
Au
th

or
 D

ra
ft 

fo
r R

ev
ie

w
 o

nl
y

THE JOURNAL OF DERIVATIVES   1SUMMER 2017

JR-YAN WANG

is an associate professor 
in the Department of 
International Business 
at National Taiwan 
University in Taipei, 
Taiwan.
jryanwang@ntu.edu.tw

TIAN-SHYR DAI

is a professor and chairman 
of the Department of 
Information and Finance 
Management at National 
Chiao Tung University 
in Hsinchu, Taiwan.
cameldai@mail.nctu.edu.tw

A Modified Reduced-Form 
Model with Time-Varying 
Default and Recovery Rates 
and Its Applications in 
Pricing Convertible Bonds
JR-YAN WANG AND TIAN-SHYR DAI

Due to the lack of proper credit derivatives and 
opaque financial status of a reference entity, it is dif-
ficult to accurately estimate recovery rates in reduced-
form models. In addition, most reduced-form models 
adopt a constant recovery rate assumption that fails to 
capture the time-varying dynamics and inverse rela-
tionships between recovery and default rates found 
in empirical studies. Most revisions that incorporate 
this inverse relationship require strict calibration pro-
cedures or limit the wide applicability of reduced-
form models due to introducing complexity models 
involving stochastic processes. The authors propose 
a notion of the expected recovery rate conditional on 
the default rate by combining a regression relation-
ship between these two rates and a transformation 
between default rates under the physical and risk-
neutral measures. This notion can be simply incorpo-
rated into any reduced-form model to simultaneously 
produce reliable time-varying recovery and default 
rates. To demonstrate their idea, they revise Jarrow 
and Turnbull’s [1995] reduced-form model used in 
Chambers and Lu [2007] for pricing convertible 
bonds. The resulting tree structure is also adjusted to 
alleviate the infeasible branching probability problem.

The evaluation of default risk has 
become more important, espe-
cially after the financial crisis of 
2008. Credit risk can be modeled 

by structural models or reduced-form 
models. This article proposes a feasible notion 
that can be incorporated into any reduced-
form model to produce reliable recovery and 
default rates.

The structural models pioneered by 
Merton [1974] and Black and Cox [1976] 
simulate the evolution of a firm’s value and 
debt level and specify the conditions leading 
to default. When a default event occurs, 
debt holders receive only part of the total 
debt obligation, equal to the current f irm 
value minus the bankruptcy cost. The ratio 
between the amount recovered through the 
bankruptcy procedure and the amount of 
total debt obligation is defined as the recovery 
rate. Altman, Resti, and Sironi [2001] show 
that in a structural model, a low (high) firm 
value implies a high (low) default rate and a 
low (high) recovery rate in the default event. 
That is, structural models generally imply an 
inverse relationship between the recovery and 
default rates. In fact, this inverse relationship is 
widely confirmed in many empirical studies, 
including those of Altman et al. [2005]; Hu 
and Perraudin [2006]; Acharya, Bharath, and 
Srinivasan [2007]; and Hamilton et al. [2007].

In contrast, without modeling f irm 
value and its debt level, reduced-form models 
employ certain intensity-based approaches to 
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model the likelihood of default events (default rate) and 
the percentage recovered from default (recovery rate) to 
match observable market variables such as credit spreads. 
Most reduced-form models, such as those of Jarrow 
and Turnbull [1995] and Jarrow, Lando, and Turnbull 
[1997], assume debt holders receive an exogenously 
constant recovery rate in default events and calibrate the 
default rate to match expected default losses. However, 
the constant recovery rate assumption fails to produce 
the aforementioned inverse relationship between the 
recovery and default rates.

A common way to resolve this issue is to introduce 
stochastic recovery rates into reduced-form models. 
Some in this stream of literature even consider a func-
tional relationship between the recovery rate and other 
variables. For instance, Karoui [2007], Gaspar and 
Slinko [2008], and Chiang and Tsai [2010] model both 
recovery and default rates to depend on a set of state 
variables, which may represent related macroeconomic 
or firm-specific factors. However, incorporating com-
plicated stochastic processes into reduced-form models 
may signif icantly raise the complexity of computa-
tion and calibration. Moreover, specif ic relationships 
between the recovery rate and the default rate or other 
variables introduce potential errors in model identifica-
tion and parameter estimation. Both Bakshi, Madan, 
and Zhang [2006] and Das and Hanouna [2009] explic-
itly specify recovery rates as inverse functions of default 
rates. The former approach adopts a heuristic assump-
tion on the relationship between default and recovery 
rates and derives a closed-form model for straight bonds. 
The latter approach is essentially a jump-to-default 
model based on the binomial tree, in which the default 
and recovery rates are properly related to the stock price 
to capture their stylized inverse relationship. However, 
the constant interest rate assumption also makes it dif-
ficult for the latter approach to evaluate interest-rate-
option-embedded securities. In contrast to the above 
models, Schläfer and Uhrig-Homburg [2014] take 
advantage of the fact that credit default swaps (CDSs) 
on a reference entity’s debts of different seniorities face 
identical default risk but different recovery rates to 
separate the default and recovery rates and thus obtain 
recovery rate distributions. Lastly, it is worth noting that 
outstanding CDSs concentrate on firms with BBB or BB 
credit ratings. For firms with other credit ratings, the 
availability and liquidity of CDSs are serious problems 
and limit the applicability of most stochastic recovery 

rate models that require market prices of CDS spreads 
for parameter calibration.

In contrast to stochastic recovery rate models, 
which increase substantially the complexity of reduced-
form models and thus damage the simplicity and 
applicability of reduced-form models, in our article 
we propose a novel notion that can be incorporated 
into all reduced-form models to endogenously deter-
mine the recovery and default rates and to preserve their 
inverse relationship. To achieve this, we introduce a 
relationship between these two rates by converting an 
empirical regression equation between the recovery and 
default rates under the physical probability measure in 
the literature (e.g., Altman et al. [2005]) to the risk-
neutral one with a transformation of default rates under 
different measures (e.g., Hull, Predescu, and White 
[2005]). The resulting relationship can be expressed as 
an expected recovery rate conditional on the risk-neutral 
default rate. If accurate estimates of recovery rates are 
not available, this conditional expected recovery rate 
can be incorporated into any reduced-form model to 
endogenously determine time-varying recovery and 
default rates with an inverse relationship.

Our approach also offers the following advantages. 
First, it no longer requires exogenous estimation of a 
constant recovery rate as in traditional reduced-form 
models or the calibration for parameters as in stochastic 
recovery rate models. This is especially important if the 
reference entity does not have CDSs on its debts or 
if its financial condition is not transparent enough to 
reliably estimate recovery rates. Second, our approach 
properly ref lects the market consensus of recovery rates 
by exactly calibrating the prevailing term structure of 
credit spreads and thus obtains time-varying dynamics 
of recovery rates.1 It is analogous to no-arbitrage interest 
rate models, such as Hull and White’s [1990] model, 
which generate time-varying interest rates to calibrate 
the prevailing term structure of interest rates. In contrast, 
stochastic recovery rate reduced-form models use best-
fit methods for parameter tuning and do not completely 
calibrate the prevailing term structure of credit spreads—
which are analogous to equilibrium interest rate models. 
Third, reduced-form models revised by incorporating 
our regression-based conditional expected recovery rate 
are expected to perform better when pricing a port-
folio of defaultable claims or credit derivatives with 
multiple reference entities because the regression’s pre-
diction errors can be averaged out in large samples. 
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Consequently, the proposed notion is particularly useful 
for f inancial institutions that hold large portfolios of 
loan assets.

To demonstrate how our core idea of the condi-
tional expected recovery rate works, we integrate it into 
the f lexible tree-based reduced-form model proposed by 
Jarrow and Turnbull [1995], hereafter the JT reduced-
form model or simply the JT model. We choose this 
model because the tree-based structure can be easily 
extended to price option-embedded defaultable claims. 
In addition, the unreliability issues for the recovery 
and default rates of reduced-form models inf luence 
option-embedded defaultable claims more severely 
than straight corporate bonds. For a straight corporate 
bond, the expected loss due to the default risk is code-
termined by the recovery and default rates. Even if the 
default rate is poorly calibrated due to the misestimated 
recovery rate, the combinations of the poorly estimated 
default and recovery rates are still sufficient to capture 
the expected default loss of the straight corporate bond. 
However, this is not the case for option-embedded 
defaultable claims. Due to the nonlinear dependence 
of the option payoffs on the default and recovery rates, 
the exercise decisions of the embedded options can be 
significantly inf luenced by the default or recovery rates. 
Therefore, inaccurate estimates of default or recovery 
rates could significantly misprice embedded options in 
defaultable claims.2

Then we demonstrate how our revised JT reduced-
form model is employed to price convertible bonds 
(CBs), which are popular, frequently traded defaultable 
claims with embedded options on interest rates and 
issuers’ stock prices. Traditionally, the default risk for 
pricing CBs can be modeled by the structural model 
(e.g., Brennan and Schwartz [1977, 1980]; Ingersoll 
[1977]). Tsiveriotis and Fernandes [1998] decompose a 
CB value into equity and debt components and evaluate 
the latter component by discounting the corresponding 
payoff with a risky interest rate to ref lect the poten-
tial default risk. Alternatively, Takahashi, Kobayashi, 
and Nakagawa [2001] use the default-adjusted interest 
rate proposed by Duffie and Singleton [1999] to cap-
ture the default risk. The defaultable interest tree of 
the JT model is f irst employed by Hung and Wang 
[2002] to price CBs. They develop a bivariate tree CB 
pricing model that combines the JT model with the 
binomial stock price tree of Cox, Ross, and Rubinstein 
[1979], hereafter referred to as the CRR model. 

Hung and Wang [2002] adopt the interest rate model 
of Black, Derman, and Toy [1990], the BDT model, as a 
foundation for implementing the JT model. In line with 
the JT model, Hung and Wang assume the recovery rate 
to be an exogenously specified constant. Chambers and 
Lu [2007], hereafter the CL model, propose a modified 
tree model that incorporates the correlation between 
the interest rate and the stock price into Hung and 
Wang’s model.

We further improve the CL model in the fol-
lowing two aspects. First, we substitute our conditional 
expected recovery rate for the constant recovery rate to 
allow for the revision of the JT reduced-form model. 
Second, we resolve the infeasible branching prob-
ability problem in the CL model, whose bivariate tree 
model could be invalidated by branching probabilities 
outside the range of [0, 1]. Specifically, a high interest 
rate simulated by the BDT model or a large default 
rate would result in an unexpectedly high growth rate 
for the stock price, thus causing the CRR model to 
produce infeasible branching probabilities. Moreover, 
their adjustment method to calibrate the correlation 
between the interest rate and the stock price could also 
result in infeasible branching probabilities. To solve 
the infeasible branching probability problem, which 
occurs frequently in the CL model, we exploit the 
mean-tracking method proposed by Dai [2009] and Dai 
and Lyuu [2010] and modify the adjustment method to 
calibrate the correlation between the interest rate and 
the stock price.

The rest of this article is organized as follows. 
The second section proposes an explicit equation for 
the expected recovery rate conditional on the default 
rate under the risk-neutral measure. This equation is 
then incorporated into our revision of the JT model 
to simultaneously determine the default and recovery 
rates. The third section proposes a modif ied CB 
pricing model to rectify the infeasible branching prob-
ability problem of the CL model. The fourth section 
reports the pricing results of a real CB contract issued 
by the Danaher Corporation, as well as the results of 
sensitivity analyses based on this real case. The f ifth 
section illustrates a possible extension of our model for 
determining the expected recovery rate conditional on 
extra macroeconomic factors in addition to the default 
rate. We summarize the f indings and conclude the 
article in the sixth section.
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MODIFIED REDUCED-FORM MODEL

Expected Recovery Rate Conditional 
on the Default Rate

Numerous studies assess the empirical relationship 
between the recovery and default rates, such as Altman 
et al. [2005]; Hu and Perraudin [2006]; Hamilton et al. 
[2007]; and Acharya, Bharath, and Srinivasan [2007]. 
Our core idea is that default and recovery rates can be 
endogenously determined in reduced-form models by 
inserting a proper relationship (between these two rates) 
which fits empirical market conditions or model require-
ments. For example, this article exploits the regression 
result between the recovery rate and the logarithmic 
default rate from 1982 to 2001 in Altman et al. [2005] 
to implement our model:

 a b Pδ = +b υl ( )DRPDRP ,  (1)

where δ denotes the recovery rate, DRP is the default 
rate per year under the physical probability measure 
P (i.e., the annual default rate in the real world), and 
υ is standard white noise. The least-squares regression 
results are a = 0.0022, b = −0.1133, and R2 = 0.63. 
The negative value of b indicates an inverse relation-
ship between the recovery rate and the default rate 
under the physical probability measure. We use this 
regression relationship for several reasons. First, we 
focus on the explicit relationship between the recovery 
and default rates, which are studied only in Altman 
et al. [2005] and Hamilton et al. [2007].3 Second, 
the R-squared value of the linear-log regression in 
Altman et al. [2005], illustrated in Equation (1), is 
comparatively higher than other studies.4 Third, our 
model can easily integrate this linear-log regression 
equation and the default intensity analysis in Hull, 
Predescu, and White [2005], which is discussed in 
detail in the following.

Pricing derivatives with the risk-neutral valua-
tion method requires the default rate under the risk-
neutral probability measure. To transfer the default 
rates in the physical probability measure mentioned 
in Equation (1), we take advantage of previous work 
that analyzes default intensities under the physical and 
the risk-neutral probability measures, such as Hull, 
Predescu, and White [2005], to derive the transfor-
mation between the default rates in the real and the 

risk-neutral worlds. They estimate the physical default 
intensities as the average annual default rates over 
the seven-year cumulative default rates published by 
Moody’s and the risk-neutral default intensities based 
on Merrill Lynch bond indexes. Based on their Table 1 
(also shown in Exhibit 1), we conduct the following 
regression for the default rates under the physical prob-
ability measure (DRP) and the risk-neutral one (DRQ) 
in different credit rating classes:

 DRP Q Qln( )DRP ln( )DRQDR (ln( )) ,2= α + β + γ + η  (2)

E X H I B I T  1
Proposed Regression Relationships between 
Physical and Risk-Neutral Default Rates

Notes: This exhibit compares the linear and quadratic regressions between 
DR eP P

= − −λln ln(1 ) and DR eQ Q

= − −λln ln(1  ). The data of λP and 
λQ are inherited from Table 1 in Hull, Predescu, and White [2005]. 
Using either the linear or quadratic regression, we obtain a positive-
sloping, extremely high R-squared regression relationship between ln DRP 
and ln DRQ.
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where η denotes white noise. Note that the default rates 
can be expressed in terms of the default intensities as 
follows: DR eP P

1= −1 −λ  and DRQ Q

1 .e
Q

= 1 λ  The least-
squares regression results for Equation (2) are α = 0.1336, 
β = 0.8822, and γ = −0.1435, with an R-squared of 
0.9946. The extremely high R-squared value implies 
that Equation (2) precisely maps the default rates 
(or equivalently, default intensities) between the real 
and the risk-neutral worlds. Consequently, replacing the 
term ln(DRP) in Equation (1) with Equation (2) yields

a b DRQ Q( ln( ) (ln( )DRQDR ) ) .2δ = + b( + β γ + υ

We next take the expectation for the above com-
posite regression equation conditional on DRQ. The 
expectation of η is zero since it is, by definition, inde-
pendent of DRQ in Equation (2). We further assume that 
the white noise υ and DRQ are independent such that the 
expectation of υ is also zero. This assumption is likely to 
be true since the white noise υ is independent of DRP 
in Equation (1), and DRP and DRQ are almost perfectly 
related, as indicated by the R-squared value almost being 
one in Equation (2). As a result, the expected recovery 
rate conditional on the risk-neutral default rate, denoted 
as δ̂, can be expressed as

 a b DR

a b

Q Q

Q Q

δ = + b + β γ

= a β − + γλ

ˆ [ lα + β n( ) (+ γ ln( )DRQDR ) ]

[α + β )e
Q

− −λ (ln(1 )e
Q−λ ) ],

2

2

 
(3)

where the last equation is derived by replacing DRQ 
with e

Q

1− −λ .
We also examine the linear relationship between 

ln(DRP) and ln(DRQ) based on the same dataset in Hull, 
Predescu, and White [2005] for deriving Equations (2) 
and (3). There are two reasons for selecting the quadratic 
relationship instead of the linear one even though the 
linear regression line and the quadratic regression curve 
illustrated in Exhibit 1 are highly similar (almost coin-
ciding for a large portion). First, the R-squared value 
of the quadratic regression is even higher and thus more 
suitable to obtain the conditional expected recovery rate 
δ̂ in Equation (3). Second, the quadratic regression is 
superior to the linear one in maintaining the widely-
observed fact of positive default risk premiums, proxied 
by the risk-neutral default rate DRQ minus the physical 
one DRP. For the quadratic (linear) relationship, the 
difference (DRQ − DRP) remains positive when DRQ 

is smaller than 23% (15%).5 Since the DRQ of CCC–C 
rating is around 19% as shown in Exhibit 1, the quadratic 
regression maintains the property of positive default 
risk premiums for almost all credit rating classes while 
the linear regression fails for lower credit rating classes. 
In addition, the positive slope of the quadratic regres-
sion curve in Exhibit 1 also implies an inverse relation-
ship between the conditional expected recovery rate and 
the risk-neutral default rate, which is analogous to the 
inverse relationship between the recovery rate and the 
physical default rates widely observed in past empirical 
studies.

We emphasize that the conditional expected 
recovery rate in Equation (3) is a feasible notion rather 
than a rigid equation. Since different lending policies in 
individual financial institutions can yield different rela-
tionships between recovery and default rates, financial 
institutions can take advantage of our concept to derive 
their own relationships, such as those in Equations (1) 
and (2), based on their latest internal data. Therefore, 
they can obtain for themselves a more appropriate and 
up-to-date conditional expected recovery rate equation. 
Furthermore, when using our model, financial institu-
tions can estimate the relationships between the recovery 
and default rates for different industries according to 
their private data to enhance the accuracy perfor-
mance. In addition, the relationship between physical 
and risk-neutral default rates (e.g., Equation (2)) can be 
derived by classifying the creditworthiness of borrowers 
in other ways. For example, financial institutions can 
classify borrowers according to internal credit scores 
or the information on the distance to default, which 
is argued by Berndt et al. [2011] to be a more effective 
measurement for classifying borrowers.6 However, we 
adopt the credit rating classification of Hull, Predescu, 
and White [2005] instead of internal credit scores or 
distances to default in order to classify borrowers, since 
the former data are public and easily obtained, while the 
latter require detailed and even unpublicized borrower 
financial data for inference.

Revising the JT Model

To demonstrate our core idea, we revise the JT 
reduced-form model by incorporating the conditional 
expected recovery rate in Equation (3) into their model. 
To achieve this goal efficiently, this article is the first 
to develop recursive formulae to express the prices 



Au
th

or
 D

ra
ft 

fo
r R

ev
ie

w
 o

nl
y

6   A MODIFIED REDUCED-FORM MODEL WITH TIME-VARYING DEFAULT AND RECOVERY RATES SUMMER 2017

of the riskless and risky zero-coupon bonds matured 
in different time periods in the tree-based JT model. 
We then propose a bootstrap method based on these 
recursive formulae to derive the risk-neutral default 
intensity and the corresponding conditional expected 
recovery rate for each time period of the JT model.

JT reduced-form model with a constant 
recovery rate. The main idea in the JT model is to 
derive default rates by applying observable credit spreads 
and an exogenous constant recovery on a no-arbitrage 
binomial interest rate tree, say the BDT model. Panels A 
and B in Exhibit 2 illustrate the three-time-period 
default-free and defaultable binomial interest rate trees, 
respectively, that begin at time zero with the length of 
each time period to be Δt. For the default-free interest 
rate tree, the interest rate r(i, j) located at the j-th 
position at time iΔt moves either upward to r(i + 1, j) 
or downward to r(i + 1, j + 1) with probabilities π and 
1 − π, respectively. For the defaultable interest rate tree, 

the default event occurring in the i-th time period, 
i.e., in time interval ((i − 1)Δt, iΔt], is represented by 
vertical downward arrows with the probability e ti1− −λ Δ , 
where λi is the default intensity under the risk-neutral 
measure Q in that time period. For simplicity, the 
superscript Q is removed from λi since the following 
discussions are all under the risk-neutral probability 
measure. The probabilities that the prior-to-default 
interest rate move upward and downward are e ti π−λ Δ  
and e ti (1 ),− π−λ Δ  respectively.7 Once a default occurs in 
the i-th time period, the bondholders can recover δi 
(i.e., the recovery rate in the i-th time period) portion 
of the face value at time iΔt.8 The recovery rate δi 
is assumed to be a constant δ for all time periods in the 
JT model. They employ the market prices of riskless 
and risky zero-coupon bonds with different times to 
maturity (denoted as P(T ) and V(T ), respectively) to 
calibrate both the interest rate and the default intensity 
for each time period of the tree.

E X H I B I T  2
Illustration of the JT Model

Notes: Panels A and B illustrate the default-free and defaultable binomial interest rate trees of the JT model, respectively, in a three-time-period scenario. 
The notation r(i, j) represents the interest rate of the j-th node (counted from the uppermost position) at time iΔt. The branching probabilities to move 
upward or downward are listed next to the branches. Each downward-pointing arrow in Panel B denotes a default event occurring in the i-th time period 
with probability e ti(1 )− −λ Δ , where λi denotes the default intensity. The notation δ represents the constant recovery rate in the event of default. The face 
values of both default-free and defaultable bonds are normalized at one dollar.
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Calibrating the BDT tree to match P(T ). The BDT 
model simulates the following lognormal interest rate 
process with the tree structure in Panel A of Exhibit 2:

 d r t dt dWt rrr dt rWW= θ(tt ,  (4)

where σr is a constant volatility for the interest rate 
process, dWr is a standard Wiener process under the risk-
neutral measure, and θ(t) is a function of time to match 
the prevailing term structure of interest rates.

When constructing the binomial interest rate tree, 
the BDT assumes that the branching probability π is 
fixed at 0.5 and all interest rates r(i, j) at the same time 
iΔt satisfy

 r j r i for j it ≤i for ≤Δ( ,i ) (r= r , ) ,e te tj r 1j≤ ≤ +i ,( 1jjjj )2  (5)

in order to match the volatility term σr. The interest 
rate for each node defined in Equation (5) can then be 
calibrated to match the present market prices of riskless 
zero-coupon bonds with different times to maturity. 
To systematically express the prices for riskless long-term 
zero-coupon bonds, we introduce the notation C(i, j) 
to represent the expected present value of one dollar 
received at node(i, j). By definition, C(0, 1) = 1 for the 
root node, and C(i, j) (for i = 1, 2, …, and j = 1, …, i + 1) 
can be iteratively defined by the following equations:

C j

C j e j

C j e
C j e j i

C j e j i

r j t

r j t

r t

r j t

( ,i )

( 1i , )j if 1

( 1i , )j
( 1i , 1j )(1 ) if 1 1j i .

( 1i , 1j )(1 ) if 1

( 1i , )j

( 1i , )j

( 1i j

( 1i , j

=

1, j =

1, j
+ C i <e r j t if 1( 1i , j i

1 j +i

⎧

⎨

⎪
⎧⎧

⎪
⎨⎨

⎪⎪

⎩

⎪
⎨⎨

⎪
⎩⎩

⎪⎪

− r i Δ

− r i Δ

− r i Δ1)

− r i Δ1)

 
  

(6)

Consequently, the market price of the riskless zero-
coupon bond that matures at time (i + 1)Δt can be rep-
resented in terms of C(i, j) by the following equation:

 P i t i j e r j t

j

i
(( ) ) (C

j
, )j .( ,i

1

1∑+ Δ1) − Δr j( ,i )

=

+
 (7)

Equations (6) and (7) can be used alternately 
to calibrate the interest rate at each node of the tree. 
Specifically, one can employ the interest rates calcu-
lated at time (i − 1)Δt (i.e., r(i − 1, j)) to determine 
C(i, j) with Equation (6). The interest rates at time iΔt 

(i.e., r(i, j)) can then be solved by substituting the deter-
mined C(i, j) and the prevailing market price P((i + 1)Δt) 
into Equation (7).

Calibrating the defaultable tree to match V(T ). The 
default intensities can be calibrated to match the market 
prices of a series of risky zero-coupon bonds with dif-
ferent times to maturity. In order to simplify the equa-
tions for the prices for risky long-term zero-coupon 
bonds, we define Ki and SVi as the accumulated expected 
present value of the recoveries up to time iΔt and the 
survival rate at time iΔt, respectively. The variables 
K0 and SV0 are set to 0 and 1, respectively, since the 
firm is assumed to be solvent at time 0. Hence, Ki+1 and 
SVi+1 can be expressed in terms of Ki and SVi using the 
following recursive equations:

 SV SV e

K K SV P i t

i iVV SVV t

i i iVV t

i=

+KiK +i⋅P Δ ⋅t δt

⎧
⎨
⎪⎧⎧
⎨⎨
⎩⎪
⎨⎨
⎩⎩

−λ Δ

λ Δ

+

(((( 1) ) (1 )− e ti

1
1

 
(8)

Finally, we derive the following equation to express 
the value of the risky zero-coupon bond that matures 
at time (i + 1)Δt:

 

V i t

K SV P i ti iSVV t

+ Δ

= K P i Δ ⋅t − e iλ Δtt λ Δ

(( 1) )

(( 1) ) [⋅ (1 ) ]e tieδ .tttt +ie i  (9)

We therefore propose a bootstrap method to cali-
brate the default intensity for each time period by using 
Equations (8) and (9) alternately. Specifically, one can 
employ the known information of Ki and SVi up to time 
iΔt and the market values of V((i + 1)Δt) and P((i + 1)Δt) 
to calibrate λi+1 using Equation (9). Once the default 
intensity λi+1 is solved, Ki+1 and SVi+1 can be derived by 
evaluating Equation (8).

Replacing the constant recovery rate with the 
conditional expected recovery rate. The conditional 
expected recovery rate δ̂ proposed in Equation (3) can 
be incorporated into any reduced-form model, says 
the aforementioned JT model, by substituting δ̂ for the 
constant recovery rate δ in Equation (9). The default 
intensity λi+1 is then calibrated to satisfy

 

V i t

K SV P i t

e

i iSVV t
i

ti

(( 1) )

(( 1) ) [(1 )ˆ

],

1

1

+ Δ1)

= K iP(( Δ ⋅t) − δe ti )1

+

λ Δ
+

−λ Δ+

 (10)
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where a biδ =i + b + β γ+
λ λˆ [ lα + β n(1 )e )i− e i−λ (l (1 )e ie−λ ) ]1

2) (l (1 iλ +ie  
de notes the conditional expected recovery rate for the 
(i + 1)-th time period derived in Equation (3). By itera-
tively calibrating the default intensity with Equation (10) 
under the constraint that i0 ˆ 11≤ δ ≤+ , the risk-neutral 
default intensity (λi) and the corresponding conditional 
expected recovery rate i( ˆ )δ  for each time period can be 
endogenously solved. Note that the constant recovery 
rate δ in Equation (8) should be replaced by i

ˆ
1δ +  during 

calibration.

Empirical Tests for Our Modified 
Reduced-Form Model

To demonstrate the performance of our revised JT 
model, we study the recovery and default rates implied 
from the zero rates of AA, A, BBB, BB, and B ratings 
(collected from Bloomberg) on January 22 in 2010, 
2011, 2012, 2013, and 2014.9 Our experiments focus 
only on these five credit ratings because the zero rates for 
other credit ratings are not available from Bloomberg or 
other databases that we can access. To avoid the missing 
data problem for longer times to maturity, we limit 
the longest time to maturity to 15 years. We choose 
January 22 because we focus on pricing CBs on these 
dates in the empirical study in the fourth section. 
To estimate the volatility of the risk-free interest rate 
process in Equation (4), we collect from the website 
of the U.S. Department of the Treasury the daily data 
on the six-month10 Treasury yield over the three-year 
period prior to each examined date. Exhibit 3 reports 
the default rates and the conditional expected recovery 
rates according to the revised JT model on these dates. 
In addition, the default rates of the traditional JT 
model with constant recovery rates are presented for 
comparison. Hamilton et al. [2007] calculate the long-
term average recovery rates for different credit ratings 
based on the actual default events in the period between 
1982 and 2006. The constant recovery rates for AA, 
A, BBB, BB, and B ratings are retrieved from their 
Exhibit 20, with values of 57.04%, 49.54%, 45.90%, 
42.48%, and 38.34%, respectively. The traditional and 
revised JT tree models are constructed with each time 
period to be one year. The reported default rates are the 
conditional default rates in each year, given that default 
events did not occur in prior years, and the reported 
conditional expected recovery rate i( ˆ )δ  is the recovery 
rate for default events during that year.

The results in Exhibit 3 verify that our revised JT 
model endogenously determines recovery and default 
rates reasonably by calibrating the prevailing zero-rate 
curves. In addition, empirically verified phenomena that 
fail to be produced by the traditional JT model, such as 
significant changes in recovery rates over time and the 
inverse relationship between recovery and default rates, 
are reasonably constructed in our revised model. For 
example, the conditional expected recovery rates for 
an AA rating on January 22, 2014, range from 77.49% 
to 41.24%, ref lecting the dynamics of the prevailing 
term structures of zero rates. The levels of the default 
rates essentially react inversely with the magnitudes 
of the default rates. The highest recovery rate (in the 
f irst year) is accompanied by the lowest default rate, 
1.07%, while the lowest recovery rate (in the 15th year) 
is accompanied by the highest default rate, 5.54%. 
Similar phenomena occur for all other ratings over 
these five years. In addition, by examining the means 
of the recovery and default rates over these five different 
ratings, our revised JT model generates higher (lower) 
default rates and lower (higher) recovery rates for lower 
(higher) credit rating reference entities, which is also 
consistent with the empirical evidence in the Moody’s 
Investors Service report (Hamilton et al. [2007]).

While the constant recovery rates δ retrieved by 
Hamilton et al. [2007] ref lect the historical average of 
1982–2006, the conditional expected recovery rates iδ̂  
are endogenously determined by calibrating the pre-
vailing credit spreads and ref lect the consensus view 
for future recovery rates. Therefore, in Exhibit 3, the 
average of iδ̂  could be close to or different from δ. 
For example, on January 22, 2014, the averages of iδ̂  
derived under the revised JT model for AA, A, and BBB 
ratings (58.33%, 50.95%, and 43.32%, respectively) are 
similar to those of δ (57.04%, 49.54%, and 45.90%, 
respectively). The average default rates generated by the 
revised JT model (2.85%, 4.17%, and 6.03%) are also 
close to those generated under the traditional JT model 
(2.73%, 4.10%, and 6.89%) for AA, A, and BBB ratings, 
respectively. On the other hand, the averages of iδ̂  for 
BB and B ratings (32.70% and 30.68%, respectively) 
are clearly lower than those of δ (42.28% and 38.34%, 
respectively). Furthermore, for these two credit ratings, 
while the revised JT model still produces reasonable 
default rates (ranging from 1% to 34%), the traditional 
JT model obviously overestimates the default rates. 
Specifically, the maximum per annum default rates for 



Au
th

or
 D

ra
ft 

fo
r R

ev
ie

w
 o

nl
y

THE JOURNAL OF DERIVATIVES   9SUMMER 2017

E X H I B I T  3
Recovery and Default Rates of the Revised JT Model

Notes: This exhibit reports the risk-neutral default rates (DRQ) and the corresponding conditional expected recovery rate δ( ˆ ) of the revised JT model for 
different ratings on January 22 of 2010, 2011, 2012, 2013, and 2014. The risk-neutral default rates of the traditional JT model with a constant recovery 
rate δ are also reported for comparison. The results for January 22, 2014, are fully presented for illustration. For all the other examined dates, we report 
only the means, medians, maxima, and minima of the recovery and default rates.
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BB– or B-rated firms are more than 74% (often reaching 
100%) for all examined dates, except January 22, 2010. 
These results imply that a BB– or B-rated firm is almost 
certainly going to default within 15 years. These abnor-
mally high default rates render the traditional JT model 
impractical to estimate long-term, say 15-year, survival 
rates for BB and B ratings. Finally, we observe that both 
the revised and traditional JT models generate relatively 
overestimated recovery and underestimated default rates 
for the BB rating on January 22, 2010. We attribute 
those unreasonable phenomena to the possibly problem-
atic BB zero-rate curve on that day. In Exhibit 4, it can 
be observed that the BB zero-rate curve reaches too high 
for times to maturity shorter than 4 years (even higher 
than that of the B rating) and is abnormally low for times 
to maturity longer than 12 years (even lower than those 
of the BBB and A ratings). Moreover, it also exhibits 
a steep hump shape for times to maturity shorter than 
4 years. The combination of these unusual characteristics 
yields anomalous results for the BB rating on that day.

To highlight the overestimation problem of default 
rates pertaining to the traditional JT model with a con-
stant recovery rate, Exhibit 5 reports the 15-year sur-
vival rates of the revised and traditional JT models. For 
comparison, we also present the 15-year survival rates 
based on the most basic reduced-form model, which 
simply f its the credit spread with the product of the 
default and loss rates. Hereafter, we call this type of 
reduced-form model a credit spread model.11 Given 
an estimated constant recovery rate ( ),δ  the traditional 
credit spread model calibrates the risk-neutral default 
rate (DRQ) by matching the observed credit spread (CS) 
through DR CSQ /(1 )= CS/(1 δ . In addition, we modify the 
credit spread model by replacing the constant recovery 
rate δ with the conditional expected recovery rate δ̂ in 
Equation (3). The 15-year survival rate for each model 
is computed as the product of per-period conditional 
survival rates, which equals one minus the per-period 
conditional default rates derived by that model.

In Exhibit 5, we find first that for AA, A, and BBB 
ratings, the revised and traditional JT models generate 
similar 15-year survival rates. The revised and tradi-
tional credit spread models also generate similar survival 
rates that are significantly higher than those generated 
by the JT models. We attribute this phenomenon to the 
fact that the credit spread models do not account for the 
effect of stochastic interest rates.12 Stochastic movements 
in the interest rates in the JT models introduce another 

source of risk, which should result in lower survival 
rates. Second, unlike the revised and traditional credit 
spread models, the revised and traditional JT models 
generate diverse survival rates for BB and B ratings. 
Compared with the results of the revised and tradi-
tional credit spread models and the revised JT models, 
the 15-year survival rates of the traditional JT model 
for BB and B ratings are clearly underestimated due to 
the abnormally high default rates observed in Exhibit 3.

PRICING CBS SUBJECT TO DEFAULT RISK

Defaultable Stock Price–Interest Rate Tree

This section proposes a defaultable bivariate tree 
that can price CBs by simultaneously simulating the evo-
lution of the stock price and interest rate processes. Since 
the event of jumping to default is taken into account, 
the prior-to-default share price of the CB issuer, St, is 
assumed to follow a geometric Brownian motion under 
the risk-neutral probability measure as follows:13

 
dS

S
dt dWt

t
t tq S SdWW( )r q tr qr ,= (r λ + σ  (11)

E X H I B I T  4
Zero Curves on January 22, 2010

Note: This exhibit reports the zero curves of all examined credit ratings 
and the risk-free interest rate on January 22, 2010.
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where rt is the stochastic interest rate that follows the 
BDT model in Equation (4), q is the dividend yield, 
the default intensity λt in the drift term is introduced 
to ensure the discounted stock price is a martingale 
process, σs is the constant volatility, and dWs is the 
standard Wiener process under the risk-neutral prob-
ability measure. Furthermore, we follow the CL model 
by assuming that the correlation between the Wiener 
processes dWs in Equation (11) and dWr in Equation (4) 
is a constant ρ.

Given the condition that the issuing firm does not 
default prior to time t + Δt, the CL model assumes each 
arbitrary stock price St either moves upward to become 
S ut

t( )u e tSσ ΔS  with probability Pu or moves downward 
to Std(d = u−1) with probability 1 − Pu at the subsequent 
time point; the upward probability is assigned as

 P
e d

u du

t

.
( r

=
q λ Δ)

 (12)

Combining the defaultable interest rate tree illus-
trated in Panel B of Exhibit 2 with the aforementioned 
CRR binomial tree results in the defaultable pentano-
mial tree shown in Exhibit 6. Notations Puu, Pud, Pdu, and 
Pdd represent the conditional joint probabilities for the 
combinations of upward and downward movements of 
St and rt, given that the firm survives at time t + Δt. The 
CL model calibrates Puu, Pud, Pdu, and Pdd to match the 
correlation ρ as follows:

 

P P P P

P P P P

P P

P P

uu u u u u

udP u u u u

duP uPd u u

ddP d u u u

ξ + ρ −⎡⎣⎡⎡ ⎤⎦⎤⎤

ξ ρ −⎡⎣⎡⎡ ⎤⎦⎤⎤

ξ − P ρ u⎡⎣⎡⎡ ⎤⎦⎤⎤

ξ − PP ρ u⎡⎣⎡⎡ ⎤⎦⎤⎤

⎧

⎨

⎪
⎧⎧

⎪
⎪⎪
⎪
⎨⎨
⎪⎪

⎩

⎪
⎨⎨

⎪
⎪⎪

⎪⎩⎩
⎪⎪

0.5 0Pu −P ξ = .5 (1 )

0.5 0Pu +P ξ = .5 (1 )

0.5 0Pd +PdP ξ = 5 (1 ) (Pρ Pu 1 )Pu−

0.5 0PdP −P ξ = 5 (1 ) (Pρ Pu 1 )Pu− , (13)

where u u0 5 (Pu 1 )Puξ = − ρ0.5  is introduced to adjust 
the conditional joint probability to match ρ without 

E X H I B I T  5
15-Year Survival Rates of the JT and Credit Spread Models

Notes: This exhibit shows the 15-year survival rates of the revised and traditional JT models. The survival rates of the traditional and revised credit spread 
models are also reported for comparison.
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changing the marginal probability for both the stock 
price and interest rate processes.

To ensure that the values of these conditional 
joint probabilities are within the range of [0, 1], 
the CL model proposes the mild condition that 

Pu) /(1 )2 2/(1 2ρ +/(12/(1 ρ ≤) ≤ +1/(1 ρ . However, this condition 
could be violated in two ways. The first type of violation 
occurs when the upward stock price probability Pu is not 
within the range of [0, 1] due to either a high interest 
rate rt or a high default intensity λt. Thus Puu, Pud, Pdu, 
and Pdd become imaginary numbers, because the term 

P Pu u(1 ) is an imaginary number. The second type 
of violation occurs when the probability of Pu is valid 
but very close to the feasible boundaries 0 and 1. Thus, 
these conditional joint probabilities are not guaranteed 
to be within the range [0, 1] after adding or subtracting 
the adjustment term u u0 5 (Pu 1 )Puξ = − ρ0.5 .

It is noteworthy that the f irst type of viola-
tion occurs frequently due to the stochastic nature 
of the interest rate rt and the default intensity λt in 
Equation (12). Specifically, Pu exceeds unity when the 
conditional expected stock price at the next time point 
is too high, as illustrated in Exhibit 7, Panel A. Lyuu 
and Wang [2011] prove that this violation is not merely 
a discretization problem and cannot be completely 
resolved by picking a proper Δt. Instead, they suggest 
that a valid tree can be constructed by adjusting the 
outgoing branches for the tree nodes that have high rt 
or λt. Our article borrows their idea to show that the 
first type of violation, illustrated in Exhibit 7, Panel A, 
can be avoided by adopting the trinomial tree struc-
ture (see Exhibit 7, Panel B) constructed according to 

E X H I B I T  6
Pentanomial Tree Structure Used When the Mild 
Condition Holds

Notes: The pentanomial structure is employed to simulate the defaultable 
stock price and interest rate processes if the mild condition proposed by 
the CL model is satisfied. The branching probability from node (St, rt  ) 
at time t to each node at time (t + Δt  ) is listed next to the branch. The 
conditional joint probabilities Puu, Pud, Pdu, and Pdd are determined using 
Equation (13). The branch plotted by the downward-pointing arrow 
denotes the default event.

E X H I B I T  7
Employing the Mean-Tracking Method of Dai [2009] to Solve the Infeasible Branching Probability Problem

Notes: Panel A illustrates the infeasible probability problem under the CRR binomial tree structure, where Pu and Pd denote the branching probabilities 
for the stock price moving from St to Stu and Std, respectively. Panel B illustrates the trinomial tree structure of the mean-tracking method proposed by 
Dai [2009], where PU, PM, and PD denote the branching probabilities for the stock price moving from St to SU, SM, and SD, respectively. The conditional 
mean E St t t[ |St t+Δ ] is illustrated by an arrow with a dashed line.
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the mean-tracking method of Dai [2009]. This method 
first identifies one node located at the next time point 
in the grid of the CRR binomial tree that is nearest 
to the conditional expected stock price E St t t[ |St t+Δ ]. For 
simplicity, we refer to this point as the “middle node.” 
Next, the trinomial tree structure is formed with the 
middle node and its two adjacent nodes. Specifically, 
suppose the stock price of the middle node SM is set to 
S et

m tSσ ΔS . The stock prices of two adjacent nodes can then 
be expressed as S S eD tS tS( 2m )σ) Δ  and S S eU tS tS( 2m )σ2) Δ . 
These three nodes are united to establish the trinomial 
tree structure in the mean-tracking method, which is 
illustrated in Exhibit 7, Panel B.

The branching probabilities PU, PM, and PD are 
determined to match the mean and the variance of t t+Δln  
conditional on Stln , which are E S St t t tS +StS[ln |St t+Δ ln ] l

tt Sq tσ +S λ Δt( 0r qr qr −q 5 )2  and S tt t t S= σ ΔVar(ln |ln )St ,2  res-

pectively. For convenience, let X, Y, and Z denote the 
logarithmic stock prices of the upper, middle, and lower 
nodes minus the conditional expected logarithmic stock 
price, that is, S tU tS t t SX ln [S EU E ln |ln ]StS Y 2 ,lnS = +Y σ ΔS+Δ  

SM tS t tY ln [S EM E ln |ln ]StS ,lnS +Δ  and SD tS tZ ln [S ED E ln |lnS +Δ  

S tt Sln ] 2σ ΔS . Valid branching probabilities, 
PU, PM, and PD, can be obtained by using Dai’s [2009] 
method as follows.

 

P t t

P

P t t

U SPP S

M SP tP

D SPP S

(Y ) /(8 )

(3 Y )/(4 )tS

(Y ) /(8 ).

2 2/(8
2 2Y 2

2 2/(8

σ ΔS σ ΔS
2

−ttt ΔS
2

σ ΔS σ ΔS
2

⎧

⎨
⎪
⎧⎧

⎨⎨

⎩
⎪
⎨⎨

⎩⎩ (14)

Combining the mean-tracking method illustrated in 
Panel B of Exhibit 7 with the defaultable interest rate 
tree in the JT model illustrated in Panel B of Exhibit 2 
yields the heptanomial tree structure illustrated in 
Exhibit 8.

In Exhibit 9, Panel A, we follow Hull and 
White [1994] to introduce a probability adjustment 
term ε to adjust the conditional joint probability to 
match ρ, the correlation between the dWs of the stock 
price process and the dWr of the interest rate pro-
cess, without changing the marginal probability for 
both the stock price and the interest rate processes. 
Since d dW d S d rS rdWW t tρ = Corr( ,dWSWW ) C= orr( , dd )rtrr , ρ can 
be approximated in the corresponding discrete-time 
model as

S

E S E E

S

t t t t

t t t t t t t t

t t t t

=

Corr(ln , ln )rt trr +Δ

[ ln lSt t+Δ n ]rt trr [ ln ]St t [ln ]rt trr +Δ

Var(ln ) V ( ln )rt trr +Δ

.

Note that E[lnSt+Δt], Var(lnSt+Δt), E[lnrt+Δt], Var(lnrt+Δt), 
and E[lnSt+Δt lnrt+Δt] can be expressed in terms of con-
ditional joint probabilities and possible outcomes of the 
stock price and the interest rates illustrated in Exhibit 9, 
Panel A as follows:

E P S P S P S

S q t

S S S

P E t

E r r

r r E

t

t t U USP M MP SP D DP SP

t t S t

t t U US M MS

D DP t t S

t t u drr

t trr u dr t t

r

+SUS= PPP +

= S + λ Δ

SS

+ −PPP = σ Δ
= π + π

− π −

= σ Δ

[ ln ]St t+Δ l l l

l ( 0r qtrr − q 5 ,tΔ

Var(ln ) (PUPPPUPP l ) (PMPP ln )

(ln )SDSSDS [ n ]St t+Δ ,

[ ln ]rt trr +Δ ln (1 ) l ,rdr

Var(ln ) (= π l ) + )drdr [ln ]rt trr +Δ

,

2

2 2S(P l )
2 2E[ l ]S 2

2 2π(+ 1 )(l ) 2

2

E X H I B I T  8
Heptanomial Tree Structure Used When the Mild 
Condition Does Not Hold

Notes: The heptanomial tree structure is employed to simulate the default-
able stock price and interest rate processes if the mild condition is violated. 
The branching probability for each branch is listed next to that branch. 
The conditional joint probabilities, PUu, PUd, PMu, PMd, PDu, and PDd, are 
determined based on Exhibit 9 and Equations (14) and (15). The branch 
plotted by a downward-pointing arrow denotes the default event.
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and

E S

S r P S r

S r P S r

S r P S r

S r S r

S r S r

S r S r

S S S S

t t t t

U US u Ur U dr

M MS u Mr PP M dr

D DS u Dr D dr

U US u Ur U dr

M MS u Mrr M dr

D DS u Dr D dr

U urr U dr D urr D D

= +PUPP ε
+
+ −PDPP ε

=
+
+
+ ε

≡ Λ + εΓ

[ ln lSt t+Δ n ]rt trr +Δ

( )PUPPπ l ln [(1 ) ]ln lS

( )PMPPπ l ln [(1 ) ]ln lS

( )PDPPπ l ln [(1 ) ]ln lS

( )PUPPπ l ln (1 ) lPUPP n lS

( )PMPPπ l ln (1 ) lPMPP n lS

( )PDPPπ l ln (1 ) lPDPP n lS

( l− lSS n l+rr n lS n lrdr + lSS n l−rr n lS n )rDrr

.ΓΓ

Thus ε can be solved as

 

S E Et t t t t t t tε =
+tρ St t t − Λ

Γ
V (l ) ( l )rt trr [ ln ]St t+Δ [ln ]rt trr +Δ .

 (15)

Note that using this procedure to determine 
the conditional joint probabilities could still result in 
the second type of violation of the mild condition. 
If the probabilities PU and PD obtained in Equation (14) 
are close enough to the boundary 1 (or 0), the con-
ditional joint probabilities PUu, PUd, PDu, or PDd could 
become invalid after the addition or subtraction of the 
adjustment term ε. To solve this problem, we further 
exploit the f lexibility of the mean-tracking method’s 
trinomial tree structure. Under this trinomial tree struc-
ture, it is not necessary to adjust the four-corner con-
ditional joint probabilities—PUu, PUd, PDu, or PDd—as 
illustrated in Exhibit 9, Panel A. Panels B and C of 
Exhibit 9 present two alternative arrangements of the 
adjustment term ε for calibrating the correlation ρ if 
the conditional joint probabilities cannot be feasibly 
solved with the arrangement in Exhibit 9, Panel A. 
The arrangement in Exhibit 9, Panel B is adopted for 
correlation calibration when PU is sufficiently close to 
0 or 1 such that PUu and PUd become infeasible after 
the addition or subtraction of ε. Under this arrange-
ment, ε can be solved using Equation (15) by redefining 
Γ as S r S r S r S rM urr M dr D urr D drΓ ≡ +rrS− + −S rrl l ln l l l ln l . 
Similarly, the arrangement in Exhibit 9, Panel C is 
adopted when PD is suff iciently close to 0 or 1 such 
that PDu and PDd become infeasible after applying the 
adjustment term ε. Under this arrangement, ε can 
again be solved using Equation (15) by redef ining 

Γ as S r S r S r S rU urr U dr M urr M drl l ln l l l ln lΓ ≡ − +S rrln + −S rrln . 
We find that the performance of these new arrangements 
is satisfactory and no infeasible probability problem is 
observed in any of our numerical experiments in the 
fourth section.

It is worth noting that the mild condition is satis-
fied for most nodes in our bivariate tree. For these nodes, 
the pentanomial tree structure illustrated in Exhibit 6 
is adopted and Equations (12) and (13) are employed 
to determine the branching probabilities. If the mild 
condition is violated, the heptanomial tree structure 

E X H I B I T  9
Calibrating the Conditional Joint Probabilities of the 
Stock Price–Interest Rate Tree for ρ between d ln St and 
dlnrt When the Mean-Tracking Method Is Applied

Notes: This exhibit shows the marginal and joint probabilities of the 
stock price and interest rate processes conditional on the issuing firm not 
defaulting in the time period that immediately follows. The interest rate 
movements, ru and rd, and the corresponding marginal probabilities, π and 
1 − π, are determined based on the BDT tree. The mean-tracking method 
determines the stock price movements SU, SM, and SD, and the corre-
sponding marginal probabilities PU, PM, and PD. In normal conditions, 
the probability adjustment term ε is introduced to calibrate the conditional 
joint probabilities to match the correlation ρ in Panel A. If either PUu 
or PUd solved by matching the correlation ρ in Panel A is infeasible, the 
arrangement in Panel B is used instead to calibrate the conditional joint 
probabilities. Similarly, the arrangement in Panel C is used to calibrate 
the correlation ρ if either PDu or PDd solved based on Panel A is infeasible.
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illustrated in Exhibit 8 is used instead. Exhibit 9 and 
Equations (14) and (15) are employed to determine the 
branching probabilities. This arrangement maintains 
both the computational efficiency and the validity of 
the proposed bivariate tree.

Pricing CBs with the Proposed Bivariate Tree

This subsection introduces the algorithm for 
pricing CBs based on the bivariate tree discussed in 
the previous subsection. For simplicity, this subsec-
tion considers a callable CB without coupon payments. 
Extending our model to price CBs with coupon pay-
ments is straightforward. The face value of the CB is 
denoted as F, the conversion ratio is denoted as θ, and 
the call price is represented by CP. Finally, the time span 
from the current time point to CB’s maturity is T, which 
is partitioned into N equal-length time periods; the 
length of a time period Δt is T/N.

Our model involves four phases: 1) Constructing 
a BDT tree to match the market prices of riskless zero-
coupon bonds with different maturities (discussed in a 
subsection of the second section on calibrating the BDT 
tree to match P(T   )); 2) calibrating the default intensities 
and the recovery rates to match the market prices of risky 
zero-coupon bonds for different maturities with the condi-
tional expected recovery rate equation (see Equation (3)) 
and the revised JT model (see Equation (10)) (discussed 
in a subsection of the second section on calibrating the 
defaultable tree to match V(T)); 3) establishing a bivariate 
tree based on the pentanomial tree structure in Exhibit 6 
or the heptanomial tree structure in Exhibit 8 (discussed 
in the previous subsection); and 4) pricing the CB with 
the backward induction procedure, which is presented 
in this subsection.

During the backward induction procedure, each 
node of our bivariate tree model should carry four pieces 
of information. The first is the stock price, St, and the 
second is the interest rate, rt, applied in the time period 
that immediately follows. The third piece of information 
is the continuation value (CV ), which is the CB value 
obtained from the backward induction procedure. The 
last piece of information is the CB value of this node, 
determined by evaluating max(min(CV, CP) and θSt). 
Note that the issuer can redeem CBs at the prespecified 
call price CP if the continuation value CV exceeds CP. 
In other words, the issuer’s call option reduces the CB 
value to min(CV, CP). On the other hand, CB holders 

can convert their CBs into θ shares of stock even if the 
issuing firm activates the call back plan. Thus, the CB 
value cannot be less than its conversion value, which is 
equal to the product of the conversion ratio (θ) and the 
prevailing stock price (St). Consequently, the CB value 
is determined by the maximum of min(CV, CP) and θSt.

A prerequisite step in the backward induction pro-
cedure is determining CB values for all nodes at maturity. 
For simplicity, these nodes are called “terminal nodes.” 
Since this zero-coupon CB will be redeemed for face value 
F if it is not converted (by bond holders) or called back (by 
the issuer), the continuation value for each terminal node 
is equal to the face value F. Thus, the CB value for each 
terminal node can be evaluated by max(min(F, CP), θST  ). 
Moreover, in practice, the call price (CP) is never lower 
than the face value at maturity. Consequently, the CB 
values for all terminal nodes can be expressed as max(F, 
θST  ) to ref lect the possible conversion.

There are two different types of the backward 
induction procedures in our CB pricing model. The first 
type is for the final time period, while the second type is 
for all other time periods. For nodes at time (T − Δt), it 
is not necessary to consider the evolution of the interest 
rate for terminal nodes because the recorded interest 
rate T trr Δ  serves as the discount rate for the final time 
period. As a result, only the stock price movements in 
the final time period need to be modeled. If the condi-
tional probability Pu defined in Equation (12) can be fea-
sibly solved, the defaultable CRR binomial tree model 
is used, and the continuation value can be evaluated by 
the following backward induction formula:

 

CV r

e F e P CB PCC CB

T t T trr

r t
N

t
u uC d dP CBtTr NeF= e δFF NF

Δ

− Δrrr λ Δ −Ft FδFF λ ΔN

( ,ST t )

[(1 )e N t−λ Δtt ˆ ( )],

 (16)

where λN and Nδ̂  denote the default intensity and condi-
tional expected recovery rate for the N-th time period 
(i.e., the final time period). Otherwise, we employ the 
trinomial-tree-based mean-tracking method (discussed 
in Exhibit 7, Panel B) with an extra default branch to 
guarantee that the branching probabilities are feasible. 
The formula for computing the continuation value is

 

CV r

e F e P CBC

P CB PC CB

T t T trr

r t
N

t
U UP CP BCC

M MP CP D DPP CB

tTr NeF= e δFF NF

+ P CBCP CP BCC

Δ

− Δrrr λ Δ −Ft FδFF λ ΔN

( ,ST t )

[(1 )e N t−λ Δtt ˆ (

)].
 

(17)
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Once the continuation value of each node at time T − Δt 
is derived, the corresponding CB value for each node 
can be evaluated as max(min(CV, CP), θSt).

For any time period i other than the final one, if the 
mild condition proposed in the CL model is satisfied, the 
continuation value for each node at time t is computed as

 

CV r

e F e P CBCC

P CB PC CB P CBCC

t trr

r t
i

t
uu uu

udPP ud duP du ddP dd

tr tr i= e δFF i

+ P CBCCP +

− Δrrr λ Δ −Ft δF λ Δi

( ,St )

[(1 )e tie−λ Δt ˆ (

)].  (18)

Otherwise, if the mild condition is violated, the 
continuation value is found by using

 

CV r

e F e P CB PCC CB

P CB PC CB P CB PC CB

t trr

r t
i

t
UuPP Uu UdPP Ud

MuPP Mu MdPP Md DuPP Du DdPP Dd

tr tr i= e δFF i

+ P CBCCPP + P CBCCPP

− Δrrr λ Δ −Ft δF λ Δi

( ,St )

[([(1 )e t1 ie−λ Δt ˆ (

)].
 
(19)

Finally, the corresponding CB value can be determined 
by evaluating max(min(CV, CP), θSt) after the continu-
ation value (CV ) is obtained.

The aforementioned backward induction procedure 
is then repeated from the final time period to the first 
one. The pricing result of CB can be obtained at the 
root node of the proposed tree.

Illustrative Example for Pricing CBs

This subsection presents a hypothetic CB example 
to illustrate our CB pricing model. The three-year CB 
example adopted in the CL model is used in this article. 
For the purpose of the example, the number of time 
periods, N, is three, and thus the length of a time period 
Δt is one year. All parameter values are taken from the 
CL model other than the stock price volatility σs, which 
changes from 20% to 19%. By slightly lowering the stock 
price volatility, the conditional expectation ]E[ St t+Δ t  
of some nodes exceed σ ΔS S= eu tS tS , violating the mild 
condition. The values of all other parameters are sum-
marized as follows. The initial stock price S0 is 30, 
and the dividend payout rate q is assumed to be zero. 
The current term structures of riskless and risky zero 
rates are f lat at 10% and 15%, respectively. The interest 
rate volatility σr is 10%, and the correlation between the 
interest rate and stock price processes, ρ, is −0.1. This 
hypothetical zero-coupon CB has a face value F of 100 
and a conversion ratio θ of three. In addition, this CB 

is callable at any time point with call price CP = 105. 
We implement our model with Matlab on a PC with 
an Intel i7-6700K processor (4GHz) and 16GB RAM.

The three-time-period default-free interest rate 
tree is shown in Panel A of Exhibit 10. The default 
intensities, default rates, and recovery rates in different 
time periods under the conditional expected recovery 
rate assumption of our model are shown in Panel B of 
Exhibit 10. Comparing with the default rates given 

32%δ = , which is assumed in both Hung and Wang 

E X H I B I T  1 0
Three-Period CB Pricing Example

Notes: For the illustrative example, Panel A shows the three-period 
(N = 3) BDT interest rate tree. Panels B and C shows the calibration 
results based on our conditional expected recovery rate model and a con-
stant recovery rate fixed at 32%. In addition to the default intensities λi 
and the default rates DRi, the corresponding conditional expected recovery 
rates δ̂  are also reported. Panel D compares the CB values generated by 
our model and a constant recovery rate model with correction of the infea-
sible probability problem.
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[2002] and the CL model, one can find that the mag-
nitudes of the default and recovery rates derived by our 
model are in reasonable ranges. In addition, incorpo-
rating the conditional expected recovery rate into the 
JT model can result in an inverse relationship between 
the recovery and default rates in different time periods. 
The default rates in the three time periods increase to 
be 0.0755, 0.0808, and 0.0873, while the corresponding 
conditional expected recovery rates decrease to be 
0.3539, 0.3414, and 0.3274.

The three-time-period bivariate CB pricing tree is 
illustrated in Exhibit 11. For the final time period, the 
mild condition holds at nodes J, M, and P. The branching 
probabilities are determined via Equation (12) and the 
continuation values can be evaluated using Equation (16). 
For the remaining nodes in the final time period, the 
mild condition is violated. The branching probabilities 
are determined by Equation (14), and the continuation 
values are derived with Equation (17). For other time 
periods, since the mild condition holds at the nodes A, 
C, and E, the branching probabilities can be derived 
using Equations (12) and (13) and the continuation 
values are derived with Equation (18). On the other 
hand, the mild condition is violated at nodes B and D. 
Equations (14) and (15) and Exhibit 9 are used to 
derive the branching probabilities, and Equation (19) 
is employed to compute the continuation values. It is 
optimal for the issuer to exercise the redemption call at 
nodes B, C, F, G, H, I, and J; thus, the CB holders are 
forced to convert the CB into three equity shares at these 
nodes. The final pricing result is shown in the last field 
of node A. Based on our conditional expected recovery 
rate model, the CB price is 92.7329 when N = 3, which 
is also shown in Exhibit 10, Panel D.

The computational time for our CB pricing tree 
model grows nearly proportionally to N3 as illustrated 
in Exhibit 12; that is, our model is an O(N3) algorithm. 
This is because the backward induction is performed for 
each node, the size of which also grows in O(N3) due to 
the three dimensions: the stock price, the interest rate, 
and the timeline, being modeled in our CB pricing tree. 
Note that the exact size of the number of nodes cannot 
be easily estimated before the tree building process. This 
is because varying tree construction procedures illus-
trated in Exhibit 6 and Exhibit 8 are employed for guar-
anteeing feasible branching probabilities due to different 
levels of interest rates and default intensities implied from 
the prevailing zero curves.

DANAHER’S CB EXAMPLE

In this section, we employ our model to price a 
20-year zero-coupon CB issued by Danaher Corpora-
tion on January 22, 2001. Danaher Corporation (DHR), 
an S&P 500 component stock, is a large global company 
that designs, manufactures, and markets industrial and 
consumer products. DHR comprises four major seg-
ments: professional instrumentation, medical technolo-
gies, industrial technologies, and tool components.

We price this DHR CB on January 22, 2009, for 
the following reasons. First, choosing January 22 as the 
pricing date makes the time span between the pricing 
date to the maturity date work out to multiples of a 
year. That makes it easier for our discrete time pricing 
model to handle call and put schedules,14 which in the 
DHR CB contract are specif ied on an annual basis. 
Second, we wish to select a relatively recent pricing 
date to guarantee the availability of necessary historical 
data. Third, we need a pricing date on which the CB 
price is not too close to its conversion value (the value 
of stock shares obtained by exercising the conversion 
option of a CB). This is because when the CB price is 
very close to its conversion value, it usually ref lects the 
fact that the CB is forced to be converted in response 
to the redemption request of the CB issuer. In this 
situation, the default risk matters little and almost all 
CB pricing models yield the same CB price, which is 
the conversion value, making it diff icult to distinguish 
performance among different models. According to the 
Bloomberg database, the differences between the CB 
prices and the conversion values on January 22 of 2010, 
2011, 2012, 2013, and 2014 are very minor and less 
than 1% of the CB prices on these dates. Hence, we 
discard these five most recent candidates and focus on 
January 22, 2009.

The parameter values used to price the DHR 
CB on January 22, 2009, are listed in Exhibit 13. This 
table also shows the data source for the required param-
eters and the calibration method for estimating their 
values when necessary. The parameter values for this 
CB contract and the risk-free and A-credit-rating zero-
rate curves are collected from the Bloomberg database, 
and the stock price series and the information about 
the dividend payment are downloaded from the Yahoo! 
finance website. To estimate the stock price volatility 
(σS) and dividend yield (q), we collect the data of 
daily stock prices and dividend payment amounts for 
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E X H I B I T  1 1
Three-Period Bivariate CB Pricing Tree for the Hypothetical CB Example

Notes: The three-dimensional structure of our bivariate tree on a two-dimensional plane is illustrated by sorting the nodes at the same time point first by 
stock price and then by interest rate. The final pricing result of this example is 92.6672, as shown in the last field of node A.
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the three-year period prior to January 22, 2009. The 
dividend yield is computed as the ratio of the average 
annual cash dividends over the average stock price for 
this three-year period. To estimate σr in Equation (4) 
and the correlation between dlnSt and dlnrt, we use the 
daily data on the six-month Treasury yield over the 
three-year period prior to January 22, 2009.

Comparisons among Different Models

Exhibit 14, Panel A reports pricing results for 
the DHR CB on January 22, 2009, based on different 
recovery rate assumptions. The percentage difference 
between each pricing result and the actual market 
price is shown in parentheses under that pricing result. 
We observe that pricing the DHR CB with a 600 time-
period tree under the conditional expected recovery rate 
assumption generates a fairly accurate though slightly 
overestimated value (higher than the market price by 
0.38%). The accurate CB price estimated using our 
model is obtained without needing to estimate the 
recovery rate. In contrast, the constant recovery rate 
assumption of 49.54%δ =  yields a CB price of 85.1231 
dollars, which is significantly higher than the CB market 
price by 1.34%.

The aforementioned pricing error becomes more 
pronounced if we price the options embedded in the 
DHR CB contract. This problem is critical since 
many CBs are divided and sold as several components 

in f inancial markets. For example, a CB asset swap 
(CBAS) contract separates the conversion option from 
the CB contract. The value of the options embedded in 
the CB contract can be estimated by deducting the value 
of the corresponding corporate straight bond from the 
CB price. Note that the adoption of different recovery 
rate assumptions does not inf luence the pricing of the 
corresponding corporate straight bonds. This is because 
even if the default rate is calibrated poorly due to a 
poorly estimated recovery rate, the coordinated effect 
of the distorted default and recovery rates still accurately 
captures the expected loss of the corporate straight bond. 
The experiments in Exhibit 14, Panel B demonstrate 
how different recovery rate assumptions inf luence 
the values of the embedded conversion option, which is 
the most important option in CBAS contracts. To eval-
uate the conversion option, we first nullify the call and 
put options in the DHR CB contract by setting the call 
price CP to infinity and the put price PP to zero. Under 
these modif ications, the difference between the CB 
pricing result and the market value of the risky 12-year 
zero-coupon bond (which is 43.1038( )12 =( )12F V×  
U.S. dollars) ref lects only the value of the conversion 
option embedded in the DHR CB contract. Here we 
use the pricing result generated under the conditional 
expected recovery rate with 600 time periods as the 
benchmark. The percentage difference between each 
pricing result and the benchmark is reported below 
the pricing result. Compared with the percentage dif-
ferences in Exhibit 14, Panel A, we observe that the 
impact of inaccurate constant recovery rate estimates is 
more highly pronounced on the embedded conversion 
option than it is on the CB value. The value of the con-
version option is 53.6525 dollars under the conditional 
expected recovery rate, whereas the value of the conver-
sion option is 72.2829 dollars under a constant recovery 
rate of 49.54%. That is, if the recovery rate cannot be 
estimated correctly, it tends to significantly misprice the 
embedded conversion option.

Other Analyses

In this section, we describe several experiments 
conducted to analyze the sensitivity of the DHR CB 
value with respect to the parameters δ, σS, σr, and ρ 
given N = 144. Since we use historical data to estimate 
these parameters and extrapolate them into the future, 
the sensitivity analyses for those parameters help us to 

E X H I B I T  1 2
Computational Time Analysis of Our Model

Notes: This exhibit analyzes the computational time of our bivariate tree 
for pricing the hypothetical three-year CB. The computational time of 
our CB pricing model grows proportionally to the cubic of time periods N 
(i.e., O(N3)).
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assess pricing discrepancies due to estimation errors or 
changes in financial markets.

Exhibit 15 depicts the default rates over different 
time periods by setting the constant recovery rates δ at 
32%, 40%, 45%, 49.54%, and 55%. We examine the 

values of the recovery rate centering around 49.54%, 
which is the average recovery rate for A-rated f irms 
used in pricing DHR CB. The recovery rates 32% and 
40% are included because these values are commonly 
assumed to be constant recovery rates in reduced-form 

E X H I B I T  1 3
Parameters for Pricing DHR CB on January 22, 2009

Notes: This exhibit lists the parameters values for pricing DHR CB on January 22, 2009.
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models. It is apparent that in all time periods, the default 
rates increase with the recovery rate. Thus, Exhibit 15 
demonstrates that if one overestimates recovery rates, 
overvalued default rates are derived based on the tra-
ditional JT model,15 and a minor deviation in recovery 
rates results in a disproportionately large difference in 
default rates. Moreover, the constant-recovery-rate 
model generates abnormally high default rates for later 
time periods when the constant recovery rate increases. 
For example, in the case of a constant recovery rate δ 
of 55%, the conditional default rate approaches almost 
100% before maturity, surprisingly implying that DHR 
will certainly default as the CB is about to mature. Even 
when δ is set to 49.54%, the traditional JT model for 
pricing DHR’s CB reports that the conditional default 
rate exceeds 60% near the maturity, which is obviously 
too high as compared with results when δ is 32%, 40%, 
and 45%. According to our analyses of the default and 
survival rates in Exhibits 3 and 5, we have reason to 
believe that these conditional default rates for δ at 
49.54% and 55% are abnormally high for an A-rated 
firm like DHR.

Next, based on our bivariate tree model, the 
results of the sensitivity analyses of the CB values with 
respect to σS, σr, and ρ are shown in Exhibit 16. First, we 
observe that all three parameters have a positive effect on 
CB value. Since option values increase with increments 
in the underlying asset’s volatilities, it is reasonable to 
expect that σS and σr will have a positive impact on the 
embedded options, and thus on the total CB value. The 
positive effect of the correlation between the stock price 
and interest rate processes on CB prices is consistent 
with the results in the CL model. Second, the impact 
made by varying σS is pronounced, while that made by 
varying σr and ρ is fairly minor. The CB value increases 

E X H I B I T  1 4
DHR CB Values under Different Recovery Rate 
Assumptions on January 22, 2009

Notes: Panel A reports the results for pricing DHR CB on January 22, 
2009, based on different recovery rate assumptions. The percentage dif-
ference between each pricing result and the actual market price (84 U.S. 
dollars) is shown in parentheses below that pricing result. Panel B com-
pares the values of the conversion option embedded in DHR CB on 
January 22, 2009, under different recovery rate assumptions. In addition 
to the values of the conversion option, the percentage differences versus 
the pricing results generated by our model with N = 600 are also reported 
below the values of the conversion option.

E X H I B I T  1 5
Default Rates in Each Time Period Generated under 
Different Constant Recovery Rates

Notes: The curves in this exhibit show the default rates in each period 
under different constant recovery rates. For the 12-year time horizon, 
the number of total periods N is 144. This exhibit shows that, under 
the traditional JT model, higher recovery rates imply higher default rates. 
Moreover, the default rates in later periods, when δ is 49.54% and 55%, 
are abnormally high.
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by more than 10 dollars when σS increases from 20% to 
60% in Exhibit 16, Panel A. In contrast, the CB value 
increases by less than 0.01 dollars when σr dramatically 
increases from 4% to 20% in Exhibit 16, Panel B, or 
when ρ increases from −30% to 30% in Exhibit 16, 
Panel C. Consequently, we infer that even for inaccurate 
estimates of σr and ρ, our model still produces reliable 
estimates of CB values.

A POSSIBLE EXTENSION FOR OUR MODIFIED 
REDUCED-FORM MODEL

The relationship between the physical and the risk-
neutral default rates described in Equation (2) does not 
consider changes in global economic environments or in 
investors’ risk attitudes. Therefore, a regime-switching 
model that can describe time-varying relationships for 

E X H I B I T  1 6
Sensitivity Analyses of CB Values with Respect to σS, σr, and ρ

Notes: Examined in Panels A, B, and C, respectively, are the impacts on the CB value (represented by the y-axis) brought by changes in the stock price 
volatility σS, the interest rate volatility σr, and the correlation ρ (represented by the x-axis). There exists a significantly positive relationship between σS and 
the CB value, whereas the positive reactions in CB value to σr and ρ are relatively minor.
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these two rates under, for example, economic expan-
sions or recessions seems to be a potential solution.16 
Although our tree model can implement regime-
switching relationships with a forest composed of trees 
for modeling different relationships as suggested in Liu, 
Dai, and Wang [2016], a small number of observa-
tions of the physical and the risk-neutral default rates 
is not sufficient to generate reliable calibration results 
for a regime-switching model. For physical default 
rates of different credit ratings, we can access only the 
annual data provided by Moody’s since 1970. On the 
other hand, the Merrill Lynch bond indexes, which 
are required to estimate risk-neutral default rates, have 
been available since 1997. Consequently, there are fewer 
than 20 available observations for the pairs of these two 
rates. Since calibrating parameters of a complex model 
with few observations would result in unpredictable 
estimation errors, our article does not consider a time-
varying version for Equation (2).

However, to capture how changes in economic 
environments inf luence recovery rates like low recovery 
rates during financial crises, we follow Altman et al. 
[2005] by adding another economic variable, such as the 
growth rates of the S&P 500 Index, as an explanatory 
variable to modify Equation (1) as

 l ( ) .δ = +ln( ) + υa b+ cRP P) +) R  (20)

Here the growth rate of the S&P 500 Index RP 
is defined as the difference of the logarithmic stock 
index level, i.e., ln l 1−M Mln−t tMln 17; the subscript t for RP 
is suppressed to keep the following equations simple. 
The magnitudes of time-varying RP and its coefficient 
c are used to proxy how the varying economic environ-
ments inf luence the recovery rate. We pick RP instead of 
other macroeconomic variables like GDP as an explana-
tory variable because the risk-neutral counterpart for 
RP is widely discussed in financial engineering litera-
ture. In contrast, there are no well-known risk-neutral 
stochastic process models for GDP, and it is also dif-
ficult to calibrate the risk-neutral parameters for these 
models. According to the same dataset in 1982–2001 
used in Altman et al. [2005], the estimated results for 
Equation (20) are a = 0.0019, b = −0.1167, and c = −0.0943.

The relationship between the recovery rate and 
the risk-neutral default probability is obtained by substi-
tuting the right-hand sides of Equation (2) for ln(DRP) 
in Equation (20). In addition, the logarithmic S&P 500 

Index return under the physical measure RP is replaced 
by RQ + Λ, where RQ is the logarithmic S&P 500 return 
in the last year under the risk-neutral measure and 
Λ represents the risk premium for the logarithmic return. 
We estimate Λ to be 9.43% by calculating the average 
difference between returns of the S&P 500 Index and 
the risk-free interest rates (approximated by six-month 
Treasury yields) in 1982–2001. By mimicking the pro-
cedure in the second section, the expected recovery rate 
δ̂ can be expressed as

 

a b

c Q

Q Q

δ = + b + β + γ −

+ c Λ

λˆ [ lα + β n(1 )e
Q

− e−λ (l (1 )e
Q

− −λ ) ]

( )RQ +RQ Λ ,

2

 (21)

which depends on the two risk-neutral factors λQ and RQ.
Now we can extend the defaultable interest rate 

tree illustrated in Exhibit 2, Panel B by adding a new 
dimension that models the evolution of S&P 500 
Index, Mt. Following the common practice in the lit-
erature, the stochastic process for the S&P 500 Index Mt 
under the risk-neutral measure is posited as

 ( ) ,= ( + σ
dM

M
dt dWt

t
t Mq M MdWW  (22)

where qM and σM denote the dividend yield and the 
volatility of the S&P 500 Index, respectively. dWM is a 
standard Wiener process under the risk-neutral measure, 
and the correlation between the Wiener processes dWM 
and dWr in Equation (4) is denoted as ρM. The evolu-
tions of the two stochastic processes in Equations (4) 
and (22) can be simulated by taking advantage of our 
tree construction procedure for the CB pricing tree in 
Section 3. Note that since we model a stock index pro-
cess Mt rather than a price process for an individual 
stock, it is not necessary to add the default-intensity 
adjustment (i.e., λt in Equation (11)) into the drift term 
of Mt in Equation (22).

After constructing Mt − rt tree, for each node, we 
calculate possible S&P 500 Index growth rates RQ as 
the difference between the logarithmic S&P 500 Index 
of the current node and the logarithmic index levels 
of all its predecessor nodes.18 Default rates and con-
ditional expected recovery rates can be calibrated by 
matching the risky bond price evaluated by the Mt − rt 
tree with its market observation, similar to what we 
did in Equation (10). The key difference is that the 
relationship among expected recovery rates, default rates, 
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and S&P 500 Index growth rates listed in Equation (21) 
is adopted, and index growth rates are endogenously 
determined by the Mt − rt tree. Note that for all nodes 
(each of which may have multiple RQ values) in the same 
time period, they share a common risk-neutral default 
intensity λQ, but distinct conditional expected recovery 
rates are determined by Equation (21) for different RQ 
of each node. As a consequence, the recovery rate of our 
modified reduced-form model can thus vary according 
to prevailing economic conditions, which is presumably 
approximated by the growth rate of the S&P 500 Index.

We then compare our extension model discussed 
in this section and the revised JT model discussed in the 
second section for estimating the recovery rates, default 
rates, and 15-year survival rates for AA, A, BBB, BB, 
and B ratings on January 22 in 2010, 2011, 2012, 2013, 
and 2014 as illustrated in Exhibits 17 and 3, respectively. 
The S&P 500 Index dividend yield qM, the volatility 
σM, and the correlation between the short rate ρM for 
each examined date are estimated through daily data on 
S&P 500 Index levels and six-month Treasury yields in 
the past three years. The time period of the Mt − rt tree is 
set to be one year. Note that the results for δ in Exhibit 17 
are the probability-weighted average (adjusted by the 
survival rate) of the conditional expected recovery rates 
over all possible values of RQ of all nodes in the same 
time period. When the factor of the S&P 500 return 
is added into Equation (1) to form Equation (20), the 
extension of our modified reduced-form model (exten-
sion model for short hereafter) still maintains all desired 
features that can be observed in Exhibit 3. That is, 
the calibrated recovery rates change over time, there 
is an obvious inverse relationship between calibrated 
recovery and default rates, and our extension model 
calibrates higher (lower) default rates and lower (higher) 
recovery rates for lower (higher) credit rating reference 
entities. In addition, by comparing Exhibits 17 and 3, 
we find that the impact of introducing the S&P 500 
return is minor for both calibrated default rates and 
the corresponding conditional expected recovery rates. 
On average, the extension model generates slightly 
higher default rates than those in the original model (our 
modif ied reduced-form model that does not involve 
the S&P 500 return) by 0.07%, 0.07%, 0.06%, 0.00%, 
and 0.03% for AA, A, BBB, BB, and B ratings, respec-
tively. Furthermore, the extension model on average 
generates slightly higher conditional expected recovery 
rates than those of the original model by 0.29%, 0.23%, 

0.15%, and 0.29% for AA, A, BBB, and BB ratings, 
respectively. The only exception is the B rating, for 
which the extension model on average generates slightly 
lower conditional expected recovery rates than those of 
the original model by 0.04%. Consequently, the survival 
rates of the extension model are close to those of the 
original model (i.e., revised JT model) in Exhibit 5. 
The minor impact from the S&P 500 return is consis-
tent with the results in Altman et al. [2005]. They find 
that the negative relationship between the default and 
recovery rates is more robust and significant than the 
statistical relationship between the default rate and other 
macroeconomic factors such as the GDP or S&P 500 
return. Even so, this section still illustrates the poten-
tial of our model for introducing another representative 
economic/market explanatory variable to determine the 
conditional expected recovery rate.

CONCLUSION

Traditional reduced-form models commonly esti-
mate a constant recovery rate in advance. However, 
it is diff icult to obtain an accurate estimation of the 
recovery rate; an inaccurate recovery rate significantly 
inf luences the calibrated default rate and sometimes 
distorts it. In addition, the assumption of the indepen-
dence of the constant recovery rate from the default rate 
contradicts empirical findings. Moreover, our numer-
ical analyses also suggest that the improper setting of 
constant recovery rates may generate unreasonable 
default rates.

To solve these problems, this article suggests that 
any traditional reduced-form model can integrate our 
notion of conditional expected recovery rate, which is 
based on an empirical regression relationship between 
the recovery and default rates and a transformation 
between default rates under the physical and risk-
neutral measures. Our model can maintain the sim-
plicity and applicability of traditional reduced-form 
models. In addition, both the default and recovery rates 
can be endogenously determined during the calibration 
process. Consistent with many empirical studies, the 
resulting default and recovery rates are time-varying 
and negatively correlated. Furthermore, our conditional 
expected recovery rate can incorporate other macro-
economic factors as explanatory variables in addition to 
the default rate.
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E X H I B I T  1 7
Recovery, Default, and Survival Rates of the Extension of Our Model

(continued)
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E X H I B I T  1 7 (continued)
Recovery, Default, and Survival Rates of the Extension of Our Model

Notes: This exhibit reports the risk-neutral default rates (DRQ), the corresponding conditional expected recovery rate (δ((ˆ ), and the 15-year survival rates of 
the extension of our model, which incorporates the change in the logarithmic S&P 500 Index in the previous year as an explanatory factor for δ. The results 
for January 22, 2014, are fully presented. For all the other examined dates, we report only the means, medians, maxima, and minima of the recovery and 
default rates.

To demonstrate the applicability of our idea, 
we revise the JT model and use the revised model to 
price CBs. Another contribution of this article is our 
employing Dai’s [2009] mean-tracking method and 
modifying the correlation calibration method in Hull 
and White [1994] to solve the problem of infeasible 
branching probabilities in the CL model. As an example, 
we examine the pricing problem of the Danaher CB. 
The numerical results demonstrate that our revised JT 
model produces a more accurate CB value (only 0.38% 
higher than the prevailing market price) than the orig-
inal constant recovery rate model. In addition, we also 
show that the constant recovery rate model overvalues 
the conversion option in the Danaher CB by 34.72%. 
Reliable sensitivity analysis results also confirm the 
robustness of our revised model.

ENDNOTES

The authors thank Hung-Ting Chen for the prelimi-
nary study and financial support from the Ministry of Science 
and Technology of Taiwan.

1According to a Moody’s Investors Service report 
(Hamilton et al. [2007]), average recovery rates change over 
time, ranging from 20% to 60%, from 1982 to 2006.

2Similar arguments can be found in Duff ie and 
Singleton [1999].

3Conversely, Hu and Perraudin [2006] and Acharya, 
Bharath, and Srinivasan [2007] use default rate as well as other 
explanatory variables to predict the recovery rate. Our model 
can be extended to include other explanatory variables for 
the recovery rate. However, to maintain the simplicity and 
applicability of our model and focus on the improvements of 
our core idea on endogenous determinations of recovery and 

default rates, the introduction of our model does not consider 
other explanatory variables.

4The R-squared values of the linear regression equation 
between the recovery and default rates in Hamilton et al. 
[2007] and Altman et al. [2005] are 0.55 and 0.51, respectively.

5We thank the editor for pointing out the negative 
default risk premium problem and for the suggestion to find 
a high-R-squared value regression relationship between DRP 
and DRP that simultaneously keeps the default risk premium 
positive when DRQ is within a reasonable range. Indeed, it is 
challenging to find a high-R-squared-value regression that 
keeps DRQ − DRP positive for all possible values of DRQ. Our 
quadratic regression between ln DRP and ln DRQ is a practical 
compromise between the two needs.

6Berndt et al. [2011] also suggest estimating the risk-
neutral default rates from CDS spreads.

7We follow the JT model in assuming that the occur-
rence of defaults and the interest rate movements are 
independent.

8The JT model atypically assumes that the bondholders 
receive the recovery on the bond maturity date given the 
default event occurs. This article, however, follows Duffie 
and Singleton [1999] by assuming that bondholders receive 
the recovery immediately after the issuer defaults.

9Since both January 22, 2011, and January 22, 2012, are 
holidays, the zero rates on January 24, 2011, and January 23, 
2012, are used instead.

10The resource center on the website of the U.S. Trea-
sury Department (http://www.treasury.gov/resource-center/
data-chart-center/interest-rates/Pages/default.aspx) also pro-
vides daily data of one-month and three-month Treasury 
yields, which are more appropriate candidates for estimating 
the interest rate volatility. However, due to the missing data 
problem, we do not consider these two series.
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11This approach is commonly used in practice to esti-
mate default rates of corporate bonds with different credit 
ratings. For details on this approach, refer to Hull [2014].

12For the same reason, the credit spread model is inap-
propriate for pricing option-embedded defaultable bonds. 
This is also the major reason why in this article we choose the 
JT model to illustrate our notion of the conditional expected 
recovery rate and apply the revised JT model to pricing CBs.

13This process can be derived from Merton [1976], 
a seminal work in considering the option pricing problem 
under the jump-diffusion process. By considering the jump-
to-default process in Equation (17) of Merton [1976], the 
jump intensity should be added into the drift term of the stock 
price process to maintain its martingale property.

14To take the put (sell back) option into consideration, 
the CB value of each node is determined by evaluating 
max(min(CV, CP), θSt, PP), where PP denotes the put price.

15To the best of our knowledge, this phenomenon 
is a common characteristic for constant-recovery-rate 
reduced-form models. Although a rigorous and gen-
eral proof is not available, we can take the credit spread 
reduced-form model for example to illustrate our argument. 
Note that the credit spread model calibrates the risk-neutral 
default rate from the credit spread given a recovery rate 
through DR CSQ = CS δ/ (1 )− δ . By analyzing this formula, one 
can f ind that if a recovery rate is overestimated, the cali-
brated default rate in turn is overvalued for this inaccurate 
recovery rate.

16We thank the anonymous reviewer for pointing out 
the implicit stationarity assumption in Equation (2) and the 
editor’s constructive suggestion regarding this issue.

17In contrast to Altman et al. [2005], who use the 
contemporary annual return on the S&P 500 Index as an 
explanatory variable, our RP is calculated as the S&P 500 
Index return over the period just prior to the examined time 
point to avoid introducing the foresight problem into our 
modified reduced-form model. 

18The index growth rate for the root node is simply 
determined as M M t− Δln l0 , where M0 and M−Δt are the 
actual S&P 500 Index levels on the examined date and on 
the date one period before the examined date, respectively.
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