasing property of h(S) but on the uniqueness of the critical stock price which solves
the value matching and smooth pasting conditions simultaneously. In fact, this uniqueness
is an implicit premise of the quadratic approximation approach (such as Barone-Adesi and
Whaley 1987; Chang et al. 2007).

Figure 3 shows the curves of the function h(S) under different H from ∞ down to K . We
see that the three conditions of Theorem 1 are indeed satisfied. As seen in Fig. 3a, h(S) is a
strictly increasing function for H = ∞. As H decreases, the increasing property seems to
remain true for most part of [0, H). This indicates that the boundary condition (P1(H, τ ) = 0
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Fig. 3 The h(S) function for an American up-and-out put option (Case 1) with the barrier H decreasing from
∞ toward K . The parameters are K = 50, H = ∞, 80, 70, 60, 55, 51, r = 0.05, q = 0.03, σ = 0.3, τ = 0.5:
a a normal view to show the curves moving downward as H decreases; b a close-up view to show S∗

1 moving
toward the right as H decreases

for all τ ) brings little impact on the increasing property when S is away from H . But for
S ≈ H , the barrier causes the curve to stop increasing or even start decreasing. In addition,
the fact that h(H) = H − K pulls down the curves as H decreases, moving the root S∗

1
(recall h(S∗

1 ) = 0) toward the right. This is seen more clearly from the close-up view in
Fig. 3b.

Note that other option parameters also influence the function curve of h(S) and the root S∗
1 .

Figure 4 shows the curves when the barrier is fixed at H = 55 but other parameters r, q, σ, τ

are varying. It is observed that the curve shape has the same style under these typical parameter
sets and, more importantly, all three conditions in Theorem 1 are indeed satisfied.

With Ŝ1 well defined andproved to have the desired properties, theFMforCase 1American
barrier option can be developed. It requires only amodification to Step 2 of its vanilla version,
which is stated as below:

The Step 2 of the FM Algorithm (Case 1)

2.1 If S > H , then the option is knocked out with no value.
2.2 If S < H , calculate Ŝ1. If S < Ŝ1, then the option is exercised early with a value of e−r t (K − S).

Otherwise, the option is held to the next time step.

Case 2. H < K
The development of the FM for H < K follows a similar idea to H > K . Because the barrier
H is in-the-money in this case, when the stock price is about to hit the barrier, the option
must be exercised just before the barrier is hit. We may see this as the option giving a rebate
at the barrier. Chang et al. (2007) (p.51) pointed out the following decomposition:

American Up-and-Out Put Option

= European Up-and-Out Put Option With Rebate R = K-H

+Early Exercise Premium.

Let p2(S, τ ) represent the above European up-and-out put price. According to Haug (2006),
it can be expressed as p2(S, τ ) = p(1)

2 + p(2)
2 + p(3)

2 , where p(1)
2 is the European vanilla
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Fig. 4 The h(S) function for the American up-and-out put option with H > K (Case 1), where the barrier
H is fixed and other parameters are varying: a varying r ; b varying q; c varying σ ; d varying τ . Except for
the varying parameter, other fixed option parameters are K = 50, H = 55, r = 0.05, q = 0.03, σ = 0.3,
τ = 0.5

put price, p(2)
2 is the (negative) value contributed from knock-out barrier, and p(3)

2 is the
(positive) value contributed from rebate. They are respectively given by

p(1)
2 = Ke−rτ N (−x2) − Se−qτ N (−x1),

p(2)
2 = −Ke−rτ

(
H

S

)2λ−2

N (−y2) + Se−qτ

(
H

S

)2λ

N (−y1),

p(3)
2 = R

[(
H

S

)λ−1+ν

N (−z1) +
(
H

S

)λ−1−ν

N (−z2)

]
,

where

x1 = ln( S
H )

σ
√

τ
+ λσ

√
τ , x2 = x1 − σ

√
τ , y1 = ln( HS )

σ
√

τ
+ λσ

√
τ , y2 = y1 − σ

√
τ ,

ν =
√

(λ − 1)2 + 2r

σ 2 , z1 = ln( HS )

σ
√

τ
+ νσ

√
τ , z2 = z1 − 2νσ

√
τ .
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To follow the approach of Chang et al. (2007), it is useful to calculate its delta�2 = ∂p2(S,τ )
∂S ,

which can also be decomposed as �2 = �
(1)
2 + �

(2)
2 + �

(3)
2 , where

�
(1)
2 = − e−qτ n(x1)

σ
√

τ

(
K

H
− 1

)
− e−qτ N (−x1),

�
(2)
2 =

(
H

S

)2λ [(
K S

H2

)
e−rτ (2λ − 2)N (−y2) + e−qτ (1 − 2λ)N (−y1) − e−qτ n(y1)

σ
√

τ

(
K

H
− 1

)]
,

�
(3)
2 = R

S

[(
H

S

)λ−1+ν (
n(z1)

σ
√

τ
− (λ − 1 + ν)N (−z1)

)

+
(
H

S

)λ−1−ν (
n(z2)

σ
√

τ
− (λ − 1 − ν)N (−z2)

)]
.

Using the quadratic approximation, theAmerican andEuropean prices P2(S, τ ) and p2(S, τ )

may be related in the sameway as (3), but the correspondingW2(S) function for Case 2 should
be changed to

W2(S) =
− 1 −

(
�

(1)
2 + �

(2)
2 + �

(3)
2

)

β−Sβ−−1 − β+Hβ−−β+ Sβ+−1

according to the value matching and smooth pasting conditions.
Figure 5 shows how the pricing function P2(S, τ ) is influenced by the barrier H . As seen

in Fig. 5a, for a fixed τ , the function P2(S, τ ) for S ∈ [S∗
2 , H ]must satisfy the valuematching

and smooth pasting conditions at S = S∗
2 and the boundary condition P2(H, τ ) = K − H

(rebate value) at S = H . (As S → H , the early exercise premium goes to zero, making
P2(S, τ ) converge to the European rebate value p2(S, τ ) = p(3)

2 = K−H ; the corresponding

2( , )P S

American put price 

European put price 

2S

Con�nua�on region: 

2S S H

H

(a) 

0S
S

K

2( , )P S
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2S S H
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(b) 

S

American put price 

European put price 

2S0S K

2( , )P S

No con�nua�on region 
(immediate early exercise) 

European put price 

2S
*H

(c) 

0S
S

K

2( , )P S

H

(d) 

S

European put price 

0S

No con�nua�on region 
(immediate early exercise) 

*H K

Fig. 5 The pricing function for the American up-and-out put option when H < K (Case 2): a H is slightly
less than K ; b H is even smaller and the continuation region narrows; c H = H∗ and the continuation region
disappears; d H < H∗. The European prices shown in the plots do not include the value from rebate (i.e.

p̃2(S, τ ) = p(1)
2 + p(2)

2 )
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European option with no rebate becomes worthless, i.e., its price p̃2(S, τ ) = p(1)
2 + p(2)

2 →
0). Comparing Fig. 5a with Fig. 5b, we see that as H becomes smaller, S∗

2 moves toward the
right and farther away from S∗

0 , making the continuation region even smaller. As H decreases
further, there is a particular value of barrier H∗ such that the continuation region starts to
disappear (see Fig. 5c, where H = H∗ is coinciding with S∗

2 ), indicating that the option
should be exercised immediately. This is also true for H < H∗ (see Fig. 5d). It is clear that
S∗
2 cannot be found when the barrier H is lower than the particular threshold value H∗.
Following the treatment for Case 1, the pseudo critical price for Case 2 is defined as

Ŝ2 = f2(S) = K − p2(S, τ ) − W2(S)(Sβ− − Hβ−−β+ Sβ+). (6)

To examine whether Ŝ2 is a sufficient indicator, again we must look at the properties of the
function h(S) = S − Ŝ2.

Lemma 2 For an American up-and-out put option with H < K (Case 2), the function h(S)

has the following properties

h(0) < 0, h(H) = 0.

Proof Note from (2) that

h(S) = S − Ŝ2 = S − K + p2(S, τ ) + W2(S)(Sβ− − Hβ−−β+ Sβ+).

It is clear that h(0) < 0 (since p2(0, τ ) < K ) and h(H) = 0 (this is because of the boundary
condition p2(H, τ ) = p(3)

2 = R = K − H ). ��
From Lemma 2, we see that a major difference between the h(S) functions in Cases 1 and

2 is on the right end S → H (note that h(H) = 0 in Case 2 but h(H) > 0 in Case 1). Unlike
Case 1, in Case 2 we cannot guarantee the existence of a root of h(S) = 0 over S ∈ [0, H).
Fortunately, Ŝ2 still provides useful information for the early exercise decision regardless of
whether there is a root.

Proposition 3 For an American up-and-out put option with H < K (Case 2), suppose that
S∗
2 is the unique stock price satisfying the value matching and smooth pasting conditions in

the quadratic approximation. Then we have:

1. When there is a root of h(S) = 0 for S ∈ [0, H), the root is unique and must be S∗
2 , and

Ŝ2 defined in (6) is a sufficient indicator of early exercise.
2. When there is no root of h(S) = 0 for S ∈ [0, H), i.e., S∗

2 does not exist in [0, H), Ŝ2
defined in (6) is still a sufficient indicator of early exercise.

Proof From Lemma 2, there may or may not be a root of the equation h(S) = 0 for S ∈
[0, H). We discuss these two cases as follows:

(1) When there is a root, we may use the argument in Proposition 2 to deduce that the root
is unique and must be S∗

2 . This means S∗
2 ∈ [0, H) and implies h(H−) > 0 (recall

H− = H − δ). Therefore, all three conditions in Theorem 1 are satisfied, and hence Ŝ2
is a sufficient indicator.

(2) When there is no root, we have h(S) < 0 (i.e., S < Ŝ2) for all S ∈ [0, H). In this
case, we cannot find S∗

2 ∈ [0, H) (since S∗
2 must satisfy h(S∗

2 ) = 0). Note that the
continuation region consists of stock prices S > S∗

2 . Since we cannot find S ∈ [0, H)

such that S > S∗
2 , all stock prices S ∈ [0, H) are in the exercise region. This shows that

merely using S < Ŝ2 is sufficient to determine early exercise. Namely, Ŝ2 is a sufficient
indicator. ��
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Fig. 6 The h(S) function for an American up-and-out put option (Case 2) with H decreasing from K . The
parameters are K = 50, H = 49, 45, 40, 35.9 (= H∗), 30, 20: a a normal view to show the curves moving
downward as H decreases; b a close-up view to show that S∗

2 moves toward the right as H decreases

In fact, the two cases in the above proof correspond to Fig. 5a, b where H > H∗ (one root)
and Fig. 5c, d where H ≤ H∗ (no root). This is seen more clearly in Fig. 6a, which shows
how the curves move as H decreases. Note that the left end h(0) = p2(0, τ )− K is fixed for
different H . To keep h(H) = 0, as H decreases, the whole curve moves downward (similar
to Fig. 3), making the root S∗

2 move toward the right (see the close-up view in Fig. 6b). For
H ≤ H∗ = 35.9, the root S∗

2 does not exist as h(S) < 0 holds true for all S ∈ [0, H).
Figure 7 further shows how the curves of h(S) vary with other parameters r, q, σ, τ when

H is fixed (in parallel to Fig. 4 for Case 1). Basically, the curves show patterns similar to
those in Fig. 6. The equation h(S) = 0 may have either one root or no root in S ∈ [0, H),
corresponding to the aforementioned two cases in the proof of Proposition 3.

Below we describe the adaptation of Step 2 of our FM algorithm.

The Step 2 of the FM Algorithm (Case 2)

2.1 If S > H , then the option is knocked out with a discounted rebate value of e−r t (K − H).
2.2 If S < H , calculate Ŝ2. If S < Ŝ2, then the option is exercised early with a value of e−r t (K − S).

Otherwise, the option is held to the next time step.

3.2 American down-and-out put option with H < K (Case 3)

Although the analytical approximation for American down-and-out put option has also been
developed (see Chang et al. 2007), our forwardmethod does not require these results. Instead,
we directly apply the FM for the vanilla option (Case 0) to this down-and-out option (Case
3) with some adaptation. The reason behind this is the following relation between the critical
prices of Cases 3 and 0 (see Gao et al. 2000, Theorem 6, p. 1798):

S∗
3 (τ ) = max(H, S∗

0 (τ )), τ ∈ [0, T ]. (7)

A graphical illustration is given in Fig. 8. The relation in (7) can be easily understood: the
critical price S∗

3 (τ ) is either H or S∗
0 (τ ), whichever is reached (from above) first. In case H
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Fig. 7 The h(S) function for the American up-and-out put option with H < K (Case 2), where the barrier H
is fixed and other parameters are varying: a varying r ; b varying q; c varying σ ; d varying τ . Except for the
varying parameter, other fixed option parameters are K = 50, H = 45, r = 0.05, q = 0.07, σ = 0.3, τ = 0.5
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Fig. 8 The continuation region for an American down-and-out option (Case 3) is bounded from below by S∗
3 ,

which is the maximum of H and S∗
0 (see the solid line for larger q). In case the dividend yield q is smaller,

the S∗
0 may be heightened above the barrier (the dashed line). In this case, S∗

3 = S∗
0 for all τ ∈ [0, T ]

is higher and is reached first, as the stock price approaches H , the option holder will exercise
the option to avoid being knocked out and obtain the rebate value.

When the dividend yield q is small (q ≈ 0 or q � r ) such that S∗
0 (τ ) > H for all

τ ∈ [0, T ], we have S∗
3 (τ ) = S∗

0 (τ ) (see the dashed line in Fig. 8). In this case, this American
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down-and-out put option can be treated as an American vanilla put option because S∗
0 (τ ) is

always hit before the option is knocked out. However, when q is large enough (or H is high
enough) such that H > min(1, r

q )K = S∗(0) and therefore S∗
0 (τ ) < H for all τ ∈ [0, T ],

we have S∗
3 (τ ) = H . In this case, the option is knocked out before reaching S∗

0 (τ ). In other
words, early exercise only happens when the price is about to hit the barrier, and therefore
this option is essentially a European down-and-out put option with rebate.

The nontrivial case is that H and S∗
0 (τ ) (the solid line in Fig. 8) have an intersection point

X at τX ∈ [0, T ]. The point X separates the continuation region into two parts, labeled A
and B. Below is a summary of the exercise rules for both regions:

(1) For region A (the earlier life of option with τ > τX ) where S∗
3 (τ ) = H , the rule is: if H

is hit, then the option is knocked out and a rebate R = K − H is paid.
(2) For region B (the later life of option with τ < τX ) where S∗

3 (τ ) = S∗
0 (τ ), the rule

becomes: the option is treated as if it is a vanilla put option.

From the above discussion we see that, for Case 3, as long as the region (A or B) is known,
there is no need to define Ŝ3(τ ) because its vanilla counterpart Ŝ0(τ ) has provided sufficient
information for early exercise decision. Either the version defined in (5) or in (1) may be used.
But it remains to determine which region the stock price is in when simulation is in progress.
This can be easily checked by comparing H to Ĥ = f (H) (where f (·) is given by (5) or
(1)), i.e. it is in region A if H > Ĥ (implying H > S∗

0 (τ ), according to the property of an
sufficient indicator function f (·) as described in Definition 2) and it is in region B if H < Ĥ
(implying H < S∗

0 (τ )). Based on these observations, we have the following adaptation of
Step 2 of our FM algorithm.

The Step 2 of the FM Algorithm (Case 3)

2.1 Calculate Ŝ0 = f (S) and Ĥ = f (H) where f (·) is given in (5) or (1).
2.2 If H > Ĥ , it is in region A. If S < H , then the option is knocked out with discounted rebate value

e−r t (K − H). Otherwise, the option is held to the next time step.
2.3 If H < Ĥ , it is in region B. If S < Ŝ0, then the option is exercised early with discounted exercise value

e−r t (K − S). Otherwise, the option is held to the next time step.

4 Forward methods for American in barrier options

Prior to our discussion on in barrier options, let us stress that the in-out parity relation is not
applicable to American barrier options. This relation only holds for their European versions
for which one can obtain the in barrier price from the vanilla and out barrier prices (see the
discussion in Haug 2001, p.358). For the American versions, since the early exercise time
point of an in barrier option may not be the same as that of the corresponding out barrier
option, the parity relation does not hold. This justifies the purpose of this section.

Compared toAmericanout barrier options (Cases 1–3), the forwardmethod is less involved
in pricing American in barrier options (Cases 4–7). The situation is similar to Case 3 where
only the pseudo critical price for the vanilla option (Ŝ0) is required. This is because an in
barrier option becomes a vanilla option once it is knocked in. The adaptation only needs to
take account of the time before the option being knocked in; this is easily handled by the
forward method as described below.
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Table 2 Further classification of American in barrier options (Cases 4–7)

Case In barrier call In barrier put

4, 6 H < K H > K

5, 7 H > K H < K

(a)
(b)
(c)

⎧
⎨
⎩

K < H < max(1, r
q )K (if r > q)

max(1, r
q )K < H < S∗

0 (∞)

H > S∗
0 (∞)

⎧
⎨
⎩
min(1, r

q )K < H < K (if r < q)

S∗
0 (∞) < H < min(1, r

q )K
H < S∗

0 (∞)

The classification of subcases (a) (b) (c) is according to the relation between the barrier H and the curve of
S∗
0 (τ )

S

t

min(1, )rq K

T

0S
 (b)H

B A 
X 

K

 (c)H

 (a)H

Fig. 9 The subcases (a), (b), (c) for the American in barrier put options in Table 2. The in-the-money
continuation region is shown in gray. The barrier is located in the continuation region in subcase (a) and region
A of subcase (b); it is located in the exercise region otherwise

The Forward Monte-Carlo Algorithm (Cases 4–7)

1. Simulate the stock price as usual until the barrier H is hit and the option is knocked in.
2. Continue with the simulation as if it is an American vanilla option, i.e., calculate Ŝ0 from (5) or (1), and

early exercise happens if S < Ŝ0.
3. Average the discounted payoffs from all the paths to obtain the option price.

Depending on the relation between the barrier H and the vanilla critical price S∗
0 (τ ), there

are different scenarios before the barrier is hit (similar to Case 3). Table 2 (a continuation
of Table 1) provides a summary of these scenarios for the in barrier cases. Cases 4 and 6
are simpler because the barrier H is located in the out-of-the-money region and there is no
intersection between H and S∗

0 (τ ). The FM waits for the option to be knocked in and treats
it as a vanilla option.

Cases 5 and 7 are more complicated because the barrier H may or may not cross the
curve of S∗

0 (τ ). Here we divide them into three subcases (see Fig. 9; also refer to Dai and
Kwok 2004), where there is no intersection in subcases (a) and (c) but there is one in subcase
(b). Similar to Fig. 8, Fig. 9 shows that H intersects with S∗

0 (τ ) at point X which (again)
separates the whole in-the-money continuation region into regions A and B. The barrier is
sometimes located in the exercise region of the vanilla option (e.g. subcase (c) and the region
B of subcase (b)). In these cases, once the option is knocked in and becomes a vanilla option,
it should be exercised immediately.

It is worth mentioning that the forward method does not need to identify these subcases
(i.e. (a) (b) (c) in Table 2) in advance. Take the up-and-in put for example. When the option
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is knocked-in in the continuation region (subcase (a) and region A of subcase (b)), the FM
algorithm checks at the barrier and finds that S(= H) > Ŝ0 (implying S > S∗

0 ) and lets the
simulation continue. But if it is knocked-in in the exercise region (region B of subcase (b)
and subcase (c)), the FM algorithm immediately finds that S(= H) < Ŝ0 (implying S < S∗

0 )
and stops this path to let the option be exercised.

5 Numerical results

In this section, we provide numerical examples of using the FM for the valuation of all seven
types of American barrier put options. The FM performance is evaluated in terms of accuracy
and computing time and is compared to the performance of the standard LSM. Accuracy is
measured by relative error (RE) for each single parameter set and by root mean squared error
(RMSE) for a group of parameter sets. The benchmark is obtained from the lattice method
proposed by Ritchken (1995) with 10,000 time steps per year. Unless otherwise stated, for
both FM and LSM, each simulation uses N = 100,000 stock price paths and the option is
exercisable at equal-distance M = 200 time points in option life. As exercisable time points
are discrete, a continuity correction (see Broadie et al. 1997, 1999; Kou 2003) is applied to
adjust the barrier in both methods. In addition, to improve simulation accuracy, the moment
matching technique suggested by Duan and Simonato (1998) and Glasserman (2004) is also
used in the generation of random paths. All the pricing methods (implemented in Matlab)
were run on a PC with an Intel Core2 Quad processor (Q8400, 2.67GHz) and 4GB RAM.

5.1 Out barrier options

Case 1. American up-and-out put options with H > K
Under the following parameters: time to maturity T = (0.25, 0.5, 0.75, 1.0), volatility

σ = (0.2, 0.3, 0.4), and K = 45, H = 50, r = 0.0488, q = 0.0, we consider two initial
stock price cases: S = 40 which is away from H and S = 49.5 which is very close to H .

Table 3(a) shows the results for S = 40. As regards computing time, we see that our FM
is no more efficient than the LSM. These results seem counter-intuitive, as our FM uses no
backward induction and is expected to take less time. (By contrast, in the vanilla case studied
in Miao and Lee (2013), the FM is clearly more efficient than the LSM.) This is attributed to
the complex calculation of the pseudo critical price Ŝ1 as defined in (4) (because calculating
W1(S) can be time-consuming). Although the computing time of the two methods is roughly
at the same level, the proposed FM outperforms the LSM in terms of accuracy. We observe
that the FM yields even higher accuracy with RMSE reduced to a third of that of the LSM.

Table 3(b) shows the results for S = 49.5. These cases are prone to errors and harder to
handle.With S = 49.5 and H = 50, the simulation based onM = 200 exercisable timepoints
(as in Table 3(a)) generally provides unsatisfactory results. The data presented in Table 3(b)
are produced with M ≥ 1000 over the option life T (i.e. each time step �t = T/M). The
actual number of M varies among parameter sets: if the RE from M = 1000 is significantly
larger than 1%, we increase M by 200 each time until the RE is below or close to 1%.
However, this is not possible in some LSM cases because memory space has run out (the
cases with superscript ∗). In these cases, the results with the largest possible M are reported.
Actually, when comparing with the FM, one weakness of the LSM is precisely the fact that
it is memory-intensive and thus reaches its memory limit sooner.

From Table 3(b), we see the significant improvements of our FM over the LSM. In our
FM, the RE for all the parameter sets can be made less than 1% by increasing M . But in the
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Table 3 American up-and-out put prices when H > K (Case 1)

Parameters Benchmark LSM FM

S σ T Price Price (s.e.) RE (%) Time Price (s.e.) RE (%) Time

(a) S = 40

40.0 0.2 0.25 5.0358 5.0353 (0.0054) −0.01 2.7 5.0328 (0.0048) −0.06 1.6

40.0 0.2 0.50 5.1881 5.1946 (0.0081) 0.12 5.1 5.1839 (0.0063) −0.08 4.5

40.0 0.2 0.75 5.3084 5.3101 (0.0096) 0.03 7.5 5.3065 (0.0063) −0.04 6.7

40.0 0.2 1.00 5.3861 5.3843 (0.0105) −0.03 9.7 5.3833 (0.0059) −0.05 8.5

40.0 0.3 0.25 5.4640 5.4568 (0.0106) −0.13 2.5 5.4600 (0.0093) −0.07 3.5

40.0 0.3 0.50 5.8526 5.8426 (0.0136) −0.17 4.8 5.8477 (0.0098) −0.08 6.4

40.0 0.3 0.75 6.0453 6.0335 (0.0158) −0.20 6.9 6.0410 (0.0091) −0.07 9.2

40.0 0.3 1.00 6.1455 6.1393 (0.0173) −0.10 9.5 6.1443 (0.0081) −0.02 10.1

40.0 0.4 0.25 5.9774 5.9651 (0.0143) −0.21 2.5 5.9736 (0.0117) −0.06 3.8

40.0 0.4 0.50 6.4285 6.4056 (0.0185) −0.36 4.6 6.4262 (0.0117) −0.04 6.4

40.0 0.4 0.75 6.6163 6.5998 (0.0210) −0.25 6.6 6.6150 (0.0106) −0.02 8.2

40.0 0.4 1.00 6.7055 6.6918 (0.0227) −0.20 8.8 6.7027 (0.0091) −0.04 9.4

Average RMSE = 0.18% 5.9 RMSE = 0.06% 6.5

(b) S = 49.5

49.5 0.2 0.25 0.1103 0.1120 (0.0019) 1.61 4.7 0.1100 (0.0052) −0.24 1.2

49.5 0.2 0.50 0.1613 0.1599 (0.0027) −0.88 9.8 0.1614 (0.0071) 0.04 2.4

49.5 0.2 0.75 0.1828 0.1844 (0.0032) 0.85 14.9 0.1829 (0.0075) 0.08 3.4

49.5 0.2 1.00 0.1936 0.1930 (0.0034) −0.30 19.6 0.1932 (0.0072) −0.19 4.2

49.5 0.3 0.25 0.1990 0.1980 (0.0031) −0.49 7.6 0.1990 (0.0084) 0.00 2.8

49.5 0.3 0.50 0.2439 0.2461 (0.0044) 0.90 15.7 0.2440 (0.0097) 0.02 4.9

49.5 0.3 0.75 0.2606 0.2617 (0.0048) 0.41 23.6 0.2629 (0.0091) 0.88 6.4

49.5 0.3 1.00 0.2684 0.2723∗ (0.0052) 1.43 27.6 0.2697 (0.0088) 0.47 7.6

49.5 0.4 0.25 0.2563 0.2571 (0.0043) 0.33 10.6 0.2580 (0.0109) 0.67 4.0

49.5 0.4 0.50 0.2930 0.2936 (0.0054) 0.19 23.5 0.2950 (0.0115) 0.67 6.9

49.5 0.4 0.75 0.3059 0.3169∗ (0.0062) 3.59 26.6 0.3081 (0.0107) 0.72 9.1

49.5 0.4 1.00 0.3117 0.3308∗ (0.0067) 6.13 27.2 0.3145 (0.0091) 0.92 10.6

Average RMSE = 2.20% 17.6 RMSE = 0.53% 5.3

Other parameters are K = 45, H = 50, r = 0.0488, q = 0.0. The benchmark is Ritchken’s method with
10,000 time steps. The number of exercisable times M = 200 in (a) but M ≥ 1000 in (b). The superscript ∗
indicates that the largest possible M is reached due to memory limitation

LSM, for some parameter sets with S close to H , when the memory limit is reached, the (best
possible) RE is still greater than 1%. Since the FM is by nature much less memory-intensive,
its highest reachable M is much higher than that of the LSM, but the actual computing time
of the FM with higher M is still less than that of the LSM with lower M . Overall, for these
more challenging cases, the forward Monte-Carlo method performs much more efficiently
without loss of accuracy.

To further investigate the relation between M and the performance measures, Table 4
provides a convergence analysis for Table 3. We first notice that, in this case, the maximal
achievable M for the LSM is around 1500, which reflects memory limitations as discussed
above. In contrast, in the proposed FM, we may increase M up to 10,000 (or even larger) to
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Table 4 Convergence analysis of Table 3 (Case 1)

(H, S, σ ) (50, 40, 0.2) (50, 40, 0.3) (50, 40, 0.4)

Method M Price RE (%) Time Price RE (%) Time Price RE (%) Time

Benchmark 5.3861 6.1455 6.7055

(a) S = 40 (S is away from H )

LSM 50 5.3720 −0.26 2.3 6.1346 −0.18 2.2 6.7004 −0.08 2.0

100 5.3834 −0.05 5.0 6.1251 −0.33 4.4 6.6729 −0.49 4.1

200 5.3843 −0.03 9.7 6.1393 −0.10 8.8 6.6918 −0.20 8.2

500 5.3664 −0.37 24.4 6.1534 0.13 22.1 6.7105 0.08 20.6

1000 5.3812 −0.09 48.8 6.1431 −0.04 45.3 6.7235 0.27 42.6

FM 50 5.3748 −0.21 2.3 6.1359 −0.16 2.7 6.6973 −0.12 2.5

100 5.3811 −0.09 4.5 6.1444 −0.02 5.2 6.7009 −0.07 4.9

200 5.3831 −0.06 8.6 6.1452 −0.01 10.1 6.7051 −0.01 9.6

500 5.3842 −0.04 20.9 6.1441 −0.02 24.9 6.7033 −0.03 23.7

1000 5.3845 −0.03 41.1 6.1440 −0.02 49.4 6.7038 −0.03 47.0

2000 5.3858 −0.01 80.7 6.1450 −0.01 98.0 6.7049 −0.01 93.6

5000 5.3869 0.01 199.4 6.1461 0.01 243.3 6.7052 0.00 233.1

10,000 5.3844 −0.03 398.0 6.1448 −0.01 486.1 6.7054 0.00 466.4

(H, S, σ ) (50, 49.5, 0.2) (50, 49.5, 0.3) (50, 49.5, 0.4)

Method M Price RE (%) Time Price RE (%) Time Price RE (%) Time

Benchmark 0.1936 0.2684 0.3117

(b) S = 49.5 (S is close to H )

LSM 50 0.2936 51.7 1.0 0.5286 96.9 1.0 0.7649 145.4 1.0

100 0.2484 28.3 2.0 0.4254 58.5 2.0 0.5910 89.6 2.0

200 0.2180 12.6 3.9 0.3509 30.8 3.9 0.4765 52.9 3.9

500 0.1983 2.4 9.5 0.3032 13.0 9.6 0.3850 23.5 9.6

1000 0.1930 −0.3 19.7 0.2795 4.2 19.6 0.3407 9.3 19.7

FM 50 0.2987 54.3 0.3 0.5404 101.3 0.4 0.7758 148.9 0.4

100 0.2502 29.3 0.5 0.4291 59.9 0.6 0.6022 93.2 0.6

200 0.2194 13.3 0.9 0.3560 32.6 1.0 0.4814 54.5 1.0

500 0.1989 2.7 2.1 0.2990 11.4 2.1 0.3840 23.2 2.1

1000 0.1922 −0.7 4.2 0.2779 3.6 3.9 0.3422 9.8 3.8

2000 0.1926 −0.5 8.1 0.2703 0.7 7.6 0.3199 2.6 7.1

5000 0.1925 −0.6 20.2 0.2677 −0.3 18.9 0.3118 0.0 17.2

10,000 0.1934 −0.1 40.1 0.2687 0.1 37.3 0.3111 −0.2 34.7

Other parameters: K = 45, r = 0.0488, q = 0.00, T = 1.00

improve its accuracy. In general, the computing time grows linearly with M in both methods
(as expected), but it is of interest to inspect the case of M = 1000. For S = 40, our FM
provides more accurate results with a similar amount of computing time. In contrast, for
S = 49.5, the accuracy is similar in both methods, but our FM uses notably much less
computing time than the LSM (the results from both methods are unsatisfactory with RE
typically at 3–10%). The reason for the FM using less time is that the random path hits
the barrier easily in the option’s early life and the simulation tends to finish much sooner.
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Table 5 American up-and-out put prices when H < K (Case 2)

Parameters Benchmark LSM FM

S σ T Price Price (s.e.) RE (%) Time Price (s.e.) RE (%) Time

35.0 0.2 0.5 15.0000 15.0027 (0.0026) 0.02 16.9 15.0000 (0.0009) 0.00 0.5

40.0 10.0132 10.0347 (0.0090) 0.21 16.9 10.0131 (0.0130) 0.00 32.8

45.0 5.0552 5.0782 (0.0138) 0.45 13.2 5.0541 (0.0148) −0.02 36.8

48.0 2.0268 2.0354 (0.0080) 0.42 7.4 2.0274 (0.0091) 0.03 12.9

48.5 1.5147 1.5297 (0.0057) 0.99 6.1 1.5234 (0.0067) 0.57 7.3

35.0 0.2 1 15.0000 15.0088 (0.0051) 0.06 32.4 15.0000 (0.0009) 0.00 0.9

40.0 10.0197 10.0418 (0.0142) 0.22 31.4 10.0147 (0.0166) −0.05 54.5

45.0 5.0644 5.0895 (0.0138) 0.50 23.4 5.0651 (0.0171) 0.01 51.3

48.0 2.0295 2.0416 (0.0087) 0.59 13.5 2.0305 (0.0102) 0.05 17.6

48.5 1.5160 1.5277 (0.0056) 0.77 11.4 1.5242 (0.0074) 0.54 10.3

35.0 0.4 0.5 15.0000 15.0245 (0.0092) 0.16 65.7 15.0000 (0.0015) 0.00 2.7

40.0 10.0053 10.0475 (0.0162) 0.42 58.1 10.0011 (0.0190) −0.04 70.9

45.0 5.0166 5.0541 (0.0144) 0.75 40.8 5.0098 (0.0175) −0.13 54.4

48.0 2.0075 2.0377 (0.0093) 1.50 24.4 2.0007 (0.0072) −0.34 11.5

48.5 1.5040 1.5268 (0.0058) 1.51 21.4 1.5073 (0.0048) 0.22 6.7

35.0 0.4 1 15.0000 15.0045 (0.0041) 0.03 92.1 15.0000 (0.0056) 0.00 11.9

40.0 10.0056 10.0000 (0.0040) −0.06 82.2 10.0000 (0.0194) −0.06 78.3

45.0 5.0169 5.0030 (0.0033) −0.28 65.5 5.0063 (0.0152) −0.21 45.5

48.0 2.0076 2.0012 (0.0021) −0.32 52.6 2.0000 (0.0015) −0.38 3.8

48.5 1.5041 1.5081 (0.0017) 0.27 52.1 1.5013 (0.0012) −0.18 1.5

Average RMSE = 0.64% 36.4 RMSE = 0.23% 25.6

Other parameters are K = 50, H = 49, r = 0.0488, q = 0.06. The table is arranged in the same way as Table
VII of Chang et al. (2007)

For the FM with even larger M ≥ 2000, we see different convergence behavior in both
cases. For S = 40, increasing M does not significantly improve accuracy (i.e. the error has
converged). But for S = 49.5, we observe that RE continues to converge and can be reduced
to a level less than 1%. This indicates that, for these hard cases, compared with the LSM, our
FM’s advantage is that it uses a larger M to achieve satisfactory results within a reasonable
computing time.

Case 2. American up-and-out put options with H < K
In this case, since the option is exercised immediately if q is small (q = 0 or q � r ), we
consider a relatively larger q = 0.06 to avoid trivial cases. The results are given in Table 5,
where the “away from H” and “close to H” cases are reported together. We clearly observe
the improvements (in both accuracy and time) of the proposed FM over the LSM. Note that
when our FM is used in the hard cases with S = 48.5 ≈ H = 49, the RE tends to be slightly
larger than the other cases but all the results seem satisfactory. Also note that these hard cases
take the least computing time. This is again attributed to the highest probability for the stock
price to hit the barrier and finish the simulation sooner.

Case 3. American down-and-out put options with H < K
In the preceding two cases, our FM is based on either Ŝ1 or Ŝ2 which requires complex
calculations and in turn results in longer computing times. However, from Case 3 onward,
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Table 6 American down-and-out put prices (Case 3)

Parameters Benchmark LSM FM

S σ T Price Price (s.e.) RE (%) Time Price (s.e.) RE (%) Time

50.0 0.2 0.5 2.3379 2.3328 (0.0089) −0.22 3.6 2.3319 (0.0089) −0.26 1.6

45.0 5.3424 5.3467 (0.0092) 0.08 4.4 5.3411 (0.0095) −0.03 1.3

43.0 7.0431 7.0477 (0.0067) 0.07 3.8 7.0412 (0.0067) −0.03 0.7

41.0 9.0000 9.0000 (0.0019) 0.00 2.5 9.0000 (0.0019) 0.00 0.2

40.5 9.5000 9.5000 (0.0017) 0.00 2.1 9.5000 (0.0016) 0.00 0.2

50.0 0.2 1.0 3.0634 3.0544 (0.0112) −0.29 6.7 3.0519 (0.0112) −0.37 3.0

45.0 5.7642 5.7579 (0.0119) −0.11 7.4 5.7692 (0.0121) 0.09 2.7

43.0 7.2552 7.2708 (0.0107) 0.22 6.4 7.2571 (0.0107) 0.03 2.0

41.0 9.0160 9.0377 (0.0064) 0.24 4.4 9.0269 (0.0061) 0.12 0.8

40.5 9.5009 9.5000 (0.0047) −0.01 3.8 9.5000 (0.0040) −0.01 0.5

50.0 0.4 0.5 4.9118 4.9105 (0.0147) −0.03 18.5 4.9144 (0.0147) 0.05 6.6

45.0 7.1798 7.1698 (0.0133) −0.14 18.3 7.1813 (0.0134) 0.02 5.5

43.0 8.2499 8.2460 (0.0112) −0.05 15.9 8.2541 (0.0114) 0.05 4.1

41.0 9.4000 9.3938 (0.0070) −0.07 11.8 9.4050 (0.0071) 0.05 2.1

40.5 9.6982 9.6883 (0.0050) −0.10 10.6 9.6841 (0.0052) −0.14 1.5

50.0 0.4 1.0 6.1140 6.1024 (0.0146) −0.19 32.3 6.1100 (0.0147) −0.07 9.5

45.0 7.8924 7.8707 (0.0122) −0.27 30.5 7.8944 (0.0123) 0.03 7.6

43.0 8.6981 8.6843 (0.0101) −0.16 26.7 8.6978 (0.0102) 0.00 5.7

41.0 9.5543 9.5480 (0.0062) −0.07 21.7 9.5541 (0.0062) 0.00 3.2

40.5 9.7758 9.7667 (0.0044) −0.09 20.7 9.7662 (0.0046) −0.10 2.4

Average RMSE = 0.15% 12.6 RMSE = 0.12% 3.1

Other parameters are K = 50, H = 40, r = 0.0488, q = 0. The simulation is based on 100,000 paths for
the stock-price process and the option is exercisable 200 times and 1000 times for σ = 0.2 and σ = 0.4
respectively

the FM algorithm is based on the vanilla pseudo critical price Ŝ0 which can be evaluatedmore
quickly. It is expected that the computing time of the FM will be greatly reduced, making it
a better-performing method for these cases.

The results are given in Table 6. Here two values of σ = 0.2, 0.4 are considered, and
more exercisable time points are used for larger σ cases in both methods (see the notes
below the table). This is because higher volatility generally causes larger RE, and using
more exercisable time points helps to control the RE to a desired level. Clearly, the proposed
FM shows advantages in both RE and computing time (particularly the latter). The average
computing time is only 3.1 (sec), which is less than one-fourth of the computing time used by
the LSM. For the FM, the computing time is significantly less in the hard cases (S = 40.5)
as the barrier is expected to be hit much sooner.

5.2 In barrier options

For the American in barrier options, Table 7 presents the results for Cases 4–7 following the
classification of Dai and Kwok (2004). In Table 7(a) (Table 7(b)), there are four categories
of H corresponding to Case 4 and subcases (a) (b) (c) of Case 5 (Case 6 and subcases of
Case 7). Overall, we see that the forward Monte-Carlo method performs more efficiently, but
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the accuracy of both methods seems to be at a similar level (unlike the observations from
the out barrier options). The better efficiency is attributed to the fact that the FM is a simple
adaptation from its vanilla version with a less complex formula of Ŝ. From Table 7(a), it is
also observed that for both methods, the RE is significantly larger than 1% when S ≈ H but
is below 1%when S is away from H . This indicates that S ≈ H is problematic for up-and-in
put options. As seen in Table 7(b), however, this problem is less serious for down-and-in put
options. This is because for an up-and-in put, the stock price must first go up for the option
to be knocked in and subsequently go down to trigger early exercise. Therefore, the results
are sensitive to the barrier hitting time (which is error-prone in simulation when S ≈ H ).
But for a down-and-in put, the knock-in barrier H and exercise barrier S∗

0 are in the same
direction (i.e. the stock price must go down to be knocked in and exercised). For a stock price
moving towards H and S∗

0 and about to trigger early exercise, the exact time of crossing H
is relatively less important, posing less of the problem.

To further investigate the advantages of the proposed FM over the LSM, we examine their
convergence behaviors. Table 8 provides a convergence analysis for the up-and-in barrier put
option from Table 7(a) (the analysis for Table 7(b) is similar and omitted). Again, in our FM,
the possibility of using M ≥ 2000 helps to reduce the RE to a level below 1%, but this is
not achievable in the LSM (the maximal reachable M is around 1500). When a larger M is
used in our FM, the computing time increases linearly but remains at an acceptable level.
(The time used by our FM with M = 5000 ∼ 10,000 is roughly at the same level as the time
used by the LSM with M = 1000.) For the hard cases shown in Table 8(b), the possibility
of using larger M is important because the RE has not yet converged at a moderate M (e.g.
500 or 1000). By comparing the results from both methods, we see that the proposed FM
produces nearly converged results (with M = 3000 ∼ 5000) with higher accuracy than the
LSM (with M = 1000).

6 Conclusions

This paper discusses how the forward Monte-Carlo method can be applied to the valuation
of American barrier options. Instead of directly extending the original approach developed
for American vanilla options, we propose a more flexible version of the pseudo critical price
which can be easily extended to American barrier options. Based on this new and more
general pseudo critical price, the forward methods are successfully developed for the pricing
of all fourteen types of American barrier options.

In the first two cases of out barrier put options, the forward method relies on the analytical
approximation formulas of these options. We prove that the proposed pseudo critical prices
are sufficient indicators that guarantee the usefulness of the forward methods. In the third
case of out barrier put options, as well as all four cases of in barrier put options, the forward
method can be developed with an adaptation from its vanilla version. In these cases, only the
vanilla pseudo critical price is required; this implies that the computing time can be greatly
reduced.

Our numerical experiments compare the proposed FM to the LSM for all seven types of
American barrier put options. It is observed that our FM outperforms the LSM in a trade-off
between accuracy and efficiency, although the improvements vary among different cases.
Moreover, our FM shows a better convergence pattern compared to the LSM. In particular,
for the more challenging and error-prone cases where the initial stock price is close to the
barrier, our FM performs particularly well and yields sufficiently accurate results. This is not
achievable by the LSM given the same computing resources.
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