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Abstract This study extends the GARCH pricing tree in Ritchken and Trevor
(J Financ 54:366–402, 1999) by incorporating an additional jump process to develop
a lattice model to value options. The GARCH-jump model can capture the behav-
ior of asset prices more appropriately given its consistency with abundant empirical
findings that discontinuities in the sample path of financial asset prices still being
found even allowing for autoregressive conditional heteroskedasticity. With our lat-
tice model, it shows that both the GARCH and jump effects in the GARCH-jump
model are negative for near-the-money options, while positive for in-the-money and
out-of-the-money options. In addition, even when the GARCH model is considered,
the jump process impedes the early exercise and thus reduces the percentage of the
early exercise premium of American options, particularly for shorter-term horizons.
Moreover, the interaction between the GARCH and jump processes can raise the per-
centage proportions of the early exercise premiums for shorter-term horizons, whereas
this effect weakens when the time to maturity increases.
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1 Introduction

The stochastic nature of asset prices is of pivotal importance for option valuations.
Conventional assumptions of geometric Brownian motion processes are not satisfied
because some existing phenomena, such as leptokurtosis and negative skewness found
in asset return distributions, cannot be counted as influencing factors. Since abundant
empirical findings indicicate that discontinuities in the sample path of financial asset
prices are still found even allowing for autoregressive conditional heteroskedasticity,
we thus study the option pricing problem assuming the GARCH-jump process for
the underlying asset. Different from the simulation-based option pricing models in
existing literature, however, we develop a lattice model to value both European and
American options.

The proposed lattice option pricing model is developed by incorporating the tech-
nique for modeling the jump process in Amin (1993) into the lattice algorithm in
Ritchken and Trevor (1999) GARCH model. By performing the dynamic program-
ming method over our lattice model, we can price European as well as American
options under the GARCH-jump process. Our lattice model is structurally simple
since both the GARCH and jump processes can be modeled in a univariate lattice
framework. Moreover, the GARCH-jump process considered in this paper is rather
general to encompass several classical models as special cases or adapt to the GARCH-
jump model in Duan et al. (2006). As a result, our lattice model can be an efficient tool
to conduct empirical tests or numerical analyses on options pricing under different
asset price processes.

There are two widely adopted methods to account for the leptokurtosis and negative
skewness of the asset return and thus capture the volatility smile effect. The first is to
assume the conditional variance in the underlying process to be stochastic, i.e., sto-
chastic variance (SV) models, and the second is to consider autoregressive conditional
variances, i.e., GARCH (Generalized Autoregressive Conditional Heteroskedasticity)
models.1 However, attractive as the GARCH or SV models may be, they are unable to
account for occasional and large discrete changes embedded in asset prices. It is com-
mon to employ the jump-diffusion process to capture the occasionally large movements
in asset prices. Merton (1976) first proposes a jump-diffusion option pricing model,
where asset returns are generated by a mixture of two processes, including continuous,
incremental fluctuations of prices from a Wiener process, and large, infrequent price

1 The pioneers of SV option pricing models include Hull and White (1987), Wiggins (1987), Scott (1987),
Stein and Stein (1991) and Heston (1993). On the other hand, the GARCH model is first proposed by Engle
(1982) and Bollerslev (1986), and there are many variations, such as the exponential GARCH (EGARCH)
model in Nelson (1991), the nonlinear asymmetric GARCH (NGARCH) model in Engle and Ng (1993),
GJR-GARCH model in Glosten et al. (1993), and the threshold GARCH (TGARCH) model in Zakoian
(1994).
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jumps pertaining to the nonsystematic risk from a Poisson process. Cox and Ross
(1976) and Ahn and Thompson (1988) also derive option pricing models by assuming
discontinuous jump processes for the underlying assets. In order to price American
options under the jump-diffusion process, Amin (1993) develops a discrete-time lat-
tice model, assuming that the asset price can move upward or downward by one tick
in each time step to represent the diffusion process, as postulated by Cox et al. (1979)
model, and the asset price also changes on account of a rare event (jump) by permitting
the underlying asset price to move by multiple ticks in a single time step. Based on the
risk-neutral valuation argument and the assumption that the jump risk is diversifiable,
his model weakly converges to the theoretical option values under some regularity
conditions.

Although both the SV and GARCH models are able to capture the negative skewness
and excess kurtosis of asset returns commonly found in the empirical data, this paper
focuses on the GARCH models due to several reasons. First, comparing to the SV
models, the GARCH models are more intuitive to understand and thus widely used by
market participants. Second, for the GARCH models, both the asset price and variance
processes are driven by the same random innovation, but for the SV models, the asset
price and variance processes have their own random innovations. This characteristic
complicates the estimation of the parameters of the SV models since the variances are
not observable in the market. It also causes the complexity to develop a lattice model to
price American-style options under the SV models. To take both random innovations
of the asset price and variance processes into account, it is unavoidable to consider
a bivariate lattice model, which is structurally more complex than a univariate lattice
model for the GARCH models. Consequently, it is further difficult to incorporate other
stochastic features, for example the jump process, with the bivariate lattice model of
the SV models to pricing American-style options.2

The choice for combining the GARCH and jump processes to model the behavior
of asset prices is supported by abundant empirical evidence in the literature.3 For
example, Vlaar and Palm (1993) and Nieuwland et al. (1994) adopt a GARCH-constant
jump intensity model to capture foreign exchange rate dynamics. Likewise, Jorion
(1988) combines an ARCH model with a jump component to empirically examine both
foreign exchange rates and stock returns. Lin and Yeh (2000) also employ a GARCH-
constant jump intensity model and provide empirical tests on the Taiwan stock market
to examine whether discontinuous price paths exist. Both Jorion (1988) and Lin and
Yeh (2000) find that the combined models could provide better explanations for the

2 Similar to this paper, Chang and Fu (2001) investigate the option pricing problem under the SV model
and jump process. They combine the transformation technique of Hilliard and Schwartz (1996) to deal with
the SV model and the jump-diffusion model of Amin (1993) to yield a discrete-time bivariate binomial tree
model. Due to the complexity of the bivariate lattice structure, their model is difficult to implement and
thus has not much practical implication.
3 There are also many articles examining empirically the necessity to incorporate a jump process into the
SV models (thus the SVJ models) for stock indexes, such as Anderson et al. (2002), Jiang (2002), Pan
(2002), Chernov et al. (2003) and Kim et al. (2007). In addition, it is commonly identified in the literature
that the SVJ models are superior than the SV models on option pricing, such as Bakshi et al. (1997, 2000),
Bates (1996, 2000), and Scott (1997) which propose analytic option pricing formulae for European-style
options under the SVJ models by solving the characteristic functions of the cumulative probabilities under
the risk-neutral measure.
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behavior of asset prices. Recently, Duan et al. (2006, 2007) propose a highly general
GARCH-jump model which takes the correlated systematic jump into account. In Duan
et al. (2007), they empirically test this GARCH-jump model using the S&P 500 index
series as the research sample. The results show that the inclusion of jumps significantly
improves the fit of historical series of the S&P 500 stock index. In addition, Duan et al.
(2006) propose an option pricing model corresponding to their general GARCH-jump
model and solve option prices by simulation approaches.

Equipped with our lattice model, we show that both the GARCH and jump effects
in the GARCH-jump model are negative on the values of near-the-money options
while positive on the values of in-the-money and out-of-the-money options. This
pattern confirms the evidence in many empirical studies that the introduction of either
the GARCH or the jump process can help explaining the excess kurtosis and thus the
phenomenon of the volatility smile implied from option prices. In addition, even when
the GARCH model is considered, the jump process impedes the early exercise and
thus reduces the percentage of the early exercise premium of the American option,
particularly for shorter-term horizons. Moreover, we also discover the positive impact
on the percentage proportions of the early exercise premiums from the interaction
between the GARCH and jumps, and this positive impact declines as the maturity
increases.

The remainder of this paper is organized as follows. In Sect. 2, we construct a lattice
model under the generalized GARCH-jump process and discuss its adaption to several
existing models. Section 3 describes the option pricing procedure based on our lattice
model. In Sect. 4, we conduct several numerical analyses for our GARCH-jump lattice
model on pricing options. Section 5 is the conclusion of this paper.

2 The lattice model with GARCH and jumps

2.1 General framework

This paper denotes St as the price of the underlying asset on date t . Suppose that under
the risk-neutral measure Q, the logarithmic return of the underlying asset price over
the period (t, t + 1]4 follows the generalized GARCH-jump process as follows:

ln

(
St+1

St

)
= mt + √

ht Xt , (1)

where

mt = r f − ht

2
− λ[Kt − 1],

Xt = Zt +
q Q

t∑
l=1

J (l)
t ,

4 Without loss of generality, the time step is fixed to be one day in this paper for the brevity of the notation
system.
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Zt ∼ N Q(0, 1),

J (l)
t ∼ N Q(μJ (ht ), σ

2
J (ht )),

Kt = E J (exp(
√

ht J (l)
t )).

In the above postulation, mt and ht denote the daily drift rate and conditional variance
of the asset price process over the period (t, t +1]. In addition, r f is the daily risk-free
interest rate, and Xt is a compound Poisson normal process, which is a mixture of a
standard normal process Zt and a Poisson jump process. The notation q Q

t represents
the total number of Poisson events occurring in (t, t +1] with the daily jump intensity
λ and the independent (with respect to different l and time point t) normally distributed
jump magnitude J (l)

t . The mean and standard deviation of J (l)
t , denoted as μJ (ht ) and

σJ (ht ), are assumed to be generally dependent on the conditional variance ht . Finally,
Kt is defined as the average rate of jump plus 1, and the reason to include λ[Kt −1] in
the drift term is to maintain the martingale property of the underlying asset price under
the risk-neutral measure Q. In the equation for evaluating Kt , E J is the expectation
operator with respect to the distribution of J (l)

t .
The variance process of the asset price returns is assumed to follow a generalized

GARCH process with an updating function:

ht+1 − ht = f (νt+1, ht ) , (2)

where

νt+1 = (ln St+1 − ln St − mt )/
√

ht − E Q(Xt )√
V ar Q(Xt )

,

is the standardized innovation of the logarithmic asset price process and

E Q(Xt ) = λμJ (ht ),

V ar Q(Xt ) = 1 + λ[μ2
J (ht ) + σ 2

J (ht )],

are the mean and variance of the compound Poisson normal process, Xt , under the
risk-neutral measure Q.

Next, this paper establishes a lattice model for simulating the dynamics of the above
GARCH-jump process. Given yt = ln(St ), the logarithmic asset price after one day,
yt+1, can be approximated with a grid of nodes in the lattice space as follows:

yt+1 ∈ {yt , yt ± γn, yt ± 2γn, yt ± 3γn, . . .}, (3)

where γn represents the tick movement of the logarithmic asset price on the lattice
and will be defined later. Note that the asset price changes can be driven by a local
component and a jump component, where the local component indicates the variation
of the asset price follows the assumption of a GARCH diffusion process, and the jump
component means that the asset price can change to an arbitrary level, either within
or beyond the local change levels.
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For the local component to simulate the GARCH model, given the logarithmic
asset price yt and the conditional variance ht , we follow the assumption in Ritchken
and Trevor (1999) that the conditional normal distribution of the logarithmic asset
price for the subsequent time step is approximated by a discretely random variable
that takes 2n + 1 values on the lattice. More specifically, Ritchken and Trevor (1999)
partition each time step (that is one day in their model) into n subintervals, and for
each subintervals, the trinomial tree model is employed to simulate the evolution of
the logarithmic asset price. The cumulative effect of the trinomial tree model in n
subintervals generates 2n + 1 branches for each time step. For example, if n = 2,
for the possible logarithmic price levels at the next time step, there will be two levels
higher than and two levels lower than the current logarithmic price level in addition to
one unchanged level. In addition, we also need the size control parameter, η, which is
defined as the smallest integer that allows the mean and variance of the next period’s
logarithmic price to match the moments of the posited distribution and ensures the
probabilities of all 2n + 1 branches of each node are in the interval [0,1]. The size
control parameter η can be chosen such that

(η − 1) <

√
ht

γ
≤ η, (4)

where we set γ = √
1.5h0, in which h0 is the initial daily variance of the logarithmic

asset price process. Finally, the tick size for the change of the logarithmic asset price
in Eq. (3) is defined as:

γn = γ√
n
. (5)

To complete the approximation for the GARCH model with the local price changes
on the lattice model, the remaining problem is the assignment of probabilities for the
branches of each node.

In order to take into account both the GARCH and jump characteristics, we adopt
a technique similar to that proposed in Amin (1993) to simulate the jump process in
the multinomial tree of Ritchken and Trevor (1999) GARCH pricing model. In our
model, we assume that both the update of the conditional variance and the jump events
take place only at the end of each day, and we further allow for the concurrence of
local price changes and jumps.5 As a consequence, the probabilities of the branches
representing the GARCH model in Ritchken and Trevor (1999) model are modified
as

Pr(yt+1 − yt = θηγn) = (1 − λ)P(θ) + λφ(θη), θ = 0,±1, . . . ,±n, (6)

5 This assumption is consistent with practical conditions since it is almost impossible to distinguish a small
change in the asset price coming from the diffusion or jump components. In contrast, Amin (1993) permits
the two price changes to be mutually exclusive for the expositional convenience. However, in the continuous
time limit, i.e., when the length of the time step approaches zero, it is irrelevant whether they are mutually
exclusive.
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where

P(θ) =
∑

ju , jm , jd

(
n

ju jm jd

)
p ju

u p jm
m p jd

d , for θ = ju − jd and ju + jm + jd = n,

Pu = ht/(1 − λ)1/n

2η2γ 2 + mt
√

1/n/(1 − λ)1/n

2ηγ
,

Pm = 1 − ht/(1 − λ)1/n

η2γ 2 ,

Pd = ht/(1 − λ)1/n

2η2γ 2 − mt
√

1/n/(1 − λ)1/n

2ηγ
,

and

φ( j) = 	

((
j + 1

2

)
γn

)
− 	

((
j − 1

2

)
γn

)

is the marginal probability that the asset price changes to the j th level relative to the
level of yt , where 	(·) is the cumulative normal distribution function with the mean
of μJ (ht )

√
ht and the variance of σ 2

J (ht )ht . The details to derive Pu, Pm , and Pd are
presented in Appendix A.

The probabilities for price changes other than the local change levels, i.e., the
probabilities caused only by the jump component, are

Pr(yt+1 − yt = jγn; j �= θη) = λφ( j), j = 0,±1,±2, . . . ,±w, (7)

where w is defined as 3
√

σ 2
J (ht )ht/γn (rounding to the nearest integer greater than or

equal to that number), since the probability that the asset price jumps to the level outside

the range of [−3
√

σ 2
J (ht )ht , 3

√
σ 2

J (ht )ht ] is very small and can be negligible. In

addition, the entire probability mass outside the region [−3
√

σ 2
J (ht )ht , 3

√
σ 2

J (ht )ht ]
is assigned to the truncation points. More specifically, for the cases of j �= ±w,
the definition of φ( j) is as it is; however, when j = ±w, the jump distribution
is trimmed such that the entire probability mass lower and higher than the range
[−w,w] is assigned to the node j = −w and j = w, respectively, i.e., φ(−w) =
	((−w + 1/2)γn) and φ(w) = 1 − 	((w − 1/2)γn).

Figure 1 illustrates the probabilities we assign to any state j relative to the level of
yt in our lattice model. For expositional purposes, n = 1 is considered in this figure,
which means the GARCH process is approximated by a trinomial model for each time
step. The size control variable η is assumed to be 2, meaning the possible levels of
local price changes to simulate the GARCH model for the next period prove to be
j = −2, 0, 2. Other price changes are for the jump component only. Note that since

the triple of the volatility of jump magnitude, 3
√

σ 2
J (ht )ht , is significantly larger than

the spacing parameter γn of the lattice model in both theory and practice, the range of
yt+1 = yt + jγn , for j = 0,±1,±2, . . . ,±w is wider than yt+1 = yt + θηγn , for
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yt

(1 ) (1) (2)Pλ λφ− +

( 1)λφ −

(1 ) (0) (0)Pλ λφ− +

(1 ) ( 1) ( 2)Pλ λφ− − + −

(1)λφ

( )wλφ −

( )wλφ

2j =

1j =

0j =

1j = −

2j = −

j w= −

j w=

1t +t

Fig. 1 The probabilities of the GARCH-jump lattice model. This figure illustrates the probabilities of the
local price changes and jump components of our lattice model, which are assigned to branches from the
node with the logarithmic asset price yt to each relative state j at time t + 1. The case of n = 1 and η = 2
is considered in this figure. The dotted rectangles represent the price levels corresponding to the jump
component only, and the assigned probabilities are reported on their right. The solid rectangles indicate the
price levels to include both types of changes. The combined probabilities are also shown on their right

θ = 0,±1,±2, . . . ,±n. Also note that in this paper, we allow the jump component
to cause the price changes to all levels, including the local price change levels.

2.2 Special cases of the general GARCH-jump process

The framework of the proposed GARCH-jump model is quite general and able to
encompass many special cases. This section introduces a constant-parameter GARCH-
jump model first, and then discusses several nested models of it. SupposeμJ (ht )

√
ht =

μJ and σ 2
J (ht ) ht = σ 2

J , where μJ and σ 2
J are constants. Then the jump magnitude

follows a normal distribution with the constant mean and standard deviation to be μJ

and σJ , and the GARCH-jump process in Eq. (1) becomes

ln

(
St+1

St

)
= mt + √

ht Xt = mt + √
ht Zt +

q Q
t∑

l=1

√
ht J (l)

t , (8)
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where

mt = r f − ht

2
− λ[Kt − 1],

√
ht J (l)

t ∼ N Q(μJ , σ 2
J ),

Kt = E J (exp(
√

ht J (l)
t )) = exp(μJ + σ 2

J /2).

Moreover, we consider the NGARCH process following Ritchken and Trevor (1999),
and the variance updating function can be specified as follows:

ht+1 − ht = f (νt+1, ht ) = β0 + (β1 − 1)ht + β2ht (vt+1 − cQ)2, (9)

where β0, β1, β2, and cQ are constants. The non-negative value of cQ indicates a
negative correlation between the innovations of the logarithmic asset price and its
conditional volatility under the risk-neutral measure Q. In addition, β0 > 0, β1 ≥
0, and β2 ≥ 0 are required to ensure the positive conditional volatility. As to the
innovation of the logarithmic asset price νt+1, it can be rewritten as follows.

νt+1 = (ln St+1 − ln St − mt )/
√

ht − E Q(Xt )√
V ar Q(Xt )

= ln St+1 − ln St − mt − λμJ√
[ht + λ(μ2

J + σ 2
J )]

.

In Sect. 4 of this paper, our numerical results are mainly according to this constant-
parameter GARCH-jump model.

Furthermore, based on the above constant-parameter GARCH-jump process, if we
do not consider the feature of GARCH by setting parameters to be

β0 = 0, β1 = 1, and β2 = 0,

then our constant-parameter GARCH-jump process will reduce to the jump-diffusion
process in Amin (1993) and converge to Merton (1976) option pricing model in con-
tinuous time. Similarly, if we nullify the jump parameters, leaving the GARCH para-
meters only, that is:

λ = σJ = μJ = 0,

then the constant-parameter GARCH-jump process in Eqs. (8) and (9) can be simplified
to the GARCH model of Ritchken and Trevor (1999) and converge to Duan (1995)
continuous time framework. Finally, if neither features of GARCH and jump processes
are considered, that is,

β0 = 0, β1 = 1, and β2 = 0, and λ = σJ = μJ = 0,

then the constant-parameter GARCH-jump process will degenerate to the pure-
diffusion models in Cox et al. (1979) and the Kamrad and Ritchken (1991), whilst
converging to the continuous time model in Black and Scholes (1973).
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In addition to simulating the constant-parameter GARCH-jump, jump-diffusion,
GARCH, and pure-diffusion processes, our GARCH-jump process can adapt to the
general GARCH-jump model in Duan et al. (2006), where the asset price and the pric-
ing kernel follow a GARCH-jump process and a jump-diffusion process, respectively,
and the jumps in the asset price and pricing kernel are governed by the same Poisson
process and the jump magnitudes of them are correlated. The details to rewrite their
model to fit into our framework are presented in Appendix B.

3 Option pricing with the GARCH-jump lattice model

For pricing options, apart from the lattice model for the underlying asset price process,
one also requires the variance table for each node to account for the GARCH evolutions
for different asset price paths. Once the lattice model for the underlying asset price and
the variance table for each node have been constructed during the forward-building
process, we can apply the standard backward recursive procedure to calculate option
values with the lattice model.

The crucial task of the backward recursive procedure for GARCH option pricing
is to keep track of the change of the conditional variance for each node to capture the
path dependence of GARCH evolutions. However, in order to avoid the exponential
growth in the number of possible variances, Ritchken and Trevor (1999) approximate
the state space of conditional variances at each node by M linearly interpolated values
selected to span the range between the maximum and minimum conditional variances
instead of tracking all conditional variances of that node. Moreover, option prices are
then computed in accordance with these M levels of conditional variances at each
node. Following their approach, we define hmax

t (i) and hmin
t (i) to be the maximum

and minimum conditional variances at node (t, i), where t denotes the examined date
and i indicates the level of the logarithmic asset price relative to the root node. Next,
we introduce ht (i, k) to denote the kth level of the conditional variance at node (t, i)
as follows.

ht (i, k) = M − k

M − 1
hmax

t (i) + k − 1

M − 1
hmin

t (i), for k = 1, 2, . . . , M. (10)

At each node, we need to compute option prices over a grid of M points, i.e.,
to compute option prices corresponding to all ht (i, k) at each node (t, i). Hence we
define Ct (i, k) as the kth option price at node (t, i) (for k = 1, 2, . . ., M) when the
underlying asset price of that node is St (i) = exp[yt (i)] and the examined variance
is ht (i, k). Suppose that T denotes the maturity date of the examined option, and for
each node at maturity, the boundary condition for a standard call option with a strike
price Xcan be expressed as6

CT (i, 1) = CT (i, 2) = · · · · · · = CT (i, M) = max(0, ST (i) − X). (11)

6 Here the call option is employed as an illustrative example. To value put options, the boundary condition
is CT (i, 1) = CT (i, 2) = · · · · · · = CT (i, M) = max(0, X − ST (i)).
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During the backward recursion for each ht (i, k), we need to compute the updating
variance for each possible successor node at (t+1). More specifically, for the transition
from the kth variance entry of node (t, i) to node (t +1, i + j), for j = 0,±1, . . . ,±w,
the resulting variance is

hnext ( j) = ht (i, k) + β0 + (β1 − 1) ht (i, k) + β2ht (i, k)[vt+1 ( j) − cQ]2, (12)

where the corresponding innovation of the logarithmic asset price is

vt+1( j) = ( jγn − mt )/
√

ht − E Q(Xt )√
V ar Q(Xt )

.

Since only M different conditional variance levels are stored at node (t + 1, i + j),
there may not be a variance entry exactly identical to hnext ( j) during the backward
recursive procedure. In this situation, the linear interpolation of the two option prices
with conditional variances nearest to hnext ( j) is employed to obtain the approximated
option price for the conditional variance hnext ( j). Let L be an positive integer smaller
than M , and

ht+1(i + j, L) < hnext ( j) ≤ ht+1(i + j, L + 1). (13)

The interpolated option price is

C interp( j) = �( j)Ct+1(i + j, L) + (1 − �( j))Ct+1(i + j, L + 1), (14)

where

�( j) = ht+1(i + j, L + 1) − hnext ( j)

ht+1(i + j, L + 1) − ht+1(i + j, L)
.

In this way, we can obtain the option prices over all branches of ht (i, k), and thus
derive the option’s continuation value Ccon

t (i, k) by the following equation.

Ccon
t (i, k) = exp(−r f )

∑
j

Pr (ln St+1 − ln St (i) = jγn) C interp( j),

for j = 0,±1, . . . ,±w. (15)

If an American option is considered, the option value corresponding to the variance
entry ht (i, k) will be the larger value between Ccon

t (i, k) and the exercise value for node
(t, i). The current option price, obtained by the above backward recursive procedure,
can be given by C0(0, 1).7

Cakici and Topyan (2000) propose a relatively efficient method by modifying the
forward-building process of Ritchken and Trevor (1999) approach. They employ only

7 This is because all M entries of h0(0, k) are equal to the initial variance h0, and thus all M entries of
C0(0, k) should be the same and equal to the option price today.
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the maximum and minimum conditional variances at time t to calculate the maximum
and minimum conditional variances at (t + 1) in the forward-building process, rather
than employing all interpolated conditional variances at t . In our lattice model, we
apply Cakici and Topyan (2000) method to capture the spectrum of the conditional
variance during the forward-building process. However, since they still employ the
interpolated M conditional variances during the backward recursive procedure, this
method cannot avoid that the conditional variance hnext ( j) based on ht (i, k) may
exceed the range of the maximum and minimum conditional variances of node (t +
1, i + j) during the backward recursive procedure. To solve this problem, the option
prices corresponding to the extreme conditional variance hmax

t+1 (i + j) or hmin
t+1(i + j)

are used instead.
In addition, the state space for the asset price in our model is determined by truncat-

ing extremely high and low levels of the asset prices to ensure that the state space for
the underlying asset price is finite. In practice, we decide the state space in our lattice
model in two steps. First, following the forward tree-building process in Cakici and
Topyan (2000) and the GARCH evolution rule in Eq. (2), a GARCH option pricing
tree is constructed and thus the maximum and minimum asset price levels at maturity
associated with the local movements under the GARCH process are obtained. Suppose
the number of possible states ranging from the maximum to the minimum asset prices
at maturity is R after the first step. Second, we add w (defined in Eq. (7)) additional
price levels above the “local” maximum asset price level and w additional price levels
below the “local” minimum asset price level in the lattice model. Therefore, a vector of
D = R + 2w possible asset price levels is derived, and we use these D possible asset
price levels to span the state space at each time step in our lattice model. In addition,
the maximum and minimum conditional variances for each node are updated as well
while spanning the state space with the GARCH-jump model. As for the nodes near
the upper and lower boundaries of the state space, both the movements caused by
the GARCH and jump processes are truncated, and the entire probability mass out-
side the upper and lower bounds is assigned to the upper and lower truncation points,
respectively.

To illustrate how the GARCH-jump option pricing lattice works, we follow
Ritchken and Trevor (1999) GARCH option pricing example by assuming the current
underlying price S0 = 1000, the daily risk-free interest rate r f = 0, the GARCH
parameters β0 = 6.575 × 10−6, β1 = 0.9, β2 = 0.04, cQ = 0, and the time
step to be one day. As to the parameters for the jump component, we assume that
μJ = −0.0000125, σJ = 0.005, and the daily jump intensity parameter λ = 5/365.
The initial daily variance h0 is set to be 0.000109589, which is equivalent to the annual
variance of 0.04. In the case of n = 1 and M = 3, we choose a grid of approximating
logarithmic prices with the tick size γ1 = γ = √

h0 = 0.01058 around the initial
value of the logarithmic price y0 = ln S0 = 6.9078. For comparative purposes, we
reproduce the illustrative example of the GARCH option pricing in Fig. 2 of Ritchken

8 According to Ritchken and Trevor (1999), the setting of γ only affects the rate of convergence. Setting
γ to be

√
h0 here is simply for expositional purposes. In practice, we choose γ = √

1.5h0 to conduct our
numerical analyses such that the probabilities of the three local jumps are close to 1/3 and able to improve
the convergence rate of pricing results.
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and Trevor (1999). Herein a three-period at-the-money European call option is priced,
by courtesy of our GARCH-jump lattice model, with all jump parameters set to zero.
It is worth noting that as we nullify the jump components, our GARCH-jump lattice
model becomes identical to that in Ritchken and Trevor (1999). Figure 3 illustrates
the valuation of the same three-period at-the-money European call option under the
GARCH-jump process with our lattice model. For both Figs. 2 and 3, the maximum
and minimum daily conditional variances over all possible paths reaching each node
are shown in the left column of the box for each node. The right column shows the
option values corresponding to these maximum and minimum daily conditional vari-
ances, as well as the option value corresponding to the midpoint daily conditional
variance. In Fig. 2, it can be found that R is 9 (i.e., there are 9 levels ranging from the
maximum to the minimum asset prices at maturity in Fig. 2), and since σJ = 0.005
and γ1 = 0.0105, we can derive w to be 2 from Eq. (7). As a consequence, our lattice
model employs D = R + 2w = 13 possible logarithmic asset levels for each time
point in Fig. 3. Comparing these two figures in details, we can distinguish that due to
the extra variance introduced by the jump process, the variance range of each node
in Fig. 3 is generally wider than that of the counterpart node in Fig. 2. In addition,
for this set of parameters, the option is more valuable when taking the discontinuous
jump process into consideration.

4 Numerical analysis

4.1 Validity test for the GARCH-jump lattice model

The first part of the numerical analysis is to verify the validity of our lattice model.
To achieve this goal, several experiments are conducted to price call options under
the constant-parameter GARCH-jump process specified in Sect. 2.2. To examine the
convergence behavior of our lattice model, we resort to a large sample of Monte Carlo
simulations since there is no analytic option pricing formula given the GARCH-jump
process. Our benchmark involves the examination of 1,000,000 asset price paths so
as to obtain accurate theoretical prices of European options. Consider the numerical
example as follows. For the jump component, the parameter values λ = 5/365,

σ 2
J = 0.05, and μJ = −σ 2

J /2 = −0.025 are from Table 1 of Amin (1993). As for
the GARCH parameters, β0 = 0.000006575, β1 = 0.9, β2 = 0.04, cQ = 0, and
h0 = 0.000109589 are from Table II of Ritchken and Trevor (1999). In addition,
r f = 0, S0 = $100, and X = $100. Table 1 shows the convergence behavior of at-
the-money European call option prices with respect to different number of variances
M at each node given n = 1.The numerical results indicate that these at-the-money
call prices converge into the 95 % confidence interval rapidly even with small values of
M regardless of the days to maturity. For all maturities, our lattice model can generate
converged option prices when M is larger than or equal to 20. Moreover, the variations
of the option prices are extremely minor when M is above 20, which indicates the
validity and reliability of our model to price options under the GARCH-jump process.

Moreover, as mentioned in Sect. 2.2, the GARCH-jump process considered in this
paper provides a general framework and thus is able to encompass the jump-diffusion
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Fig. 2 Lattice model of the GARCH process for a three-period at-the-money call option. This figure
reproduces Figure 2 in Ritchken and Trevor (1999), which shows the valuation of a three-period at-the-
money European call option, with our GARCH-jump lattice model by setting all jump parameters to be
zero. Suppose that the current underlying price S0 = 1000, the daily risk-free interest rate r f = 0, the

GARCH parameters β0 = 6.575 × 10−6, β1 = 0.9, β2 = 0.04, cQ = 0, and the initial daily variance
is h0 = 0.000109589. In the case of n = 1 and M = 3, we choose a grid of approximating logarithmic
prices with the tick size γ1 = γ = √

h0 = 0.0105 around the initial value of the logarithmic price
y0 = ln S0 = 6.9078. For each node, it is represented by a box containing five numbers. The top (bottom)
number in the left column is the maximum (minimum) daily conditional variance (multiplied by 105) of
each node. In this example, since M = 3, three option values are carried at each node, which are shown in
the right column. The top (bottom) number is the option value corresponding to the maximum (minimum)
daily conditional variance, and the middle number is the option value corresponds to the middle daily
conditional variance

model in Amin (1993) and Merton (1976) and the GARCH process in Ritchken and
Trevor (1999) as special cases. Hence, another way to examine the correctness of
our lattice model is to price the same option examples in Amin (1993) and Ritchken
and Trevor (1999). More specifically, we duplicate the results of Table I in Amin
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Fig. 3 Lattice model of the GARCH-jump process for a three-period at-the-money call option. This figure
shows our GARCH-jump lattice model for pricing the same three-period at-the-money European call option
in Fig. 2. The parameters for the GARCH process are identical to those in Fig. 2. In addition, we assume that
μJ = −0.0000125, σJ = 0.005, and the daily jump intensity parameter λ = 5/365. From the GARCH
lattice in Fig. 2, it can be found that R is 9 (there are 9 levels ranging from the maximum to the minimum
asset prices at maturity in Fig. 2), and since σJ = 0.005 and γ1 = 0.0105, we can derive w to be 2
from Eq. (7). As a consequence, our lattice model employs D = R + 2w = 13 possible logarithmic asset
levels for each point in time. For each node, the left column represents the daily conditional variances
(multiplied by 105) and the corresponding option values are reported in the right column. Comparing to the
GARCH lattice in Fig. 2, the variance range is wider for each node and the option is more valuable in the
GARCH-jump process in this figure

(1993) and Table II in Ritchken and Trevor (1999) with our lattice model. Our lattice
model can generate almost identical results with these two classical tree models. The
maximum differences are less than 2 cents compared with the results in Amin (1993)
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Table 1 Convergence of the GARCH-jump lattice model

Number of
variances
(M)

Maturity of option (days)

5 10 20 50 75 100 150 200

5 1.4369 2.2539 3.5535 6.4746 8.3679 9.9735 12.6373 14.8378

10 1.4372 2.2547 3.5570 6.4900 8.3928 10.0063 12.6812 14.8888

20 1.4374 2.2552 3.5591 6.5004 8.4087 10.0263 12.7064 14.9185

30 1.4376 2.2555 3.5597 6.5035 8.4135 10.0323 12.7152 14.9298

40 1.4378 2.2558 3.5600 6.5046 8.4154 10.0349 12.7193 14.9355

50 1.4378 2.2560 3.5602 6.5051 8.4162 10.0364 12.7214 14.9385

∞L 1.4315 2.2538 3.5550 6.4675 8.4029 10.0014 12.6981 14.9156

∞U 1.4444 2.2720 3.5807 6.5250 8.4535 10.0600 12.7715 15.0030

This table shows the convergence behavior of at-the-money call options generated by our constant-parameter
GARCH-jump lattice model with respect to M , the number of variances at each node. In this numerical
example, we simply combine the parameters of the base examples of the jump-diffusion process in Amin
(1993) and the GARCH process in Ritchken and Trevor (1999). More specifically, for the jump related
parameters, λ = 5/365, σ 2

J = 0.05, and μJ = −σ 2
J /2 = −0.025, and for the GARCH parameters,

β0 = 0.000006575, β1 = 0.9, β2 = 0.04, cQ = 0, h0 = 0.000109589. In addition, r f = 0, S0 =
100, X = 100, and the maturities of call options are from 5 to 200 days. Note that we only report the results
based on n = 1 in this table. The two bottom rows, ∞L and ∞U , show the 95 % confidence intervals for the
true price based on 1,000,000 simulations. The results show that our lattice model can generate converged
option values inside the 95 % confidence interval when M ≥ 20 even for n = 1

and Ritchken and Trevor (1999). The application of the efficient method in Cakici and
Topyan (2000) to capture the variance spectrum during the forward-building process
may be the reason for the pricing differences under the GARCH process. To streamline
this paper, the results of these experiments are not presented but available from the
authors upon request.

In conclusion, the above experiments demonstrate the accuracy and reliability of
our lattice model to price European-style options under the GARCH, jump-diffusion,
and GARCH-jump processes. Note that since our model with n = 1 can generate
accurate enough results for the experiments in this section,9 we fix n = 1 in the
following analyses.

4.2 Jump and GARCH effects on option prices

Based on our GARCH-jump model, one interesting issue is to study the interaction
between the GARCH and jump components and their individual effects on option
pricing. Equipped with the constant-parameter GARCH-jump process specified in

9 In fact, the influence of the number of subintervals in one day, n, is minor in our model as well as
the GARCH model of Ritchken and Trevor (1999). In their Table I, the maximum difference among the
results given n = 1 and n = 25 is only 0.025 dollars or equivalently 0.426 % of the value of the 200-day
at-the-money call option.
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Sect. 2.2, we conduct an analysis to compare the GARCH-jump model with the jump-
diffusion or GARCH model and thus extract the degree of the GARCH or jump effect
individually.

To achieve valid comparison, we need to adjust the volatilities in different models
to comparable levels. To extract the GARCH effect on option prices, we first calcu-
late the GARCH option price by nullifying the jump component. We then obtain the
corresponding Black-Scholes implied volatility from the GARCH option price and
compute the jump-diffusion option price with this implied volatility and the speci-
fied jump parameters. The differences between the resulting jump-diffusion option
prices and our GARCH-jump option prices reflect the GARCH effect on option
prices. Similarly, to extract the jump effect on option prices, we first calculate jump-
diffusion option price given the assumption that the daily variance of the diffusion
process is fixed at h0. We then derive the corresponding Black-Scholes implied
volatility from the jump-diffusion option price and compute the GARCH option price
using the corresponding implied volatility as the initial volatility level and GARCH
parameters as previously specified. The differences between the resulting GARCH
option prices and our GARCH-jump option prices reflect the jump effect on option
prices.

Table 2 exhibits the results of this experiment based on the same parameter values
in Table 1. Column (1) shows the results of our GARCH-jump model. The results
of the corresponding jump-diffusion and GARCH models are listed in Columns (2)
and (3), respectively. All results are derived with our lattice model with M = 50
and n = 1. Columns (4) and (5) shows the degrees of the GARCH and jump effects
expressed as absolute differences in option prices, and Columns (6) and (7) shows
the degrees of the GARCH and jump effects expressed as the percentages of the
option prices under the GARCH-jump model. From Columns (4), (5), (6), and (7), it
is apparent that the GARCH and jump effects exhibit a similar pattern over different
strike prices, i.e., the impacts of the GARCH and jump effects on option prices are
negative for near-the-money options and positive for out-of-the-money and in-the-
money options. This pattern confirms the evidence in many empirical studies that the
introduction of either the GARCH or jump process can help explaining the excess
kurtosis and thus the phenomenon of the volatility smile implied from option prices.
Merton (1976) also indicates the existence of this pattern for the jump effect across
different moneyness under the lognormal jump-diffusion process.10 Therefore, we
can conclude that the behavior of the jump effect across different moneyness still
retains even when the GARCH model is considered concurrently. Moreover, the per-
centage differences in Columns (6) and (7) show that the GARCH and jump effects
generally become weaker as the maturity increases. These results are in accord with
our expectation because the distributions of the stock price generated by either the
jump or continuous processes tend to converge to one another for longer period of
time.11

10 We appreciate the anonymous referee for reminding us to examine this similarity.
11 We thank the anonymous referee for pointing out this phenomenon and its underlying reason.
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4.3 Early exercise premium for American options

In previous subsections, our lattice model is employed to price only European options
under the GARCH-jump process. However, note that one important reason to develop
this lattice model is its ability to price American options. In this subsection, we not
only compute the early exercise premiums of American options, but also analyze the
relationship between the early exercise premium and the jump related parameters. In
the literature, Amin (1993) indicates that significant jumps reduce the possibility for
early exercise of American options and thus reduce the early exercise premium under
the jump-diffusion process. This paper intends to reinvestigate this issue when both
the jump process and the GARCH model are considered.

To study this issue, we conduct a sensitivity analysis for the early exercise premium
with respect to different levels of the jump intensity and expected jump magnitude.
Table 3 reports the early exercise premium expressed as the percentage of the American
put value given the values of the daily jump intensity as 0, 1/365, …, 5/365 and the
values of expected jump magnitude as −1,−0.75, . . ., 1. Other parameter values are
identical to those in Table 1 except that the daily risk-free interest rate r f = 0.1/365.
To compute these results, M is set to be 50 and n is set to be 1 in our computer program.
The results for at-the-money, out-of-the-money, and in-the-money put options are
presented in Panels A, B, and C, respectively.12 In each panel, there are three parts,
which contain the results for the GARCH-jump model, the jump-diffusion model, and
the differences between them.

First, we can find from Table 3 that under both the GARCH-jump and jump-
diffusion models, the percentage proportions of the early exercise premiums decrease
with the increase of the jump intensity. Our results not only verify the results in Amin
(1993) but also show that this impact of the jump effect on the early exercise premium
still exists even when the autoregressive conditional heteroskedasticity is considered.
Moreover, when short-term options (the 10-day puts in Table 3) are considered, the
impact of the jump effect to impede the early exercise decision is more pronounced.
Taking the 10-day puts under the GARCH-jump model in Panel A as example, when the
daily jump intensity changes from 0 (i.e., no jump case) to 5/365 given μJ = −1, the
percentage proportion of the early exercise premium changes from 2.015 to 0.0171 %,
which is less than one-hundredth of 2.015 % under the no jump case. For the counter-
part results of the 50-day puts in Panel A, when the daily jump intensity changes from
0 to 5/365 given μJ = −1, the percentage proportion of the early exercise premium
changes from 5.193 to 0.932 %, which is about one-fifth of 5.193 % under the no jump
case. The decay of the jump impacts over the time to maturity is consistent with the
conclusions in Bakshi et al. (1997, 2000) and Kim et al. (2007) that the effect of the
jump process is more pronounced for shorter-term horizons to capture the non-zero
skewness and excess kurtosis.

12 For 10-day puts, the strike prices of 96, 100, and 104 are examined. For 50-day puts, the values for
the strike prices are 90, 100, and 110. The reason to consider different strike prices for 10-day and 50-day
puts is because if we consider the strike prices of 90 and 110 for 10-day put options, the put options are
extremely in-the-money or out-of-the-money, and thus the time value of the option is very small and too
sensitive to be analyzed.
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Second, for the expected jump magnitude, if it is negative, the probability for
American puts to be in the money and thus early exercised increases during the option
life because of the occasional, on average downward jumps in the underlying asset
price. Therefore, the percentage proportions of the early exercise premiums are higher
for the cases with negative expected jump magnitudes than those for the cases with
positive expected jump magnitudes.

Third, when we consider the no jump cases and compare the differences of the
percentage proportions of the early exercise premiums between the GARCH-jump and
jump-diffusion models in the third part of each panel, it is equivalent to compare the
percentage proportions of the early exercise premium under the GARCH and geometric
Brownian motion (GBM) models. These differences are in general negative, e.g.,
−0.027 % for 10-day puts and −0.054 % for 50-day puts in Panel A, which indicate the
negative GARCH effect on the early exercise premium given our examined parameter
values.13 However, when we consider the cases with jumps, i.e., λ is nonzero, and then
reexamine the differences between the GARCH-jump and jump-diffusion models,
the differences of the percentage proportions of the early exercise premiums are in
general positive for 10-day puts but negative for 50-day puts. According to these
observations, we can infer that the interaction between the GARCH model and the
jump process can increase the percentage proportions of the early exercise premiums
particularly for shorter term horizons, so the negative GARCH impacts in the no
jump cases are reversed to be positive for the cases with jumps for 10-day puts.
However, for longer term horizons, i.e., 50-day puts in Panel A, the results imply that
the effect of the interaction of the GARCH and jumps on the percentage portions of
the early exercise premiums weakens, so the negative GARCH impacts still dominate
and thus the differences of the percentage proportions of the early exercise premiums
between the GARCH-jump and jump-diffusion models are in general negative. These
phenomena may be explained by the first finding in Table 3 that the jump effect declines
as the maturity increases, so the weaker jump effect for longer term horizons reduces
the net impact from the interaction between the GARCH model and the jump process
on the percentage proportions of the early exercise premiums.

In conclusion, Table 3 shows that the early exercise premium expressed as the
percentage proportion of the American put value decreases with the increases in the
jump intensity and the mean of the jump magnitude under both the GARCH-jump
and jump-diffusion models. Consequently, we conclude that the introduction of the
jump process impedes the early exercise of American options and thus reduces the
early exercise premium even after the autoregressive conditional heteroskedasticity is
considered. Moreover, this negative jump effect becomes weaker for longer term hori-
zons. In addition, we also discover the positive impact on the percentage proportions
of the early exercise premiums from the interaction between the GARCH and jumps,
and this positive impact declines as the maturity increases. Since all of the three panels

13 The only exception is the in-the-money 50-day puts under the no jump assumption in Panel C. Since
the American puts under both the GARCH and GBM models are early exercised at t = 0, the American
put values are raised to be 10 in both models. Due to these discontinuous rising changes, the degree of the
GARCH effect on the percentage proportions of the early exercise premiums is distorted to be positive.
Note the early exercise occurs only for the no jump cases, as for other 50-day American puts with nonzero
λ in Panel C, they are not early exercised at t = 0.
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in Table 3 share these common characteristics, we conclude that all the above findings
are robust across different moneyness.

4.4 Convergence to Duan et al. (2006) model

Another merit of our GARCH-jump process and the corresponding lattice model is
the ability to adapt to Duan et al. (2006) highly general GARCH-jump process with
appropriate settings. To confirm this, the example in their Table 4.1 is considered, and
their GARCH-jump model is rewritten to fit into our model in Appnedix B. Duan et al.
(2006) estimate the values of the parameters in their GARCH-jump model based on
the series of S&P 500 stock index. There are three pricing kernel related parameters,
b, μ, and δ in their model. The estimation of b = −0.0723, and since not all of
pricing kernel related parameters can be fully identified from the time series data,
both the pricing kernel related parameter δ and the jump-intensity adjusting factor
κ are restricted to be 1. The restriction for κ results in the irrelevance for the value
of the pricing kernel related parameter μ because μ only appears to determine the
jump-intensity adjusting factor κ in their model under the risk-neutral measure. For
the parameters associated with the underlying asset price, μ̄ = 0.0332 and γ̄ = 2.096.
The correlation coefficient for the jumps in the asset price and in the pricing kernel,
ρ, is assumed to be 1, and the daily jump intensity parameter is λ = 2.2/365. For the
GARCH parameters, β0 = 0.000000165, β1 = 0.844, β2 = 0.0756, cP = 0.7714,

Table 4 Convergence behavior given Duan et al. (2006) GARCH-jump model

Number of variances Maturity of option (days)

(M) 10 20 30 40 50 75

5 17.8574 29.2508 39.1542 48.1150 56.3608 74.5720

10 17.8577 29.2537 39.1653 48.1423 56.4147 74.7492

20 17.8578 29.2549 39.1697 48.1536 56.4377 74.8297

30 17.8578 29.2552 39.1709 48.1567 56.4439 74.8529

40 17.8578 29.2553 39.1714 48.1581 56.4468 74.8631

50 17.8578 29.2554 39.1717 48.1588 56.4483 74.8687

∞L 17.7902 29.1118 39.0328 47.9934 56.0658 74.7780

∞U 18.0553 29.4968 39.5013 48.5413 56.6812 75.6223

This table shows the convergence behavior of the call option values based on our lattice model with n = 1
to Duan et al. (2006)’s simulation-based results with respect to different number of variance M at each
node. As per Table 4.1 in Duan et al. (2006), we set the pricing kernel related parameters b = −0.0723 and
for the asset price related parameters, we consider μ̄ = 0.0332 and γ̄ = 2.096. Since not all parameters can
be identified from the time series data, especially the parameters associated with the pricing kernel, Duan
et al. (2006) restrict that κ = 1 and δ = 1. The correlation coefficient for the jumps in the asset price and
in the pricing kernel, ρ, is assumed to be 1, and the daily jump intensity parameter is λ = 2.2/365. For the
GARCH parameters, β0 = 0.000000165, β1 = 0.844, β2 = 0.0756, and cP = 0.7714, the initial daily
variance is h0 = 0.09/365. In addition, the daily risk-free interest rate r f = 0.05/365, the initial asset price
S0 = 500, the strike price X = 500, and the time increment �t is set to be one day. The lower and upper
bounds (denoted as ∞L and ∞U ) represent 95 % confidence interval based on 2,000,000 simulations. The
results demonstrate that our model can adapt to Duan et al. (2006) model and converge to theoretical option
values with a moderate value of M
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and the initial daily variance is h0 = 0.09/365. In addition, the daily risk-free interest
rate r f = 0.05/365, the initial asset price S0 = 500, the strike price X = 500, and
the time increment �t is set to be one day. Table 4 shows the convergence behavior
of the option values based on our lattice model with n = 1 to Duan et al. (2006)
simulation-based results. The lower and upper bounds for the simulations represent
the 95 % confidence interval based on 2,000,000 simulations. For all days to maturity
except 75 days, call option prices obtained by our lattice model converge into the 95 %
confidence interval even when M equals 5. The option values tend to increase as M
increases, until they converge to a stable value. For the maturity equal to 75 days,
option prices according to our lattice model converge to the simulated prices when M
is larger than or equal to 20. Generally speaking, for longer maturities, a larger value
of M is needed to generate convergent option values.

5 Conclusion

In this paper, we develop a generalized GARCH-jump lattice model by extending
the GARCH option pricing tree in Ritchken and Trevor (1999) to incorporate a jump
process. Owing to the difficulty in obtaining an analytical option pricing formula as
the price of underlying security follows a diffusion process with the GARCH and
jump effects incorporated, our integrated lattice model contributes to the literature
by providing an efficient option pricing method other than the traditional method of
Monte Carlo simulation. Numerical results indicate that the option values generated
by our model are consistent with the results based on the Monte Carlo simulation for
pricing European options under the GARCH-jump process.

Our analyses find that both the GARCH and jump effects are negative on the values
of near-the-money options but positive on the values of in-the-money and out-of-
the-money options. These results confirm the evidence in existing literature that the
introduction of either the GARCH or jump process can help explaining the excess
kurtosis and thus the phenomenon of the volatility smile implied from option prices.
Moreover, this lattice model enables us to effectively price, in particular, American-
style options. For American options, our numerical results show that even after the
autoregressive conditional heteroskedasticity is considered, the introduction of the
jump process impedes the early exercise and thus reduces the percentage proportions of
the early exercise premium on the price of American options, particularly for shorter-
term horizons. Moreover, the interaction between the GARCH and jump processes
can increase the percentage proportions of the early exercise premiums on American
option prices, whereas this effect becomes weaker as the time to maturity increases.

The GARCH-jump process considered in this paper and our corresponding lattice
model are quite general, which can adapt to Duan et al. (2006) sophisticated GARCH-
jump model for pricing both European- and American-style options. In addition, sev-
eral classical option pricing tree models, such as Amin (1993) for the jump-diffusion
process, Ritchken and Trevor (1999) for the GARCH process, as well as Cox et al.
(1979) and Kamrad and Ritchken (1991) for the pure-diffusion model, are nested to our
generalized lattice model. Therefore, our lattice model can be a useful tool to conduct
empirical studies or numerical experiments to compare option prices under different
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assumptions of the underlying asset price process. This feature again demonstrates the
necessity and importance to develop the GARCH-jump option pricing lattice model
in this paper.

Acknowledgments The authors thank the anonymous referees for helpful comments and the National
Science Council of Taiwan for the financial support.

Appendix A

This appendix presents the details to derive Pu, Pm , and Pd . Suppose that each time
step (that is one day in this paper) is partitioned into n subintervals of equal length, 1/n.
The drift rate and conditional variance are constant over each of these subintervals
and updated only at the end of each day. Therefore, for the diffusion part of our
GARCH-jump model, the logarithmic asset price over each subinterval follows a
normal distribution:

yt+1/n ∼ N Q(yt + μt/n, σ 2
t /n)

where μt and σ 2
t represent the daily conditional mean and variance.

Suppose this normal process of yt+1/n can be approximated by a trinomial tree
model given three discrete values at time (t + 1/n): yt + ηγn, yt , and yt − ηγn . To
match the mean and the variance of the normal distribution of yt+1/n , the following
system of linear equations with unknowns Pu, Pm , and Pd can be obtained.

Substituting Eq. (18) into Eq. (16) leads to

Puηγn − Pdηγn = μt/n ⇒ Pu = Pd + 1

ηγn

μt

n
. (19)

Substituting Eq. (18) into Eq. (17) can generate

Pu

(
2ytηγn + η2γ 2

n

)
+ Pd

(
−2ytηγn + η2γ 2

n

)
− 2yt

μt

n
−

(μt

n

)2 = σ 2
t

n
. (20)

Rewrite Eq. (20) by replacing Pu with Pd + 1
ηγn

μt
n according to Eq. (19),

2Pdη2γ 2
n + 2yt

μt
n + ηγn

μt
n − 2yt

μt
n − (

μt
n

)2 = σ 2
t
n

⇒ 2Pdη2γ 2
n + ηγn

μt
n − (

μt
n

)2 = σ 2
t
n

⇒ 2Pdη2γ 2
n + ηγn

μt
n ≈ σ 2

t
n .

(21)

123

Author's personal copy



326 B.-H. Lin et al.

The last equation holds due to the relatively small value of (μt/n)2. In fact, if we
explicitly consider the variable �t (rather than a fixed interval of one day) in our
calculation process, the counterpart of the term (μt/n)2 is proportional to �t2, which
approaches zero and can be ignored when �t is small. Finally, we can solve Pd as
follows.

Pd = σ 2
t /n

2η2γ 2
n

− μt/n

2ηγn
= σ 2

t

2η2γ 2 − μt
√

1/n

2ηγ
,

where the second equation is according to the definition of γn = γ /
√

n in Eq. (5).
Consequently, Pu can be solved via Pu = Pd + 1

ηγn

μt
n , and next Pm can be solved via

Eq. (18). The solutions of Pu, Pm , and Pd are summarized as follows.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Pu = σ 2
t

2η2γ 2 + μt
√

1/n
2ηγ

Pm = 1 − σ 2
t

η2γ 2

Pd = σ 2
t

2η2γ 2 − μt
√

1/n
2ηγ

.

The above system of probabilities are consistent with the results in Ritchken and Trevor
(1999).

However, these probabilities should be adjusted when they are incorporated with
a jump process in the way specified in Eqs. (6) and (7). Note that the adjustment
(1−λ)P(θ) in Eq. (6) causes effectively the trinomial probabilities for simulating the
diffusion process in each subinterval reduced by a multiplying factor of (1 − λ)(1/n)

and these smaller probabilities will underestimate the mean and the variance in each
subinterval by a multiplying factor of (1−λ)(1/n).14 Similar to the solution proposed in
Amin (1993), the drift and variance terms of the diffusion process should be adjusted
by dividing (1 − λ)(1/n) in order to guarantee the correct mean and variance of the
diffusion part. Consequently, we set the per-subinterval drift rate μt/n and conditional
variance σ 2

t /n to be (mt/n)/(1 − λ)(1/n) and (ht/n)/(1 − λ)(1/n), or equivalently
μt = mt/(1 − λ)(1/n) and σ 2

t = ht/(1 − λ)(1/n), in the above system to derive
Pu, Pm , and Pd in Eq. (6).

Appendix B

In Duan et al. (2006), their GARCH-jump model postulates that the asset price process
and the pricing kernel process are jointly distributed: the asset price follows a GARCH-
jump process and the pricing kernel follows a diffusion-jump process. Moreover, the
jumps in the asset price and pricing kernel processes are governed by the same Poisson
process and the jump magnitudes of them are correlated. The framework in this paper

14 The mean reduces exactly by the multiplying factor of (1 − λ)1/n , but for the variance, it reduces
approximately by the multiplying factor of (1 − λ)1/n if the considered time step is small. According to
our experiments, the subinterval with the length of 1/n days is small enough such that this approximation
for the variance is reliable.
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allows us to construct a lattice model to price European-style as well as American-
style options for the sophisticated GARCH-jump models in Duan et al. (2006). Here
we take the NGARCH-jump model in Duan et al. (2006) for example to show the
generality of our pricing framework. Different from Duan et al. (2006), we fix the
time step �t to be one day. Thus their NGARCH-jump model can be rewritten as
follows to fit into our framework.

ln

(
St+1

St

)
= mt + √

ht Xt ,

where

mt = r f − ht

2
− λκ[Kt − 1] = r f − ht

2
− λ exp(bμ + b2δ2/2)[Kt − 1],

Xt = Zt +
q Q

t∑
l=1

J (l)
t

Zt ∼ N Q(0, 1),

J (l)
t ∼ N Q(

μ̄ + bρδγ̄√
�t

,
γ̄ 2

�t
),

Kt = exp(
√

ht (μ̄ + bρδγ̄ )/
√

�t + ht γ̄
2/(2�t)),

and q Q
t counts the number of Poisson events occurring over the period (t, t + 1]

with the daily jump intensity λκ . In addition, the variance updating function is15

ht+1 − ht = f (νt+1, ht ) = β0 + (β1 − 1) ht

+β2

(
1 + λκγ̃ 2/�t

1 + λ(μ̄2 + γ̄ 2)/�t

)
ht

(
νt+1 − cQ

)2
,

where

cQ = cP

√
1 + λ(μ̄2 + γ̄ 2)/�t

1 + λκγ̃ 2/�t
+ λ[μ̄ − κ(μ̄ + bρδγ̄ )]/√�t − bρ

√
�t√

1 + λκγ̃ 2/�t
,

γ̃ 2 = (μ̄ + bρδγ̄ )2 + γ̄ 2,

and

νt+1 = (ln St+1 − ln St − mt )/
√

ht − E Q(Xt )√
V ar Q(Xt )

,

15 The counterpart of this variance updating function under the physical probability measure is ht+1−ht =
β0 + (β1 − 1) ht + β2ht

(
ut+1 − cP

)2
, where ut+1 represents the innovation of the logarithmic asset

price under the physical probability measure.
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with

E Q(Xt ) = λκ(μ̄ + bρδγ̄ )/
√

�t,

V ar Q(Xt ) = 1 + λκγ̃ 2/�t.

Note that the above equations follows the specification in Table 4.1 of Duan et al. (2006)
except that the notation γ in their model is replace by δ, and the risk-free interest rate
r f , conditional variance ht , and jump intensity λκ are expressed on daily basis in this
paper rather than on annual basis in Duan et al. (2006). The additional parameters
to adapt our model to Duan et al. (2006) model are the jump-related parameters in
the pricing kernel, b, μ and δ2, the jump magnitude parameters for the underlying
asset price, μ̄ and γ̄ 2, the contemporaneous correlation coefficient between the jump
magnitudes of the underlying asset price and the pricing kernel, ρ, and the daily
jump intensity for the pricing kernel and asset price, λκ . In addition, it also needs the
GARCH parameters, β0, β1, β2, and cP for the asset price process under the physical
probability measure.
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