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We propose an analytical-form framework for pricing perpetual Bermudan options (PBOs)

under the lognormal jump-diffusion-ruin model of Merton (1976). We first analytically derive

the holding and early exercise values of PBOs. The optimal exercise boundary of the PBO,

determined by equating the holding and early exercise values, is then solved using an iteration

algorithm. We finally evaluate the PBO by taking the expectation of the option prices at the

subsequent exercisable date and discounting it at the risk-free rate. The numerical results

indicate that our method is far more efficient than the competing methods in the literature for

pricing PBOs.
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1 | INTRODUCTION

Bermudan options are non-standard American options that can be exercised only on a number of specified dates during their life.
Perpetual Bermudan options (PBOs) are one special case of the general Bermudan option where the inter-exercise time is
constant and the time tomaturity is increased to infinity. In the financial literature, many corporate finance decisions are analyzed
using the framework of perpetual options. For example, Mcdonald and Siegel (1986), Boyle and Guthrie (2003), Guthrie (2007),
and Sundaresan and Wang (2007), among others, assume that a firm has the perpetual rights to invest in a project, Quigg (1993)
considers that a landholder holds a perpetual option to construct a building, Leland (1994) supposes that stockholders have a
perpetual American option to default, and Lambrecht and Myers (2007) analyze acquirers’ takeover option as a perpetual put
option. As discussed in Chung and Shackleton (2007), although previous studies usually adopt perpetual American options for
their analyses, many corporate finance decisions are actually made discretely with potentially infinite time horizons and thus are
similar to the cases of PBOs. Moreover, in capital markets, perpetual contingent convertible bonds are important debt
instruments embedded with the feature of perpetual Bermudan puts (contingent on issuers’ capital values).1 When applying the

1Perpetual contingent convertible bonds (PCC bonds) can be treated as the capital buffer to aid banks to meet the capital requirements regulated in Basel
III. Holders of PCC bonds agree to take equity in exchange for the debt at a pre-specified conversion ratio when the issuer's Tier-1 capital ratio, usually
observed quarterly, falls below a certain level. In addition, PCC bonds are usually callable. To price PCC bonds exactly, one needs to model the stochastic
processes of the capital ratio, equity prices, and interest rates, and tackle the infinite-maturity feature simultaneously. The valuation of PCC bonds is very
complicated and beyond the scope of this paper. Nevertheless, the proposed method provides a possible starting point for developing pricing methods for
PCC bonds.
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PBO framework to study the above financial issues in an indefinite horizon, it seems essential to take the default risk of the
underlying firms into account. To cope with this important feature, our paper offers an analytical-form framework for the
valuation of PBOs under the lognormal jump-diffusion-ruin model of Merton (1976).2

Perpetual Bermudan options are no easier to price than the American options.3 To the best of our knowledge, only a
few studies have considered the valuation problem of PBOs. Boyarchenko and Levendorskii (2002) solve the pricing
problem using the Wiener–Hopf factorization technique and derive approximate formula for certain underlying
processes such as normal inverse Gaussian processes. Alobaidi, Mansi, and Mallier (2014) discretize the integrals in the
Wiener–Hopf method to obtain a linear system and solve the system by the value-matching condition. Ma and Luo
(2012) express the expected payoff from holding a PBO as a sum of iterative integrals, since holders of the PBO will
eventually earn the exercise value at one of the future exercisable time points. Lattice-based solutions, such as binomial
tree and explicit finite difference models, have been proposed by Lin and Liang (2007) and Muroi and Yamada (2008),
respectively.

Except for Boyarchenko and Levendorskii (2002), all the above-mentioned models evaluate PBOs under the Pure
Diffusion (PD) process. However, many empirical studies have confirmed that the jump behavior can be observed in the
prices of almost all types of assets. Furthermore, the default risk cannot be ignored when pricing any asset with a long
life, not to mention an indefinite life for PBOs. To combine the above two features, we propose using the lognormal
jump-diffusion-ruin model of Merton (1976) for the valuation of PBOs. To the best our knowledge, this paper is the first
one that can evaluate perpetual Bermudan and American options under the lognormal jump-diffusion-ruin processes.

It is well known that PBO prices follow a periodic property, that is, V S,tð Þ ¼ V S,t þ τð Þ, where V S,tð Þ is the PBO
price at time t with the stock price equaling S, and τ is the time interval between two neighboring exercisable time points
of the PBO. Using this periodic property, this paper proposes a simple iteration algorithm to determine the optimal
exercise boundary4 by pricing PBOs at the exercisable time points. Then PBO prices at the non-exercisable time points
can be evaluated by simply taking the expectation of the option prices at the subsequent exercisable time point and then
discounting it at the risk-free rate. Moreover, we develop a regression-based extrapolation approach to evaluate
perpetual American options based on prices of PBOs given different inter-exercise time intervals. Since a PBO is more
difficult to be evaluated than a Bermudan option with a finite maturity, we contribute to the literature by proposing the
most efficient pricing method so far for PBOs under the lognormal jump-diffusion-ruin process. It should be noted that
the proposed algorithm in this paper is designed specifically for PBOs because it exploits the periodic property of PBOs.
It is not our intention to develop a general pricing method for Bermudan options with different times to maturity. In
fact, when the time to maturity is finite, many lattice models are available to achieve accurate pricing for Bermudan
options.

Specifically, the proposed method can be applied to the pricing of PBOs under not only the PD process in Black and
Scholes (1973) model but also the Lognormal Jump-Diffusion (LJD) process and the Lognormal Jump-Diffusion-Ruin
(LJDR) process. Even under the assumption of the PD process, our method is far more efficient than the explicit finite
difference method for evaluating PBOs. For example, by controlling the same required computational time, Figure 1
indicates that the percentage pricing errors of the proposed method are less than one hundredth of those of the explicit
finite difference method. When applying the proposed method to pricing PBOs under even the most complicated LJDR
processes, similar degrees of accuracy can be achieved as those under the PD process, although more time is unavoidably
consumed.

The rest of the paper is organized as follows. Section 2 describes the pricing model and the proposed iteration algorithm for
the valuation of PBOs. Section 3 discusses the numerical results of the benchmark method and the proposed option pricing
method. Section 4 concludes the paper.

2The lognormal jump-diffusion-ruin model is a combination of two special cases, the lognormal jump-diffusion process and the jump-to-ruin diffusion
process, of Merton (1976). Please refer to Equation (1) of this paper for the detailed specification.
3One exception is to price perpetual American options under the pure-diffusion stock price process. Due to the time-homogeneous nature of the valuation
problem, the Black–Scholes–Merton's partial differential equation is thus simplified to an ordinary differential equation, which can be solved analytically,
as shown in Merton (1973). However, this approach does not work for lognormal jump-diffusion-ruin processes that we consider in this paper.
4Note that the optimal exercise boundary is identical at all exercise time points due to the periodic property. To the best of knowledge, our paper is the
first one to take advantage of this property to efficiently solve the optimal exercise boundary and obtain PBO prices.
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2 | THE MODEL AND THE METHODOLOGY

Without loss of generality, we consider the pricing of a perpetual Bermudan put optionwith a strike priceX at an exercisable time
point t. Of course, it is just as straightforward to apply our method to pricing perpetual Bermudan call options. Extending
Merton's (1976) model, we assume that the underlying asset price St under the risk-neutral measure follows the lognormal jump-
diffusion-ruin process, that is,5

dSt
St
¼ r � q� λ1K þ λ2ð Þdt þ σdWt þ dP1t þ dP2t, ð1Þ

whereWt is a standardWiener process, P1t andP2t are two individual Poisson processes with the jump intensities to be λ1 and λ2,
respectively, and Wt, P1t, and P2t are mutually independent. If the Poisson event P1t occurs, J � 1 is the random percentage
change in the underlying asset price, and the Poisson processP2t represents the default event of the issuer of the underlying asset.
Tomaintain themartingale property of the underlying asset price, the adjustment term �λ1K þ λ2ð Þ is introduced in the drift term
of the St process, where K ≡E J � 1½ � and the reason to add λ2 is because there is a −100% percentage change in the underlying
asset price when St jumps to zero in the event of default. In addition, the volatility σ, the risk-free rate r, and the dividend yield
rate q are all constant.

Applying the Itô's Lemma to Equation (1), we derive:

Stþτ ¼ 0 if the default occurs in t, t þ τð �

lnStþτ ¼ lnSt þ r � q� σ2

2
� λ1K þ λ2

� �
τ þ σ Wtþτ �Wtð Þ þ J P1 τð Þð Þ o=w

;

8><
>: ð2Þ

where τ is the time interval between two exercisable time points, P1 τð Þ is the number of the Poisson jumps occurring in the

interval of t,t þ τð �, and J P1 τð Þð Þ ¼ 0 if P1 τð Þis zero; J P1 τð Þð Þ ¼ ∑P1 τð Þ
m¼1 lnJm for P1 τð Þ≥ 1, where the jump size Jm follows an

independently and identically lognormal distribution, that is, lnJm∼N μJ,σ
2
J

� �
. Therefore, the variable K in the drift should be

FIGURE 1 Speed-Accuracy Analysis for Different Methods under the PD process: Figure 1 compares the accuracy and speed of the
proposed method and the explicit finite difference method with logarithmic transformation (EFDM_LT) for pricing perpetual Bermudan options
under the PD process (λ1 = λ2 = 0). We employ the speed (number of options priced per second) and the root mean squared relative errors
(RMSREs) of different methods for the 150 option contracts in Appendix A to plot this figure. In our method, Newton's method is used to
determine the critical stock price S*. When the moving boundary approach (MBA) proposed by Muthuraman (2008) is used to find S*, it is
denoted as our method with MBA

5We thank the referee to point out that pricing options under Equation (1) may not be arbitrage free. However, as an application, we consider this
lognormal jump-diffusion-ruin process because it can nest the PD process in Black and Scholes (1973) and LJD in Merton (1976) as special cases such
that we can compare our pricing algorithm to existing methods based on these two processes. In fact, the PD and LJD processes have been used widely
for decades under the presumption that the corresponding option pricing methods have been verified to be arbitrage free.
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eγ � 1, where γ≡ μJ þ σ2J=2. Last, based on the results in Merton (1976), the transition density function of the stock price under
the proposed model is expressed as follows:

ϕ Stþτ ¼ 0j1n Stð Þ ¼ 1� e�λ2τ if the default occurs in t, t þ τð �

ϕ ln Stþτjln Stð Þ ¼ e�λ2τΣ∞m¼0
e�λ1τ λ1τð Þm

m!
1ffiffiffiffiffiffiffiffiffiffiffiffi
2πv2mτ

p e
�
lnStþτ � lnSt � rm � q� v2m=2

� �
τ

� �2
2v2mτ o=w

;

8>>><
>>>:

ð3Þ

where v2m ≡ σ2 þ mσ2J=τ and rm ≡ r � λ1K þ λ2 þ mγ=τ, conditional on knowing that there are exactly m Poisson jumps in the
interval of t,t þ τð �.

The periodic property implies that critical stock prices, which separate the exercise and holding regions, are all the same at
each exercisable time point and thus are time independent. When this critical stock price (denoted as S*) is given,6 the holding
value at t, that is, the PBO price in the holding region (St > S*), is contributed by three components: the expected payoff value
given default, the expected early exercise values, and the expected holding values at the next exercisable time point. Specifically,
the holding value HV Stð Þ follows:

HV Stð Þ ¼ e�rτ 1� e�λ2τ
� �

X

þe� rþλ2ð Þτ
Z lnS*

�∞
X � Stþτð Þþϕ ln Stþτjln Stð Þd ln Stþτ

þe� rþλ2ð Þτ
Z lnSmax

ln S*
HV Stþτð Þϕ ln Stþτjln Stð Þd ln Stþτ: ð4Þ

The first component, the expected value given default (denoted as EVGD St,τð Þ), represents the present value of the expected
payoff given the default occurring in the following interval of t,t þ τð �. Since Stþτ ¼ 0 in the event of default, we assume that
holders of the perpetual Bermudan put receive the strike price X � Stþτð Þþ ¼ X at t þ τ. Although the value of EVGD is
independent of St in the current setting, we still introduce St as a parameter of EVGD tomaintain the generality of our method for
pricing options with more complicated payoff functions in the event of default. The second component, the expected early
exercise values (denoted as EEEV St,τð Þ), of the above equation has a simple Merton-type closed-form solution:

EEEV St,τð Þ ¼ e�λ2τΣ∞m¼0
e�λ

0
1τ λ01τ
� �m
m!

f St,X,v2m,rm,q,τ,S
*� �
, ð5Þ

where λ01 ≡ λ1eγ, f St,X,v2m,rm,q,τ,S
*

� � ¼ Xe�rmτN �dm,2ð Þ � Ste�qτN �dm,1ð Þ, dm,1 ¼ ln St=S*ð Þþ rm�qþv2m=2ð Þτ
vm
ffiffi
τ

p , and

dm,2 ¼ dm,1 � vm
ffiffiffi
τ

p
.

To evaluate the expected holding values at the next exercisable time point (the last component of Equation (4)), we suggest
using the Gauss-Legendre Quadrature (GQ) method due to its higher order of convergence rate. Moreover, we truncate the
upside of the holding region with a maximum stock price, which is defined as

Smax ¼ S*eHσ* , ð6Þ

where σ* ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 þ λ μ2J þ σ2J

� �q
is the expected annual volatility of the logarithmic stock price andH is a multiplicative factor. As

explained later, maintaining a constant distance between lnSmax and lnS* can improve the efficiency of using the GQmethod in the
proposed approach. It is straightforward to tell that a larger value of H leads to a more ideal situation where Smax can further
approach infinity.However, extremely largevalues ofSmax could cause serious round-off errors because of the limited precision for
numerical computations of a computer. In our experiments,H ¼ 40 andH ¼ 60 are examined, that is, the log-difference between

6Based on the proposed method, the critical stock price is the solution of Equation (14), which will be introduced later.
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Smax andS* is 40or 60 times the expected annual volatility of the logarithmic stockprice.Note that the above equation is not theonly
way to decide Smax, but this setting is believed to be conservative and able to capture the effective holding region for pricing PBOs.

7

We set the number of abscissas in the holding region as:

n ¼ ln Smax
S*

τ0:25=F

" #
, ð7Þ

where d½ � denotes the integer closest to d, and F is a multiplying factor introduced to scale up the number of abscissas. The
exponent of τ is suggested to be 0.25 due to the results of our experiments reported in a later section.

Two new variables y and x are introduced to represent the log prices at the current and next exercisable time points,
respectively, and km is defined as an elasticity parameter as follows:

y¼ 1n St, x¼ 1n Stþτ, km ≡
2 rm � qð Þ

v2m
� 1:

Following Andricopoulos, Widdicks, Duck, and Newton (2003), the interim functions Bm y,x,τð Þ for density and Am y,τð Þ for
normalization and discounting, conditional on m events of the P1t process occurring, allow the time-t and time- t þ τð Þ holding
value functions HV Stð Þ ¼ HV eyð Þ and HV Stþτð Þ ¼ HV exð Þ to be linked via the following integration:

HV eyð Þ ¼ EVGD ey,τð Þ þ EEEV ey,τð Þ

þ
Z lnSmax

lnS*
HV exð ÞΣ∞m¼0

e�λ1τ λ1τð Þm
m!

Am y,τð ÞBm y,x,τð Þdx, ð8Þ

where

Am y,τð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
2πv2mτ

p e�
1
2kmy�1

8k
2
mv

2
mτ� rþλ2ð Þτ, ð9Þ

Bm y,x,τð Þ ¼ e
� x�yð Þ2

2v2mτ
þ1

2kmx: ð10Þ

At any exercisable time point, denote the stock price and the holding value of the perpetual Bermudan put at the i-th
abscissa as S ið Þ and HV ið Þ, respectively, for i ¼ 1;2;. . . ,n. When applying the GQ algorithm to calculate the integration in

Equation (8) numerically, the weights wGQ
j and the abscissas aGQj in the GQ method are determined by solving the following

equation:

Σn
j¼1ðaGQj ÞlwGQ

j ¼
Z 1

�1
zldz ∀l∈ 0; 1,. . . ,2n� 1f g:

Using the periodic property and the chosen weights and abscissas, the holding value function of Equation (8) follows a
quadrature expression:

HV ið Þ ¼ EVGD exi ,τð Þ þ EEEV exi ,τð Þ
þΣn

j¼1 HV jð ÞΣ∞m¼0
e�λ1τ λ1τð Þm

m!
Am xi, τð ÞBm xi,xj,τ

� �
wj, ð11Þ

7For example, when S* = 74.2620 and σ* = 0.3 (the last option contract in Appendix A), H= 60 can generate a value for Smax to be 4.88E+09, which is
sufficiently high to represent the possibly maximal stock price for a long period of time.
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where wj ¼ b�a
2 wGQ

j , xj ¼ b�a
2 aGQj þ ðbþaÞ

2 , a ¼ S 1ð Þ ¼ ln S*, and b ¼ S nð Þ ¼ ln Smax. Note that the abscissas xi at time t (for
determining S ið Þ ¼ exi and HV ið Þ), for i= 1, . . ., n, are the same as the abscissas xj at time t þ τ (for determining S jð Þ ¼ exj and
HV jð Þ), for j= 1, . . ., n, respectively. Moreover, according to the periodic property, HV(i) = HV(j) if i ¼ j.

Therefore, we rewrite Equation (11) as the following matrix-vector form:

I � HV ¼ I � EVGDþ EEEVð Þ þMΣ � HV, ð12Þ

where I is the n × n identity matrix and each of HV, EVGD, and EEEV is an n × 1 vector across S ið Þ ¼ exi , for i= 1, . . ., n. In
addition, by defining the n × n matrix Mm i,jð Þ≡Am xi,τð ÞBm xi,xj,τ

� �
wj for 1≤ i, j≤ n, the n × n matrix MΣ can be derived via

MΣ ¼ Σ∞m¼0
e�λ1τ λ1τð Þm

m! Mm. Finally, from Equation (12), the vector of holding values can be solved as follows:

HV ¼ ðI �MΣÞ�1 � EVGDþ EEEVð Þ: ð13Þ

The implementation of Equation (13) relies on the condition that the critical stock price must be known. Thus, we
conjecture a reasonable initial value of the critical stock price, denoted as S*0,

8 and obtain the initial vector of holding
values HV0 via Equation (13). The critical stock price in the next iteration is then the solution of S in the following
equation:

X � S ¼ EVGD S, τð Þ þ EEEV S, τð Þ
þΣn

j¼1HV jð ÞΣ∞m¼0
e�λ1τ λ1τð Þm

m!
Am 1n S, τð ÞBm 1n S, xj,τ

� �
wj, ð14Þ

where the right-hand side of Equation (14) is derived by substituting HV0 into it and replacing exi with S in Equation (11). We
next employ Newton's method together with the numerical differentiation to find the solution of S in Equation (14). For solving
Equation (14), the convergence criterion of Newton's method is 1.0E-10, and on average five to seven iterations are sufficient to
obtain a solution of the critical stock price.

Based on the new critical stock price S*1, we repeat the evaluation of Equations (13) and (14) alternately until the critical stock
price converges. The iterative procedure for finding the next critical stock price S*kþ1 continues until the difference between S

*
k

and S*kþ1 is smaller than 1.0E-10. It is worth noting that the proposed method is efficient in solving the vector of holding values

HV in Equation (13) during the iterative procedure. Since Smax,κ ¼ S*ke
Hσ* and thus the distance between the a ¼ ln S*k and

b ¼ ln Smax, k is fixed to be Hσ*, the relative differences between any two abscissas xi and xj remain unchanged when S*k varies.
Consequently, Mm i,jð Þ≡Am xi,τð ÞBm xi,xj,τ

� �
wj and thus MΣ do not change during the iterative procedure. In other words, the

computation of I �MΣð Þ�1, which is time consuming when n is large, needs to be conducted only in the first iteration. For the
following iterations, after the vectors of EVGD and EEEV are obtained, we can solve the vector of HV by simply performing one
matrix multiplication via Equation (13).

Once equipped with the convergent results of holding values HV and the critical stock price S*, it is straightforward to
compute the option value of perpetual Bermudan puts. If a time point that passes the last exercisable time point t by Tє[0,τ) is
considered and the prevailing stock price is St+T, then the option value can be derived as follows.

V StþT , t þ Tð Þ ¼ EVGD StþT , τ � Tð Þ þ EEEV StþT , τ � Tð Þþ
Σn
j¼1 HV jð ÞΣ∞m¼0

e�λ1 τ�Tð Þ λ1 τ � Tð Þ½ �m
m!

Am 1n StþT , τ� Tð ÞBm 1n StþT ,xj, τ � T
� �

wj: ð15Þ

When T= 0, Equation (15) yields the holding value of the perpetual Bermudan put at the exercisable time point t if St is higher
than the critical stock price S*; otherwise, the perpetual Bermudan put should be exercised immediately and thus the option value
equals X− St.

8The optimal exercise boundary of the perpetual American put option under the PDF is employed to be the initial guess S*0 when we implement

the computer program, that is, S*0 ¼ θX= θ � 1ð Þ, where θ ¼ σ�2 � r � q� 0:5σ2
� �� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r � q� 0:5σ2ð Þ2 þ 2σ2r
q	 


. For details, please refer to Merton

(1973).
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There is one implementation issue that should be addressed, that is, how to determine the upper limit of m, denoted as m*,
when computing the component of EEEV(St,τ) as well as the transition probabilities in Equations (11) to (15). We first

examine the cumulative Poisson-jump probability, Σm*

m¼0
e�λ1τ λ1τð Þm

m! , by increasing m* sequentially such that 1� Σm*

m¼0
e�λ1τ λ1τð Þm

m!

is smaller than 1.0E-14.9 Next, this m* is employed to generate EEEV(St,τ) and the transition probabilities in Equations (11)
to (15).

This paper also examines the updating method proposed in Muthuraman (2008) to find the next iteration of S*kþ1 under the
assumption of the PD process. The basic idea inMuthuraman (2008) is to transform the free boundary problem of pricing American
puts into a series of moving boundary problems. Based on a lower-bound initial guess of the critical stock price S*k and the
corresponding grid of holding values derived by solving the partial differentiation equation, Muthuraman (2008) proposes a rule to
derive upward improvements for the next iteration of the critical stock price. He proves that if the current S*k is below the optimal
critical stock price, then there must exist some values of S above S*k such that HVS(S)≤1, where HVS(.) is the partial derivative of the
holding value with respect to the underlying asset price. Moreover, the current S*k can be adjusted upward to be the maximum among
those SwithHVS(S)≤−1, and thus the option value corresponding to the new S*kþ1 can be enhanced. For implementation, the value of

S*kþ1 is determined by finding a value of S upward along the dimension of the stock price until HV(S) + S is minimized. In addition to
employing Newton's method to solve the critical stock price, this paper also adopts the moving boundary approach (MBA) in
Muthuraman (2008) to find the critical stock price. We repeat the MBA until the values of S*k and S*kþ1 converge within 1.0E-10.

3 | NUMERICAL RESULTS

This section is dedicated to demonstrate the advantages of the proposed method for pricing PBOs under the PD (λ1 = λ2 = 0), the
LJD (λ2 = 0), and the LJDR processes. For each examined process, we first present the speed and accuracy analyses for option
values and critical stock prices of PBOs, respectively. Next, several issues associated with τ, the time interval between two
neighboring exercisable time points, and n, the number of abscissas in the holding region, is analyzed. We not only identify a
proper relation between τ and n but also investigate the convergent results when τ approaching zero, which can be used to
approximate the option values of perpetual American options. Before showing the numerical results, we would like to emphasis
that the ultimate goal of this paper is to price PBOs under the LJDR process. The reason to test the proposedmethod under the PD
process is because all of the other methods that we can compare are based on the PD process, including the finite difference
method for pricing Bermudan option (introduced later), the MBA methods proposed by Muthuraman (2008), and the analytic-
form formula for perpetual American options. Therefore, the accuracy and efficiency of our method can be clearly discerned
when comparing with those PD-process-based methods.

3.1 | Option values under the PD processes

Table 1 compares pricing errors and computational times of our method (using either Newton's method or the MBA in
Muthuraman (2008) to determine the next S*kþ1) and the finite difference method for evaluating PBOs. We employ the explicit
finite difference method with the logarithmic transformation (EFDM_LT) technique, one of the most efficient option pricing
models as suggested by Geski and Shastri (1985), to approximate PBOs provided that the time to maturity is limited to be
500 years.10 We choose the upper bound of S to be 1.0E + 09 in the EFDM_LT due to the trade-off between accuracy and
efficiency. According to our test, when the upper bound of S is larger than 1.0E + 09 for the method of EFDM_LT, the marginal
benefit of a higher upper bound on the accuracy of 500-year Bermudan puts prices is negligible. The differences in option price
estimates with the upper bounds of 1.0E + 09 and 1.0E + 10 are smaller than 1.0E-13 in our experiments. Moreover, to improve

the convergence rate, we follow the suggestion in Hull (2014) to set the grid distance, Δ1n S, to be σ
ffiffiffiffiffiffiffiffiffiffiffi
1:5Δt

p
so as to ensure the

values ofΔ1n S andΔt are well collocated. With this setting, we calculate values of 500-year Bermudan options whenΔt equals
0.0001, 0.00005, and 0.00001. The parameters of option contracts examined in Table 1 are adapted fromTable 2 of Ju (1998) and
Table 4 of Muroi and Yamada (2008). In addition, we consider the time interval between two exercisable time points, τ, to be
0.004 (daily), 0.02 (weekly), 0.083 (monthly), 0.25 (quarterly), 0.5 (semiannually), and 1 (annually). We compute the prices of

9In other words, the probability of having more than m* jumps is less than 1.0E-14.
10For 500-year and 1000-year Bermudan puts, the difference between their option values never exceeds 1.0E-13 based on the EFDM_LT. Therefore, we
believe 500 years are long enough to evaluate option values of perpetual Bermudan puts when the explicit finite difference method is applied.
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perpetual Bermudan puts at the exercisable time point, that is, T= 0 in Equation (15). Table 1 shows only summary statistics of
pricing errors and computational times of different pricing methods. Detailed pricing results are presented in Appendix A.

Since the GQmethod, a numerical integration approach, is used in the proposed method, it can be inferred that a larger value
of n (number of abscissas) yields more accurate pricing results. Therefore, this paper employs option values and critical stock
prices corresponding to n→∞ as the benchmarks. To achieve this, we propose a regression-based approach to extrapolate
option values and critical stock prices (S*) of perpetual Bermudan puts for n approaching infinity.We first compute option prices
and values of S* based on our method withH= 60 and n= 6000, 7000, . . ., and 11000 and next perform a quadratic regression of
the option values (or S*) over 1/n and 1/n2, that is:

Option value¼α0 þ α0ð1=nÞ þ α2ð1=n2Þ þ εV,

TABLE 1 Pricing errors and computational times of different methods for pricing perpetual Bermudan puts under the PD process (λ1 = λ2 = 0)

Our method
(H= 60,
F= 300)

Our method with
MBA (H= 60,
F= 300)

Our method
(H= 40,
F= 300)

Our method with
MBA (H= 40,
F= 300)

EFDM_LT
(Δt= 0.0001)

EFDM_LT
(Δt= 0.00005)

EFDM_LT
(Δt= 0.00001)

RMSRE 0.0000032% 0.0000032% 0.0000039% 0.0000039% 0.0013064% 0.0006366% 0.0000686%

RMSRE
(r≤ q)

0.0000036% 0.0000036% 0.0000044% 0.0000044% 0.0002771% 0.0001543% 0.0000330%

RMSRE
(r> q)

0.0000029% 0.0000029% 0.0000036% 0.0000036% 0.0016714% 0.0008121% 0.0000843%

Time
(sec.)

108,444 8,193,793 54,943 5,675,396 53,519 147,380 1,657,850

Table 1 reports the summary statistics of pricing errors and computational times for pricing perpetual Bermudan puts based on our method and the explicit finite difference
method with logarithmic transformation (EFDM_LT). The complete table of examined option contracts and generated option values are reported in Appendix A. In
addition to our method using Newton's method to determine S*, we also utilize the moving boundary approach (MBA) in Muthuraman (2008) to determine S* to generate
option prices in our method. To ensure monotonic convergence, when the number of abscissas in the holding region, n, determined according to Equation (7), is less than
5000, then n= 5000 is used instead.

TABLE 2 Convergence to perpetual American puts under the PD process (λ1 = λ2 = 0)

This table shows the convergent behavior of perpetual Bermudan put prices to perpetual American put prices.We conduct the quadratic regression of perpetual Bermudan put
values over different time intervals between two consecutive exercisable time points, τ, based on the prices of the perpetual Bermudan puts in Table 1 (Appendix A). We next
interpret the intercept of thequadratic regression as the approximationof thevalue of theperpetualAmerican put. In addition to theoptionvalues generatedby ourmethod (with
(H,F) = (40,300) and (60,300), the benchmark option values in Table 1 (AppendixA) are also employed as inputs for the quadratic regression. The last three columns compare
the option values in the case of τ= 0.004 (corresponding to daily exercisable) based on our method and the benchmark results reported in Table 1 (Appendix A).
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Critical stock price ¼β0 þ β0ð1=nÞ þ β2ð1=n2Þ þ εS,

where εv and εs are standard white noises. The benchmark option value (or benchmark S*) can be obtained as the intercept α0 (or
β0), since it represents the option value (or S*) for n→∞. For each quadratic regression, the R-squared value is required to be
higher than 0.999999 to ensure that the convergence behavior is sufficiently satisfactory for obtaining benchmarks precisely.
Appendix B presents the details regarding the benchmark prices of perpetual Bermudan puts.

We argue that this regression-based extrapolation approach is superior to the Richardson extrapolation method, which is
commonly used in the field of financial engineering. This is because it is almost impossible to measure how close are between the
results of Richardson extrapolation and the true benchmarks. As for our extrapolation approach, in contrast, R-squared values can
be employed to gauge the extrapolation performance. Since the R-squared values in our numerical results are always higher than
0.999999, we are confident of the accuracy of the benchmarks of option values and the critical stock prices presented in this paper.

We first observe fromTable 1 that the proposedmethod can generate more accurate option prices, but consumes less time than
the EFDM_LT. For example, our method with H= 40 and F= 300 can generate option prices with a root mean squared relative
error (RMSRE) of 0.0000039%,which is about 1/18 of theRMSREof the EFDM_LTwithΔt= 0.00001, but the computation time
of our method with H= 40 and F= 300 is only 1/30 that of EFDM_LT with Δt= 0.00001. Second, Table 1 shows the proposed
method can generate nearly identical pricing errors regardless of using Newton's method or the MBA in Muthuraman (2008) to
determine S*. In fact, the differences of option values of these two approaches are always smaller than 1.0E-07 as shown in
Appendix A. In other words, our method can incorporate the main part of the competing method ofMuthuraman (2008) under the
PD process. Since Muthuraman (2008) already proves his method can generate convergent option prices, our experiment results
conclude that it is appropriate to employ Newton's method to solve the critical stock price S*. Incorporating this method in our
method saves a lot of computational time without losing any accuracy. Third, since the EFDM_LT generates option values
convergent to our benchmark prices as Δt approaches zero, the accuracy of our benchmark prices is thus verified.

In Figure 1 we compare the accuracy and speed of the proposed method and the EFDM_LT based on the 150 contracts
examined in Table 1 (Appendix A). For our method, we further examine different combinations of H= 40 and 60 and
F= 200, 300, and 400. Generally speaking, with the increase of H and F in the proposed method and the decrease of Δt in
EFDM_LT, the obtained option values converge to the benchmark at the cost of requiring more computational time. In
addition, it can be found that the proposed method dominates the competing methods in both efficiency and accuracy. For
instance, the computational time of our method with (H,F) = (40, 300) is almost the same as that of the EFDM_LT with Δt
being 0.0001 (54,943 sec. vs. 53,519 sec., as shown in Table 1), but our method's RMSRE with (H,F) = (40, 300) is only 1/
300 of that of the EFDM_LT with Δt being 0.0001. Moreover, based on the proposed method, the accuracy of using
Newton's method or the MBA in Muthuraman (2008) to determine PBO prices is almost identical. Since the computational
time based on Newton's method is only 1/100 of that based on the MBA, our method is dramatically faster than
Muthuraman's (2008) method with the same accuracy.

In addition to comparing with theMBA inMuthuraman (2008) and the EFDM_LT, we conduct another analysis to verify the
accuracy of the proposed method. It is well known that when the time interval between two consecutive exercisable time points,
τ, approaches zero, a perpetual Bermudan put can be regarded as a perpetual American put, for which the closed-form pricing
formula has been derived by Merton (1973). The correctness of the proposed method can thus be confirmed if our method can
generate accurate option prices for a perpetual American put as τ approaches zero. To demonstrate this point, we perform a
regression for the values of perpetual Bermudan puts over τ.

For each set of option parameters (S0,X,r,q,σ) in Table 1, we specifically regress the perpetual Bermudan put values generated
by our method over τ and τ2, that is:

Option value ¼ γ0 þ γ1τ þ γ2τ
2 þ ετ,

where ετ is a standard white noise. As such, γ0, the regression intercept (representing the perpetual Bermudan put value as τ
approaches zero), should reflect the corresponding perpetual American put value. Table 2 reports the results of this quadratic
regression analysis for all option contracts in Table 1 (Appendix A) and compares the regression intercepts with the analytical
option prices of perpetual American puts derived according to Merton (1973). We employ not only the option prices generated
from the proposed method (with (H,F) = (40,300) and (H,F) = (60,300)), but also the benchmark option values in Table 1 to
perform this quadratic regression analysis. Note first that the extremely high R2 in Table 2 implies that the perpetual Bermudan
put prices generated by our method can converge almost perfectly to the corresponding perpetual American put prices when τ
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approaches zero, and so the intercept can be an accurate approximation for the price of a perpetual American put. As a matter of
fact, all RMSREs between the regression intercepts and the corresponding perpetual American put values are fairly small and
less than 0.0075% in Table 2.

Last, we discuss the issue of determining n, which is the number of abscissas in the holding region. Recall that we assume that
the value of n is proportional to τ−0.25 in Equation (7), where τ is the time interval between two neighboring exercisable time points.
The reason for this assumption is to ensure that the option price errors corresponding to different τ are of similarmagnitude given all
other option parameters being fixed. Table 3 employs the 13–18th (illustrative cases for r< q) and 73rd–78th (illustrative cases for
r> q) option contracts in Table 1 (Appendix A) as examples to illustrate how to determine the relationship between n and τ.

To generate Table 3, we first evaluate the option contracts (with different τ= 0.004, 0.02, 0.083, 0.25, 0.5, and 1) with n being
5000, 6000, ..., 25000 given H= 60. Second, we take the relative option price error of τ= 1 and n= 5000 as a reference point11

and next derive the values of n such that in the cases of τ= 0.004, 0.02, 0.083, 0.25, and 0.5, their relative option price errors are
the same as this reference point. For instance, in Panel (a) of Table 3, since the relative option price error of τ= 1 and n= 5000 is
−167E-10, to obtain the value of n for the case of τ= 0.5, we apply the linear interpolation on the relative option price errors
corresponding to n= 6000 and 7000 (that is, −179E-10 and −132E-10) to derive that when n= 6252, the relative option price
error of τ= 0.5 equals −167E-10. Finally, we perform the least-squares regression for the logarithmic values of the obtained
interpolated values of n over 1n(τ), for τ= 0.004, 0.02, 0.083, 0.25, 0.5, and 1. In Panel (a) of Table 3, the regression result is
1n(n) =−0.2725 × 1n(τ) + 8.5480 with R2 = 0.9986. The extremely high R2 implies an almost linear relation between 1n(n) and
1n(τ). Thus, the regression coefficient in front of 1n(τ) can be used to determine the exponent of τ in Equation (7). In Panels (a)
and (b) of Table 3, the slope coefficients are−0.2725 and−0.2717, respectively. Among our experiments for all option contracts
in Table 1 (Appendix A), the slope coefficients are all around −0.25. As a result, to determine the value of n in Equation (7), we
assume that n is proportional to τ−0.25.

TABLE 3 Error analyses and linear regression of 1n(n) over 1n(τ) under the PD process

Panels (a) and (b) illustrate the error analyses of different values of the number of abscissas, n, for contracts 13–18 (representative cases for r< q) and contracts 73–78
(representative cases for r> q) in Table 1 (Appendix A), respectively. The value ofH is fixed as 60. For each set of contracts, we identify the interpolated value of n for each
τ such that the errors for all τ are identical as the error given τ= 1 and n= 5000. Next, we regress the logarithm of those interpolated values of n over the logarithm of the
corresponding τ. The slope coefficients are −0.2725 and −0.2717 for each set of option contracts, respectively.

11The choice of this reference point is simply for convenience. With this setting, it is not necessary to derive the interpolated n for the case of τ= 1. In
fact, one can select any arbitrary reference point to obtain similar results.
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Note that this assumption of n being proportional to τ−0.25 is critically important for all of the error analyses in this
paper. If a different assumption is adopted, for example, assuming n is proportional to τ−0.5,12 then one will allocate far
more than enough nodes in the holding region when τ is short. Therefore, the pricing error for an option contract with a
shorter τ will be significantly smaller than that with a longer τ. As a consequence, under the assumption that n is
proportional to τ−0.5, it is meaningless to compare the performance of different models by comparing the RMSRE results
since all RMSRE results in, for example, Table 1 and Figure 1 will be solely dominated by the comparatively large pricing
errors for τ = 1.

3.2 | Option values and critical stock prices when jumps are presenting

For the LJD and the LJDR process, our method possesses an incomparable advantage in evaluating PBOs. To the best of our
knowledge, most studies in the literature on pricing PBOs consider only the PD processes, and there is no feasible method able to
evaluate PBOs even under the LJD process. The following two subsections demonstrate the pricing results of the proposed
method under the LJD process and the LJDR process.

3.2.1 | Option values and critical stock prices under the LJD processes

Table 4 presents the values of PBOs under the LJD process based by our method. The examined option contracts are adapted
from Table I of Amin (1993) and Table 2 of Ju (1998). In addition to the values of perpetual Bermudan puts under the LJD

TABLE 4 Option values of perpetual Bermudan puts under the LJD process (λ2 = 0)

This table reports the values of perpetual Bermudan puts based on our method under the LJD process in Merton (1976). The option parameters are adapted from Table 2 of
Ju (1998) and Table I of Amin (1993). We compute the prices of perpetual Bermudan puts at the exercisable time point, that is, T= 0 in Equation (15). In addition to the
values of perpetual Bermudan puts under the LJD process reported in columns 1–7, we also report the prices of perpetual Bermudan puts under the PD process with a
comparably expected total variance in the lognormal jump-diffusion case for comparison in columns 8–14. The values of comparably expected total variance are derived via
σ2 þ λ1 μ2J þ σ2J

� �
as suggested in Amin (1993).

12Note that Andricopoulos et al. (2003) suggest that n can be determined in proportion to τ−0.5 in their universal option pricing model based on the
Simpson quadrature method.
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process reported in columns 1–7, the values of perpetual Bermudan puts under the PD process with comparably expected total
variances13 are also listed for comparison in columns 8–14.

We first note that the proposed method with (H,F) = (60,150) or (40,150) can generate fairly accurate option prices.
Here, the RMSREs versus the benchmark option values are 0.0000019% and 0.0000026% for (H,F) = (60,150) and
(40,150), respectively.14 The RMSREs exhibit similar magnitudes for the LJD process and the corresponding PD
process if we control the expected total variance. By comparing the option prices under the LJD process and the
corresponding PD process, the option prices with jumps are lower than those without jumps by 0.09 dollars on average,
which represents about 0.5% of the option prices with jumps. This phenomenon is consistent with the results in Table I
of Amin (1993) where the American put prices under the PD process with comparably expected total variances are more
expensive than those under the corresponding LJD process when the time to maturity is long.

We further employ the same option contracts in Table 4 to conduct accuracy and speed analyses for different
combinations of H(=40,60) and F(=100,150,200) in Figure 2. The results are consistent with our expectation that with
an increase of H and F, more computational time is required and the option values will further converge to the
benchmark. By comparing to Figure 1, it is worth noting that the convergence pattern of option prices generated by our
method are alike under either the PD process or the LJD process. Nevertheless, in order to obtain comparable accuracy
levels based on our method under the pure diffusion and the LJD processes, more time is unavoidably consumed when
the underlying asset price is posited to follow the LJD process.

For the same option contracts in Table 4, Table 5 reports the critical stock prices of perpetual Bermudan puts
generated by the proposed approach under the LJD process. Note first that our method with either (H,F) = (60,150) or
(40,150) can generate accurate estimations for the critical stock prices of perpetual Bermudan puts. Here, the RMSREs
versus the benchmark critical stock prices are 0.0001094% and 0.0001640% for our method with (H,F) = (60,150) or
(40,150), respectively. Moreover, the critical stock prices under the LJD process are higher than those under the
corresponding PD process. This phenomenon is reasonable, because, as shown in Table 4, the perpetual Bermudan puts
are cheaper under the LJD process than under the PD process, the option holders is apt to exercise the perpetual
Bermudan puts earlier, and thus the critical stock prices should be higher. The detailed explanation of this phenomenon
can refer to Figure 5 of Amin (1993).

Similar to the PD process case in Section 3.1, we intend to identify the relation between the number of abscissas in
the holding region, n, and the time interval between two consecutive exercisable time points, τ, under the LJD process

FIGURE 2 Speed-Accuracy Analysis for our Method with Different H and F under the LJD process: Figure 2 compares the accuracy and
speed of our method with different H and F to price perpetual Bermudan options under the LJD process. We employ the speed (number of
options priced per second) and the root mean squared relative errors (RMSREs) of our method (with different combinations of H= 40,60 and
F= 100,150,200) for the option contracts in Table 4 to plot this figure

13We follow the suggestion in Amin (1993) to derive the values of comparably expected total variance via σ2 þ λ1 μ2J þ σ2J
� �

.
14The reason why we suggest F= 150 (rather than F= 300) for the LJD process is that according to our preliminary tests, F= 150 is sufficient to generate
option values under the LJD process as accurately as those under the PD process in Table 1.
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TABLE 5 Critical stock prices of perpetual Bermudan puts under the LJD process (λ2 = 0)

Table 5 reports the critical stock prices of perpetual Bermudan puts generated by our method under Merton's (1976) LJD process and the corresponding PD process with a
comparably expected total variance. All option parameters are the same as those in Table 4. The critical stock prices under the LJD process generated from our method are
shown in columns 5 and 7. The pure diffusion counterparts with the expected total variance of σ2 þ λ1 μ2J þ σ2J

� �
are reported in columns 12 and 14 for comparison.

TABLE 6 Error analyses and linear regression of 1n(n) over 1n(τ) under the LJD process

Panels (a) and (b) of Table 6 present the error analyses of different values of the number of abscissas, n, for contracts 7–12 (representative cases for r< q) and contracts 25–
30 (representative cases for r> q) in Table 4, respectively. The value ofH is fixed as 60. For each set of contracts, we identify the interpolated value of n for each τ such that
the errors for all τ are identical as the error given τ= 1 and n= 5000. Next, we regress the logarithm of those interpolated values of n over the logarithm of the corresponding
τ. The slope coefficients are −0.2717 and −0.2599 for each set of contracts. The results are similar to those under the PD process in Table 3.
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TABLE 7 Option values of perpetual Bermudan puts under the LJDR process

Option parameters (with jump and default)

(r, q, σ) (S0, X) (λ1, μJ, σJ, λ2) τ

Benchmark option
values

Our method (H= 60,
F= 150)

Our method (H= 40,
F= 150)

(0.08, 0.12, 0.223607) (40, 45) (5, −0.025,
0.223607, 0.05)

0.004 25.2819819 25.2819812 25.2819808

(0.08, 0.12, 0.223607) (40, 45) (5, −0.025,
0.223607, 0.05)

0.02 25.2547308 25.2547302 25.2547299

(0.08, 0.12, 0.223607) (40, 45) (5, −0.025,
0.223607, 0.05)

0.083 25.1483683 25.1483678 25.1483675

(0.08, 0.12, 0.223607) (40, 45) (5, −0.025,
0.223607, 0.05)

0.25 24.8754464 24.8754459 24.8754458

(0.08, 0.12, 0.223607) (40, 45) (5, −0.025,
0.223607, 0.05)

0.5 24.4789000 24.4788996 24.4788996

(0.08, 0.12, 0.223607) (40, 45) (5, −0.025,
0.223607, 0.05)

1 23.7197658 23.7197654 23.7197655

(0.08, 0.12, 0.223607) (40, 40) (5, −0.025,
0.223607, 0.05)

0.004 22.0119532 22.0119526 22.0119523

(0.08, 0.12, 0.223607) (40, 40) (5, −0.025,
0.223607, 0.05)

0.02 21.9886646 21.9886641 21.9886639

(0.08, 0.12, 0.223607) (40, 40) (5, −0.025,
0.223607, 0.05)

0.083 21.8977337 21.8977333 21.8977331

(0.08, 0.12, 0.223607) (40, 40) (5, −0.025,
0.223607, 0.05)

0.25 21.6642499 21.6642495 21.6642494

(0.08, 0.12, 0.223607) (40, 40) (5, −0.025,
0.223607, 0.05)

0.5 21.3247010 21.3247007 21.3247007

(0.08, 0.12, 0.223607) (40, 40) (5, −0.025,
0.223607, 0.05)

1 20.6732840 20.6732837 20.6732838

(0.08, 0.12, 0.223607) (40, 35) (5, −0.025,
0.223607, 0.05)

0.004 18.8348451 18.8348446 18.8348444

(0.08, 0.12, 0.223607) (40, 35) (5, −0.025,
0.223607, 0.05)

0.02 18.8153306 18.8153302 18.8153300

(0.08, 0.12, 0.223607) (40, 35) (5, −0.025,
0.223607, 0.05)

0.083 18.7391029 18.7391025 18.7391023

(0.08, 0.12, 0.223607) (40, 35) (5, −0.025,
0.223607, 0.05)

0.25 18.5432203 18.5432200 18.5432200

(0.08, 0.12, 0.223607) (40, 35) (5, −0.025,
0.223607, 0.05)

0.5 18.2580729 18.2580727 18.2580727

(0.08, 0.12, 0.223607) (40, 35) (5, −0.025,
0.223607, 0.05)

1 17.7099960 17.7099958 17.7099959

(0.08, 0, 0.223607) (40, 45) (5, −0.025,
0.223607, 0.05)

0.004 22.8893622 22.8893618 22.8893616

(0.08, 0, 0.223607) (40, 45) (5, −0.025,
0.223607, 0.05)

0.02 22.8651958 22.8651954 22.8651952

(0.08, 0, 0.223607) (40, 45) (5, −0.025,
0.223607, 0.05)

0.083 22.7700304 22.7700301 22.7700299

(0.08, 0, 0.223607) (40, 45) (5, −0.025,
0.223607, 0.05)

0.25 22.5236245 22.5236242 22.5236241

(0.08, 0, 0.223607) (40, 45) (5, −0.025,
0.223607, 0.05)

0.5 22.1641805 22.1641802 22.1641803

(0.08, 0, 0.223607) (40, 45) (5, −0.025,
0.223607, 0.05)

1 21.4764946 21.4764943 21.4764944

(0.08, 0, 0.223607) (40, 40) (5, −0.025,
0.223607, 0.05)

0.004 19.8718984 19.8718981 19.8718980

(0.08, 0, 0.223607) (40, 40) (5, −0.025,
0.223607, 0.05)

0.02 19.8515287 19.8515284 19.8515283

(Continues)
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by controlling pricing errors. We take the 7–12th contracts (representative cases for r < q) and the 25–30th contracts
(representative cases for r > q) in Table 4 as examples to conduct the same regression analysis as that in Table 3. Table 6
shows that the regression results are 1n(n) = −0.2717 × 1n(τ) + 8.5515 with R2 = 0.9982 for r < q and 1n-
(n) = −0.2599 × 1n(τ) + 8.5500 with R2 = 0.9985 for r > q, respectively. Since the regression coefficients in front of
1n(τ) are around −0.25 for all parameter sets, this suggests that n should be in proportion to τ−0.25 when pricing PBOs
under the LJD process.

3.2.2 | Option values and critical stock prices under the LJDR processes

For the comparison purpose, this subsection reexamines the option contracts with the lognormal jumps in Table 4 by further
considering a nonzero value of λ2. The default intensity λ2 is assumed to be 0.05, which means the average time to encounter
the default event is around 20 years. The numerical results under the LJDR process are shown in Table 7. The RMSREs of
our method with either (H,F) = (60,150) or (40,150) are extremely small, which are 0.0000016% and 0.0000023%,
respectively. By comparing Tables 4 and 7, it can be found first that PBOs become more valuable with the presence of
default. Under λ2 = 0.05, the option values increase by 24% on average. The significant rise in option values implies the
importance to consider the possibility of default. These results can be expected since we assume that in the default event,
holders of perpetual Bermudan puts can receive (X− St+τ)

+ = X due to St+τ= 0. Moreover, the influence of default risk is

TABLE 7 (Continued)

Option parameters (with jump and default)

(r, q, σ) (S0, X) (λ1, μJ, σJ, λ2) τ

Benchmark option
values

Our method (H= 60,
F= 150)

Our method (H= 40,
F= 150)

(0.08, 0, 0.223607) (40, 40) (5, −0.025,
0.223607, 0.05)

0.083 19.7712969 19.7712967 19.7712965

(0.08, 0, 0.223607) (40, 40) (5, −0.025,
0.223607, 0.05)

0.25 19.5634080 19.5634078 19.5634077

(0.08, 0, 0.223607) (40, 40) (5, −0.025,
0.223607, 0.05)

0.5 19.2597307 19.2597305 19.2597305

(0.08, 0, 0.223607) (40, 40) (5, −0.025,
0.223607, 0.05)

1 18.6773194 18.6773192 18.6773193

(0.08, 0, 0.223607) (40, 35) (5, −0.025,
0.223607, 0.05)

0.004 16.9652399 16.9652396 16.9652395

(0.08, 0, 0.223607) (40, 35) (5, −0.025,
0.223607, 0.05)

0.02 16.9484072 16.9484070 16.9484069

(0.08, 0, 0.223607) (40, 35) (5, −0.025,
0.223607, 0.05)

0.083 16.8820903 16.8820901 16.8820899

(0.08, 0, 0.223607) (40, 35) (5, −0.025,
0.223607, 0.05)

0.25 16.7101176 16.7101174 16.7101173

(0.08, 0, 0.223607) (40, 35) (5, −0.025,
0.223607, 0.05)

0.5 16.4585324 16.4585322 16.4585322

(0.08, 0, 0.223607) (40, 35) (5, −0.025,
0.223607, 0.05)

1 15.9746582 15.9746580 15.9746581

RMSRE vs. Benchmark
(all)

0.0000016% 0.0000023%

RMSRE vs. Benchmark
(r≤ q)

0.0000019% 0.0000027%

RMSRE vs. Benchmark
(r> q)

0.0000013% 0.0000018%

Time (sec.) 240,643 130,791

This table reports the values of perpetual Bermudan puts based on our method under the LJDR process. The option parameters (except λ2) are adapted from Table 2 of Ju
(1998) and Table I of Amin (1993).We compute the prices of perpetual Bermudan puts at the exercisable time point, that is, T= 0 in Equation (15). Themethod described in
Appendix B is employed to derive the benchmark option values.
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relatively minor for option contracts with r< q (option values increasing by 15%) and more significantly for option contracts
with r > q (option values increasing by 33%). The reason behind this phenomenon is because when r < q (r > q), the drift
term of the stock price process is inclined to be negative (positive) and the possibility to meet a very low stock price in a long
run is relatively high (low). Consequently, the marginal benefit of introducing the event of default (to increase the payoff due
to the occurrence of zero stock price) is less pronounced for the cases of r< q. Last, one can observe that even with
the presence of default, the pricing errors of our method shown in Table 7 are of similar magnitude with those in Table 4.
In the meanwhile, it costs less computational time under the LJDR process. One possible explanation for this improvement
in convergence rate under the LJDR process is due to assuming EVGD(St,τ), part of the Bermudan option value, as a
constant.

In addition, Figure 3 conducts the accuracy and speed analysis for the option contracts in Table 7. The results with default in
Figure 3 are very similar to the results in Figure 2. By taking all of the results in Figures 1–3 into consideration, we conclude that
the accuracy performance of our method is consistent for the PD, the LJD, the LJDR processes, although more computational
time is needed when the jumps are considered.

Table 8 presents the critical stock prices of the option contracts in Table 7 under the LJDR process. It can be found that our
method with either (H,F) = (60,150) or (40,150) can generate accurate critical stock prices of perpetual Bermudan puts. We find
that the RMSREs in Table 8 are very similar to those in Table 5. Moreover, the critical stock prices under the LJDR process in
Table 8 are lower than those under the LJD process in Table 5. This phenomenon is because, as suggested from the first
component in Equation (4), the holding values of perpetual Bermudan puts would be larger due to the default event and thus less
likely to be early exercised under the LJDR model.

For the LJDR process, we are also interested in the relation between the number of abscissas in the holding region, n, and the
time interval between two consecutive exercisable time points, τ. Following the same methodology to generate Tables 3 and 6,
we take the 7–12th contracts (representative cases for r< q) and the 25–30th contracts (representative cases for r> q) in Table 7
as examples to produce Table 9. Table 9 shows that the regression results for these two sets of parameters are
1n(n) =−0.3115 × 1n(τ) + 8.5438 with R2 ¼ 0:9988 for r < q and 1n(n) =−0.2722 × 1n(τ) + 8.5398 with R2 ¼ 0:9993 for
r > q, respectively. By observing all the results in Tables 3, 6, and 9, the regression coefficients in front of ln τð Þ are always near
−0.25 regardless of considering the PD, the LJD, or the LJDR processes. These results attest the correctness of our method to
assume that n is proportional to τ−0.25 in Equation (7).

3.2.3 | Perpetual American put values under the LJD and the LJDR processes

We lastly perform quadratic regression analyses of the option values over τ (just like what we do in Table 2) under the LJD and
the LJDR processes in Table 10. The intercept coefficients can be interpreted as option values of PBOs when τ approaches zero,

FIGURE 3 Speed-Accuracy Analysis for our Method with Different H and F under the LJDR process: Figure 3 compares the
accuracy and speed of our method with different combinations of H = 40,60 and F = 100,150,200 to price perpetual Bermudan options
under the LJDR process. The speed is measured by the number of options priced per second, and the accuracy is measured by the root
mean squared relative errors (RMSREs). This figure is generated based on the pricing results for the option contracts with nonzero λ1 and
λ2 in Table 7
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TABLE 8 Critical stock prices of perpetual Bermudan puts under the LJDR process

Option parameters (with Jump and Default)

(r, q, σ) (S0, X) (λ1, μJ, σJ, λ2) τ

Benchmark Critical
Stock Prices

Our Method (H= 60,
F= 150)

Our Method (H= 40,
F= 150)

(0.08, 0.12, 0.223607) (40, 45) (5, −0.025,
0.223607, 0.05)

0.004 11.1052644 11.1052966 11.1053128

(0.08, 0.12, 0.223607) (40, 45) (5, −0.025,
0.223607, 0.05)

0.02 11.4758796 11.4758916 11.4758975

(0.08, 0.12, 0.223607) (40, 45) (5, −0.025,
0.223607, 0.05)

0.083 12.2404035 12.2404077 12.2404099

(0.08, 0.12, 0.223607) (40, 45) (5, −0.025,
0.223607, 0.05)

0.25 13.4616476 13.4616493 13.4616498

(0.08, 0.12, 0.223607) (40, 45) (5, −0.025,
0.223607, 0.05)

0.5 14.7586445 14.7586454 14.7586453

(0.08, 0.12, 0.223607) (40, 45) (5, −0.025,
0.223607, 0.05)

1 16.6969805 16.6969810 16.6969808

(0.08, 0.12, 0.223607) (40, 40) (5, −0.025,
0.223607, 0.05)

0.004 9.8713461 9.8713748 9.8713891

(0.08, 0.12, 0.223607) (40, 40) (5, −0.025,
0.223607, 0.05)

0.02 10.2007819 10.2007925 10.2007978

(0.08, 0.12, 0.223607) (40, 40) (5, −0.025,
0.223607, 0.05)

0.083 10.8803587 10.8803624 10.8803643

(0.08, 0.12, 0.223607) (40, 40) (5, −0.025,
0.223607, 0.05)

0.25 11.9659090 11.9659105 11.9659110

(0.08, 0.12, 0.223607) (40, 40) (5, −0.025,
0.223607, 0.05)

0.5 13.1187951 13.1187959 13.1187959

(0.08, 0.12, 0.223607) (40, 40) (5, −0.025,
0.223607, 0.05)

1 14.8417604 14.8417609 14.8417607

(0.08, 0.12, 0.223607) (40, 35) (5, −0.025,
0.223607, 0.05)

0.004 8.6374278 8.6374529 8.6374655

(0.08, 0.12, 0.223607) (40, 35) (5, −0.025,
0.223607, 0.05)

0.02 8.9256841 8.9256934 8.9256981

(0.08, 0.12, 0.223607) (40, 35) (5, −0.025,
0.223607, 0.05)

0.083 9.5203138 9.5203171 9.5203188

(0.08, 0.12, 0.223607) (40, 35) (5, −0.025,
0.223607, 0.05)

0.25 10.4701704 10.4701717 10.4701721

(0.08, 0.12, 0.223607) (40, 35) (5, −0.025,
0.223607, 0.05)

0.5 11.4789457 11.4789464 11.4789464

(0.08, 0.12, 0.223607) (40, 35) (5, −0.025,
0.223607, 0.05)

1 12.9865404 12.9865408 12.9865406

(0.08, 0, 0.223607) (40, 45) (5, −0.025,
0.223607, 0.05)

0.004 14.0163652 14.0163881 14.0163996

(0.08, 0, 0.223607) (40, 45) (5, −0.025,
0.223607, 0.05)

0.02 14.3624886 14.3624973 14.3625017

(0.08, 0, 0.223607) (40, 45) (5, −0.025,
0.223607, 0.05)

0.083 15.1030955 15.1030988 15.1031004

(0.08, 0, 0.223607) (40, 45) (5, −0.025,
0.223607, 0.05)

0.25 16.3188729 16.3188743 16.3188747

(0.08, 0, 0.223607) (40, 45) (5, −0.025,
0.223607, 0.05)

0.5 17.6127668 17.6127676 17.6127676

(0.08, 0, 0.223607) (40, 45) (5, −0.025,
0.223607, 0.05)

1 19.5126806 19.5126810 19.5126809

(0.08, 0, 0.223607) (40, 40) (5, −0.025,
0.223607, 0.05)

0.004 12.4589913 12.4590117 12.4590219

(0.08, 0, 0.223607) (40, 40) (5, −0.025,
0.223607, 0.05)

0.02 12.7666565 12.7666643 12.7666682

(Continues)
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which should theoretically be the perpetual American option prices. Note that this novel way to apply our method is highly
important, because to the best of our knowledge, there is no literature available to compute the option value of a perpetual
American option under Merton's (1976) LJD process and the LJDR process. In Table 10, it is first observed that the R2 values are
extremely high, which demonstrates the exact convergence of perpetual Bermudan put prices to perpetual American put prices
under the LJD and the LJDR processes. Moreover, the differences between the intercept coefficients based on the benchmark
option values and those of our method (with (H,F) = (40,150) or (60,150)) are minor and within 1.0E-6. Thus, the approximated
perpetual American put prices based on our method can be expected to converge accurately. Recall that under the PD process in
Table 2, our regression-based approximations for perpetual American put prices under the PD process are highly accurate, with
RMSREs smaller than 0.0075%. These results together strengthen our confidence on the accuracy of our regression-based
approximations for perpetual American put prices under the LJD and the LJDR processes.

4 | CONCLUSION

This paper proposes a simple yet efficient and accurate method for pricing PBOs under the LJDR processes. Under the
degenerated case of the PD process, the accuracy and efficiency of our method is verified by comparing with the finite difference
method and theMBAmethod proposed byMuthuraman (2008). Under the LJD and the LJDR processes, the proposed method is
the first feasible one that is able to value PBOs. Our method retains excellent performance in accuracy under the LJD and the

TABLE 8 (Continued)

Option parameters (with Jump and Default)

(r, q, σ) (S0, X) (λ1, μJ, σJ, λ2) τ

Benchmark Critical
Stock Prices

Our Method (H= 60,
F= 150)

Our Method (H= 40,
F= 150)

(0.08, 0, 0.223607) (40, 40) (5, −0.025,
0.223607, 0.05)

0.083 13.4249738 13.4249767 13.4249781

(0.08, 0, 0.223607) (40, 40) (5, −0.025,
0.223607, 0.05)

0.25 14.5056648 14.5056660 14.5056664

(0.08, 0, 0.223607) (40, 40) (5, −0.025,
0.223607, 0.05)

0.5 15.6557927 15.6557935 15.6557934

(0.08, 0, 0.223607) (40, 40) (5, −0.025,
0.223607, 0.05)

1 17.3446049 17.3446053 17.3446052

(0.08, 0, 0.223607) (40, 35) (5, −0.025,
0.223607, 0.05)

0.004 10.9016174 10.9016352 10.9016442

(0.08, 0, 0.223607) (40, 35) (5, −0.025,
0.223607, 0.05)

0.02 11.1708245 11.1708313 11.1708347

(0.08, 0, 0.223607) (40, 35) (5, −0.025,
0.223607, 0.05)

0.083 11.7468521 11.7468546 11.7468559

(0.08, 0, 0.223607) (40, 35) (5, −0.025,
0.223607, 0.05)

0.25 12.6924567 12.6924578 12.6924581

(0.08, 0, 0.223607) (40, 35) (5, −0.025,
0.223607, 0.05)

0.5 13.6988186 13.6988193 13.6988192

(0.08, 0, 0.223607) (40, 35) (5, −0.025,
0.223607, 0.05)

1 15.1765293 15.1765297 15.1765296

RMSRE vs.
Benchmark (all)

0.0001032% 0.0001548%

RMSRE vs.
Benchmark (r≤ q)

0.0001270% 0.0001904%

RMSRE vs.
Benchmark (r> q)

0.0000720% 0.0001080%

Time (s) 240,643 130,791

Table 8 reports the critical stock prices of perpetual Bermudan puts based on our method under the LJDR process. The option parameters (except λ2) are adapted from
Table 2 of Ju (1998) and Table I of Amin (1993). The benchmark critical stock prices are computed using the detailed procedure described in Appendix B.
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LJDR processes. Moreover, we propose a novel way to price perpetual American options under these two processes. A quadratic
regression analysis of the option value over the time interval between two consecutive exercisable time points is performed, and
the intercept coefficients can be employed to accurately estimate perpetual American option prices due to the extremely high R-
squared values (higher than 0.9999). To the best of our knowledge, the proposed method herein is also the first one to obtain the
option values of perpetual American options under the LJD and the LJDR process.

TABLE 9 Error Analyses and Linear Regression of 1n(n) over 1n(τ) under the LJDR process

Panels (a) and (b) of Table 9 present the error analyses of different values of the number of abscissas, n, for contracts 7–12 (representative cases for r < q) and
contracts 25–30 (representative cases for r > q) in Table 7, respectively. The value of H is fixed as 60. For each set of contracts, we identify the interpolated
value of n for each τ such that the errors for all τ are identical as the error given τ = 1 and n = 5000. Next, we regress the logarithm of those interpolated values
of n over the logarithm of the corresponding τ. The slope coefficients are −0.3115 and −0.2722 for each set of contracts. The results are similar to those under
the LJD process in Table 6.

TABLE 10 Approximations of perpetual American put prices under the LJD and the LJDR processes

Table 10 presents the results of the approximate perpetual American put prices generated by our method under the LJD and the LJDR processes. Given the
perpetual Bermudan put prices of our method in Tables 4 and 7, we conduct quadratic regressions of our perpetual Bermudan put values over different
intervals between two consecutive exercisable time points, τ. The intercepts of those quadratic regressions can be employed to approximate perpetual
American put prices, because perpetual Bermudan put prices converge theoretically to perpetual American put prices if the inter-exercise interval, τ,
approaches zero. In addition to using the option values generated by our method (with (H,F) = (40,150) and (60,150)), we also employ the benchmark option
values as inputs for the quadratic regression. The last three columns compare the option values in the case of τ = 0.004 (corresponding to daily exercisable)
based on our method and the benchmark results reported in Tables 4 and 7.
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Appendix B

Benchmark option values and S* of perpetual Bermudan puts
This paper proposes a regression-based extrapolation approach to determine the benchmarks of the option value and the

critical stock price of a perpetual Bermudan put. We perform quadratic regressions for option values or critical stock prices over
1/n and adopt intercept results as benchmarks. The reasons for considering the values n being 6000, 7000, . . ., 11000 are as
follows. First, we find that the option prices of perpetual Bermudan puts based on our method can converge monotonically when
the number of abscissas in the holding region, n, is larger than 5000. Second, we distinguish that themarginal improvement when
n= 6000 is significant in comparison to the results of n= 5000. Therefore, we choose the minimum value of n to be 6000 for the
conservative reason as well as for pursuit of accuracy. Third, we also notice that if we need the R-squared value of the quadratic
regression to be higher than 0.999999, then at least six observations are needed. Consequently, we consider the six values of n to
be 6000, 7000, 8000, 9000, 10000, and 11000 for computing the benchmark option value and S* of the perpetual Bermudan put.
Each first five option contracts in Tables 1 (Appendix A), 4, 7 (for the PD process, the LJD process, and the LJDR process,
respectively) are employed to illustrate how to determine the benchmarks of the option value and critical stock price of a
perpetual Bermudan put. The results are shown in Tables B.1 to B.6.

Table B.1Benchmark option values of perpetual Bermudan puts under the PD process: S0 = 80, X= 100, r= 0.08, q= 0.12, and
σ= 0.2

Table B.2 Benchmarks of critical stock prices of perpetual Bermudan puts under the PD process: S0 = 80, X= 100, r= 0.08,
q= 0.12, and σ= 0.2

Table B.3 Benchmark option values of perpetual Bermudan puts under the LJD process: S0 = 40, X= 45, r= 0.08, q= 0.12,
σ= 0.223607, λ1 = 5, μJ=−0.025, and σJ= 0.223607

τ n= 6000 n= 7000 n= 8000 n= 9000 n= 10000 n= 11000
Intercept
(Benchmark)

Coeff. of
(1/n)

Coeff. of
(1/n2) R2

0.004 31.2487267 31.2487287 31.2487300 31.2487309 31.2487316 31.2487320 31.2487343 0.0000890 −272.8201597 1.0000000

0.02 31.2435710 31.2435719 31.2435725 31.2435729 31.2435731 31.2435734 31.2435743 0.0000039 −119.0251434 1.0000000

0.083 31.2224662 31.2224666 31.2224668 31.2224670 31.2224671 31.2224672 31.2224677 −0.0000010 −55.7941488 1.0000000

0.25 31.1641663 31.1641665 31.1641666 31.1641667 31.1641668 31.1641669 31.1641671 −0.0000009 −30.2113117 1.0000000

0.5 31.0719634 31.0719636 31.0719637 31.0719637 31.0719638 31.0719638 31.0719640 −0.0000007 −20.0415874 1.0000000

1 30.8796543 30.8796544 30.8796544 30.8796545 30.8796545 30.8796545 30.8796546 −0.0000005 −12.9539992 1.0000000

τ n= 6000 n= 7000 n= 8000 n= 9000 n= 10000 n= 11000
Intercept
(Benchmark)

Coeff. of
(1/n)

Coeff. of
(1/n2) R2

0.004 50.3723124 50.3721832 50.3720993 50.3720418 50.3720006 50.3719702 50.3718253 0.0001374 17537.2953 1.0000000

0.02 50.8408041 50.8407796 50.8407637 50.8407528 50.8407449 50.8407392 50.8407116 0.0000916 3329.9713 1.0000000

0.083 51.7518023 51.7517970 51.7517935 51.7517912 51.7517895 51.7517882 51.7517822 0.0000292 723.8476 1.0000000

0.25 53.1226448 53.1226433 53.1226423 53.1226416 53.1226411 53.1226407 53.1226390 0.0000093 208.6436 1.0000000

0.5 54.5378687 54.5378681 54.5378676 54.5378673 54.5378671 54.5378670 54.5378662 0.0000041 90.1044 1.0000000

1 56.6576933 56.6576931 56.6576929 56.6576928 56.6576927 56.6576926 56.6576923 0.0000018 36.3426 1.0000000

τ n= 6000 n= 7000 n= 8000 n= 9000 n= 10000 n= 11000
Intercept
(Benchmark)

Coeff. of
(1/n)

Coeff. of
(1/n2) R2

0.004 22.0872745 22.0872759 22.0872768 22.0872774 22.0872779 22.0872782 22.0872798 0.0001649 −189.6177587 1.0000000

0.02 22.0808626 22.0808633 22.0808637 22.0808639 22.0808641 22.0808643 22.0808649 0.0000076 −82.7494335 1.0000000

0.083 22.0552402 22.0552405 22.0552407 22.0552408 22.0552409 22.0552409 22.0552413 −0.0000003 −38.8614260 1.0000000

0.25 21.9865284 21.9865286 21.9865287 21.9865287 21.9865288 21.9865288 21.9865290 −0.0000006 −20.9966655 1.0000000

0.5 21.8809009 21.8809010 21.8809011 21.8809011 21.8809012 21.8809012 21.8809013 −0.0000005 −13.8585921 1.0000000

1 21.6645248 21.6645248 21.6645249 21.6645249 21.6645249 21.6645249 21.6645250 −0.0000004 −8.8228748 1.0000000
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Table B.4 Benchmarks of critical stock prices of perpetual Bermudan puts under the LJD process: S0 = 40, X= 45, r= 0.08,
q= 0.12, σ= 0.223607, λ1 = 5, μJ=−0.025, and σJ = 0.223607

Table B.5 Benchmark option values of perpetual Bermudan puts under the LJDR process: S0 = 40, X= 45, r= 0.08, q= 0.12,
σ= 0.223607, λ1 = 5, μJ=−0.025, σJ= 0.223607, and λ2 = 0.05

Table B.6 Benchmarks of critical stock prices of perpetual Bermudan puts under the LJDR process: S0 = 40, X= 45, r= 0.08,
q= 0.12, σ= 0.223607, λ1 = 5, μJ=−0.025, σJ= 0.223607, and λ2 = 0.05

τ n= 6000 n= 7000 n= 8000 n= 9000 n= 10000 n= 11000
Intercept
(Benchmark) Coeff. of (1/n)

Coeff. of
(1/n2) R2

0.004 12.1653463 12.1652363 12.1651649 12.1651160 12.1650810 12.1650551 12.1649318 −0.000416493 14925.14644 1.0000000

0.02 12.3321705 12.3321522 12.3321403 12.3321322 12.3321264 12.3321221 12.3321015 4.24797E−05 2484.118657 1.0000000

0.083 12.7293940 12.7293908 12.7293887 12.7293873 12.7293863 12.7293855 12.7293819 1.63498E−05 435.6919592 1.0000000

0.25 13.4557444 13.4557437 13.4557432 13.4557428 13.4557426 13.4557424 13.4557415 4.55009E−06 103.1432167 1.0000000

0.5 14.3016403 14.3016400 14.3016398 14.3016397 14.3016396 14.3016395 14.3016392 1.85408E−06 41.25276750 1.0000000

1 15.6595502 15.6595500 15.6595500 15.6595499 15.6595499 15.6595498 15.6595497 7.43466E−07 16.38533495 1.0000000

τ n= 6000 n= 7000 n= 8000 n= 9000 n= 10000 n= 11000 Intercept (Benchmark)
Coeff. of
(1/n)

Coeff. of
(1/n2) R2

0.004 25.2819745 25.2819764 25.2819777 25.2819786 25.2819792 25.2819797 25.2819819 0.0001146 −267.1763813 1.0000000

0.02 25.2547278 25.2547286 25.2547291 25.2547295 25.2547297 25.2547299 25.2547308 0.0000051 −106.7254484 1.0000000

0.083 25.1483671 25.1483674 25.1483676 25.1483677 25.1483678 25.1483679 25.1483683 −0.0000007 −43.9345320 1.0000000

0.25 24.8754458 24.8754459 24.8754460 24.8754461 24.8754461 24.8754462 24.8754464 −0.0000006 −21.1985448 1.0000000

0.5 24.4788996 24.4788997 24.4788998 24.4788998 24.4788999 24.4788999 24.4789000 −0.0000005 −13.1819635 1.0000000

1 23.7197655 23.7197656 23.7197656 23.7197657 23.7197657 23.7197657 23.7197658 −0.0000003 −7.9360837 1.0000000

τ n= 6000 n= 7000 n= 8000 n= 9000 n= 10000 n= 11000
Intercept
(Benchmark) Coeff. of (1/n)

Coeff. of
(1/n2) R2

0.004 11.1056125 11.1055202 11.1054602 11.1054191 11.1053897 11.1053679 11.1052644 −0.000454781 12536.38575 1.000000

0.02 11.4759373 11.4759220 11.4759121 11.4759052 11.4759004 11.4758968 11.4758796 2.80691E-05 2078.849451 1.000000

0.083 12.2404135 12.2404109 12.2404091 12.2404080 12.2404071 12.2404065 12.2404035 1.33107E-05 361.6845075 1.000000

0.25 13.4616499 13.4616493 13.4616489 13.4616486 13.4616484 13.4616483 13.4616476 3.26972E-06 84.29330193 1.000000

0.5 14.7586454 14.7586451 14.7586450 14.7586449 14.7586448 14.7586447 14.7586445 1.53350E-06 33.0858506 1.000000

1 16.6969808 16.6969807 16.6969807 16.6969806 16.6969806 16.6969806 16.6969805 5.87589E-07 12.7810589 1.000000




