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Abstract

The present study proposes a three-factor model using spot rates as proxies for the state

variables of the term structure of interest rates. Empirical analysis is carried out on the

in-sample explanatory power and the out-of-sample prediction ability of spot-rate models,

and comparison is made between the modified Macaulay duration and spot-rate duration

hedging for bond portfolios. The results not only show that the optimal three-spot-rate

model outperforms the optimal two-spot-rate model proposed by Elton et al. (Journal of

Finance, 45, 1990, 629–642) with respect to explanation ability of unexpected changes in the

term structure of interest rates, but also illustrate the importance of capturing the curvature

characteristic of the term structure of interest rates for spot-rate duration hedging methods.

Moreover, the impressive performance of three-spot-rate duration hedging implies that it is

feasible to reduce the dimensions of state variables to three for the purposes of risk exposure

prediction and risk management of bond portfolios.
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1. Introduction

Over the past 30 years, numerous investigators have studied the term structure of

interest rates. Typically, following a stochastic process, one or more state variables

have been used to construct the term structure of interest rate models (e.g. Vasicek,

1977; Richard, 1978; Brennan and Schwartz, 1979; Nelson and Schaefer, 1983; Cox

et al., 1985). While such theoretical models are applied for empirical tests, one or

more spot rates are typically used as proxies for the state variables. In fact, a small set

of spot rates is used to explain bond prices or returns, based on the assumption that

the whole term structure could be constructed as a function of this set. Among these

spot rates, the 1-year rate is frequently used for one-factor models (see Babbel, 1983;

Nelson and Schaefer, 1983). Moreover, Nelson and Schaefer (1983) apply long-term

and medium-term rates (the 13-year rate and the difference between the 13- and 5-

year rates) as proxies for two of the state variables to describe the behavior of the term

structure of interest rates, showing that the two-factor model is a better overall fit than

one-factor models in describing term structures.

Although previous studies, such as Babbel (1983), Nelson and Schaefer (1983),

and Lekkos (2001), use spot rates as driving factors to describe the dynamics of the

term structure of interest rates, these spot rates are selected arbitrarily. Elton et al.

(1990) propose a methodology to identify optimal spot rates as proxies for state vari-

ables that drive term structure movements. In essence, the major task is to extract the

unknown factors from the term structure itself, rather than from other sources or

through arbitrary choice. Using the monthly term structures of spot rates over the

30-year period from 1957 to 1986, Elton et al. (1990) asserts that the 4-year spot rate

is the optimal proxy for the one-factor model (the ‘‘opt 1’’ model in Elton et al.),

whereas the 6-year and 8-month spot rates are the optimal proxies for the two-factor

model (the ‘‘opt 2’’ model in Elton et al.). Elton et al. also declare the superiority of

the opt 2 model over a series of benchmark models from previous studies, as well as

over their own opt 1 model. Navarro and Nave (2001) obtain similar results applying

the same methodology, but with data collected from the Spanish Public Debt Market.

In contrast, empirical studies of principal component analysis, such as Steeley

(1990), Litterman and Scheinkman (1991), Knez et al. (1994), Willner (1996), Bliss

(1997), and Byun and Lee (2009), indicate that term structure movements can be clas-

sified into three main categories: level (parallel shift), steepness (slope), and curvature.

Changes in these three components can explain up to 97% of total variance of changes

in the term structure of interest rates. These studies show that it is possible to identify

a small set of factors that account for a large proportion of interest rate changes, and,

hence, for bond price movement. In addition, Nelson and Siegel (1987) use long-term,

short-term, and medium-term components of forward rates to construct a parsimoni-

ous model, in which the three parameters of their model can also be interpreted to

reflect level, slope, and curvature changes. Due to its good performance, Fabozzi et al.

(2005), Diebold and Li (2006), and Choi et al. (2010) apply the Nelson and Siegel

(1987) model to test the predictability of the shape of the term structure of interest
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rates. Moreover, Soto (2004) examines a series of duration-matching strategies with

different numbers of risk factors and points out that three-factor immunization strate-

gies offer the highest immunization benchmarks. If the number of risk factors is larger

than three, the immunization performance might deteriorate.

The literature cited above prompts us to model term structure movements in

terms of three specific factors (optimal spot rates). We extend the framework of

Elton et al. (1990) to a three-spot-rate model.1 Although it is impossible to test the

explanation ability of every technique for all possible uses, if a technique performs

well both for individual rates and for the returns on a portfolio of bonds, such a

technique can be said to be robust. Therefore, we investigate the explanation ability

of the unexpected change in interest rates and test the performance of an immuni-

zation strategy for the risk exposure of bond portfolios with respect to term

structure movements for our three-spot-rate model. The first part in this paper, for

comparative purposes, is to test whether our three-spot-rate model is superior to

the Elton et al. opt 2 model using the same monthly dataset as Elton et al. More-

over, updated monthly data over the period July 1997–June 2007 are collected to

test the robustness of these models in explanation ability of unexpected changes in

the term structure of interest rates.

In addition to investigating the in-sample explanatory power and the out-of-

sample prediction ability of these spot-rate models, the second part of this paper

examines the performance of the immunization strategy based on the optimal spot

rates for managing the interest rate risk of bond portfolios. It is well-known that

duration matching strategy is the most common method for institutional investors

to conduct interest rate risk management.2 The practical bucket-based model aims

to match the duration of assets with the duration of liabilities in each bucket having

different maturity. Usually, maturities for the buckets are consistent with maturities

of the spot rates on the term structure. In this paper, we examine a different model

by investigating the performance of duration matching (hedging) strategies based

solely on optimal spot rates. More specifically, after identifying optimal spot rates,

we estimate the coefficients of sensitivities for the spot-rate models, fit the

coefficients and the term structure of interest rates smoothly by cubic splines, and

1To avoid confusion with factor models that leave the driving factors unspecified, hereafter,

we use ‘‘spot-rate model’’ to refer to our model.
2The current applications of duration hedging and immunization on interest rate risk manage-

ment can be found in the fixed income literature. Nawalkha and Soto (2009) classify these

immunization strategies that deal with hedging the risk of large, non-parallel term structure

movements into four main categories: M-absolute ⁄ M-square models (see Bierwag et al., 1993;

Nawalkha and Chambers, 1996), duration vector ⁄ M-vector models (see Chambers

et al., 1988; Nawalkha and Chambers, 1997; Soto, 2001, 2004), key rate duration models (see

Ho, 1992) and principal component duration models (see Bliss, 1997; Nawalkha et al., 2005).

Nawalkha et al. (2005) provide a detail discussion about the advantages and shortcomings of

these models.
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apply these continuous curves to calculate the corresponding durations for each

individual zero-coupon bond (similar to Reitano, 1990; Ho, 1992).3 Furthermore,

these estimated durations are used to perform duration hedging for three typical

kinds of bond portfolio (special portfolio) and 100 random bond portfolios (ran-

dom portfolio). The impressive performance of the three-spot-rate duration hedging

strategy implies the feasibility of this model. Moreover, because the number of opti-

mal spot rates is far smaller than the number of buckets, a duration matching strat-

egy based on optimal spot rates might be easier and less costly to implement

relative to bucket-based duration matching.

The structure of the present paper is as follows. In Section 2, we introduce the

analytical framework, including the methodology of searching for optimal spot rates

and estimating sensitivities, deriving the optimal spot-rate durations, and analysis of

risk management with duration hedging. The data, consisting of two parts over a

30-year period and an updated 10-year period of the term structure of interest rates,

are described in Section 3. In addition, empirical tests for the in-sample explanatory

power and the out-of-sample prediction ability of the spot-rate models and for the

modified Macaulay duration versus spot-rate durations hedging of bond portfolios

are analyzed in Section 3. Section 4 presents our conclusions.

2. Analytical Framework

In Subsection 2.1, we detail the processes for extracting optimal spot rates as prox-

ies for the state variables of the term structure of interest rates and estimating their

corresponding sensitivities and durations. In Subsection 2.3, we discuss the method-

ology for implementing risk management with duration hedging on special bond

portfolios and random bond portfolios to evaluate the efficiency of the spot-rate

model.

2.1. Searching for Optimal Spot Rates and Estimating Corresponding Sensitivities

Whereas Elton et al. (1990) propose either one or two spot rates as proxies for

the unknown factors driving the term structure of interest rates. The present

paper extends the framework in Elton et al. to consider three spot rates to serve

as the unknown factors for modeling the dynamics of the term structure of

interest rates.

We assume that the changes in the spot rate for the ith maturity are dependent

on three unknown explanatory factors, F1, F2, and F3, as follows:

3However, there is a major difference between the spot-rate durations and the Ho (1992) key

rate durations. The spot-rate durations are estimated according to optimal spot rates derived

from the dynamic behavior of the term structure, rather than to a series of key rates stated

by Ho (1992) to analyze risk exposures of bond portfolios.
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dri;t ¼ bi;0 þ bi;1dF1;t þ bi;2dF2;t þ bi;3dF3;t þ ei;t ; ð1Þ

where dri,t denotes the unexpected change in the ith maturity spot rate at time t;

dF1;t ; dF2;t ; and dF3;t represent synchronic changes in the unknown explanatory

factors, F1, F2, and F3, at time t; and ei;t is the error term of the unexpected change

in the ith maturity spot rate at time t, which is assumed to follow a normal distri-

bution, N(0, r2).

By employing three optimal spot rates (denoted as rl, rm, and rs) as proxies for

the unknown factors, we propose a three-spot-rate model as follows:

dri;t ¼ aidrl;t � biðdrs;t � drl;tÞ � cið2drm;t � drs;t � drl;tÞ þ ei;t ; ð2Þ

which can be rewritten as

dri;t ¼ ðai þ bi þ ciÞdrl;t þ ð�2ciÞdrm;t þ ðci � biÞdrs;t þ ei;t ; ð3Þ

where drl;t ; drm;t ; and drs;t represent synchronic changes in the three optimal spot

rates. In reality, during the process of finding optimal spot rates, rl, rm, and rs are

identified as the optimal long-term, medium-term, and short-term spot rates, and

the coefficients ðai þ bi þ ciÞ; ð � 2ciÞ; and ðci � biÞ represent sensitivities related to

such spot rates along the term structure, respectively.

There are two reasons to adopt the terms ðdrs;t � drl;tÞ and ð2drm;t � drs;t � drl;tÞ
in equation (2). The first is to preclude the problem of multicollinearity (see Nelson

and Schaefer, 1983; Elton et al., 1990). Second, because rl, rm, and rs represent, respec-

tively, optimal long-term, medium-term, and short-term spot rates, the term

ðdrs;t � drl;tÞ can be viewed as a proxy for the slope change of the term structure. In

addition, Diebold and Li (2006) suggest that the term ð2drm;t � drs;t � drl;tÞ can be

used to represent the curvature changes of the term structure. Therefore, the essence

of the three-spot-rate model in equation (2) is to employ the terms drl;t , ðdrs;t � drl;tÞ,
and ð2drm;t � drs;t � drl;tÞ as proxies to capture the level (parallel shift), slope, and

curvature changes in the term structure of interest rates.

Furthermore, equation (2) can be discretely approximated for empirical tests as

Dri;t ¼ âiDrl;t � b̂iðDrs;t � Drl;tÞ � ĉið2Drm;t � Drs;t � Drl;tÞ þ ei;t ; ð4Þ

or rearranged as

Dri;t ¼ ðâi þ b̂i þ ĉiÞDrl;t þ ð�2ĉiÞDrm;t þ ðĉi � b̂iÞDrs;t þ ei;t : ð5Þ

We then conduct a multivariate regression with monthly term structure of inter-

est rates based on equation (4). Coefficients âi, b̂i, and ĉi are estimated from the

sample data to explain unexpected changes in interest rates, and the values

ðâi þ b̂i þ ĉiÞ, ð � 2ĉiÞ, and ð̂ci � b̂iÞ are estimated sensitivities for the optimal long-

term, medium-term, and short-term spot rates. Finally, the values of ðâi þ b̂i þ ĉiÞ
Drl;t þ ð�2ĉiÞDrm;tþðĉi � b̂iÞDrs;t are estimations for the unexpected change in the

ith maturity spot rate at time t.
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For equation (4), the determination coefficient between the spot rate changes,

Dri;t ; and the changes in the three components of the term structure, Drl;t ;

ðDrs;t � Drl;tÞ; and ð2Drm;t � Drs;t � Drl;tÞ, is given by

R2
i;ðl;m;sÞ ¼ 1� Varðei;tÞ

VarðDri;tÞ
; ð6Þ

or is alternatively represented as

R2
i;ðl;m;sÞ � VarðDri;tÞ ¼ VarðDri;tÞ � Varðei;tÞ: ð7Þ

In estimating the model as specified in equation (7), minimizing the residuals’

variance is equivalent to maximizing the left-hand side, R2
i;ðl;m;sÞ � VarðDri;tÞ, of the

equation. In order to find optimal proxies for the state variables, Elton et al. (1990)

propose maximizing the weighted average of R2
i;ðl;m;sÞ � VarðDri;tÞ over various choices

of proxy, rl, rm, and rs, across all maturities. That is, we can identify the optimal spot

rates (rl, rm, and rs) by maximizing the objective function, Maxðl;m;sÞP
i wiR

2
i;ðl;m;sÞ � VarðDriÞ. The value of wi is the weight allocated to the ith maturity

spot rate. Elton et al. suggest two approaches to deal with weight wi: an equal weights

approach and a cash flow weights approach. Because the difference between the two

approaches is not significant, we simply choose the equal-weighted scheme for our

empirical examinations. Moreover, Elton et al. use two alternative models, random

walk and pure expectation theory, to estimate unexpected movements in spot rates,

Dri,t; however, their selection of optimal spot rates is based primarily on the former

model, which is also adopted in most of the literature that precedes Elton et al.

(1990) (see Babbel, 1983; Nelson and Schaefer, 1983). Therefore, the movement of

interest rates in the present paper is assumed to follow the random walk assumption,

which assumes that the yield curve remains unchanged; therefore, any change in spot

rates in any given period is assumed to be unexpected.

2.2. Durations of Optimal Spot Rates

The price of a coupon-bearing bond P can be defined as the discounted value of

a series of cash flows, Ci, with respect to its appropriate spot rates, rti
(for i = 1,

2, …, n):

P ¼
Xn

i¼1

Ci

ð1þ rti
Þti
: ð8Þ

To determine the approximate change in price for a small change in interest

rates, the first derivative of equation (8) with respect to the interest rate (r) can be

calculated as:

dP

P
¼ 1

P

Xn

i¼1

@P

@rti

drti

dr

� �
dr

¼ �1

P

Xn

i¼1

tiCi

ð1þ rti
Þti

1

ð1þ rti
Þ

drti

dr

� �
dr ¼ �MD� dr:

ð9Þ
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This latter equation operates under the assumption that the term structure of

interest rates carries the same magnitude shift for all interest rates (parallel shift)

and, therefore, drti
=dr ¼ 1, and the MD term represents the modified Macaulay

duration (modified duration) of the bond, a measure of the sensitivity of the

bond price with respect to the shift change in interest rates. The minus sign in

equation (9) shows an inverse relationship between the percentage change in

price (dP=P), and the modified duration, MD (usually a positive value), for a

given interest rate change (dr). This reflects the fact that bond prices move in

the opposite direction of the change in interest rates. Although the modified

duration is a popular tool used by bond investors for interest-rate risk manage-

ment, it is a good measure only for a small shift in all interest rates, and cannot

capture the effect from changes in the slope and curvature of the term structure

of interest rates. The three-spot-rate model developed in this paper remedies this

drawback.

Spot-rate durations are analogous to modified duration; they appraise the sensi-

tivity of portfolio value with respect to each of the spot rates. When the optimal

three-spot-rate model is considered, the first derivative of equation (8) with respect

to the optimal spot rates (rj, for j = l, m, s) becomes

dP

P
¼ 1

P

Xn

i¼1

X
j¼l;m;s

@P

@rti

@rti

@rj
drj

� �

¼ 1

P

Xn

i¼1

@P

@rti

@rti

@rl
drl þ

@P

@rti

@rti

@rm
drm þ

@P

@rti

@rti

@rs
drs

� �
;

¼ �Dldrl � Dmdrm � Dsdrs

ð10Þ

which can be represented in the discretized form:

DP

P
� �DlDrl � DmDrm � DsDrs; ð11Þ

where Dl; Dm; and Ds denote bond durations corresponding to the optimal long-

term (rl), medium-term (rm), and short-term (rs) spot rates, respectively. Based on

equations (5) and (8), and some differential calculation, Dl; Dm; and Ds can be

estimated as follows:

D̂l ¼
1

P

Xn

i¼1

ti � ðâi þ b̂i þ ĉiÞ � Ci � ð1þ rti
Þ�ti�1

D̂m ¼
1

P

Xn

i¼1

ti � ð�2ĉiÞ � Ci � ð1þ rti
Þ�ti�1

D̂s ¼
1

P

Xn

i¼1

ti � ðĉi � b̂iÞ � Ci � ð1þ rti
Þ�ti�1:

ð12Þ
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2.3. Risk Management with Duration Hedging and Portfolio Design

As derived above, spot-rate durations for an individual asset are estimated as in

equation (12). Such durations can be used to hedge bond portfolios against interest

rate risks. For our three-spot-rate model, denote Dk
j (for j = l, m, and s) as the kth

individual asset’s spot-rate durations relative to the three optimal spot rates, rl, rm,

and rs. When a portfolio comprising multiple assets is considered, the durations of

the portfolio (DP
j ) are the weighted average of the spot-rate durations of each asset

in the portfolio, where the weight for each asset is the proportion of total portfolio

value contributed by that asset. For instance, simply assume a portfolio consisting

of two bonds (i.e. k = 1, 2) with values V1 and V2 and associated spot-rate dura-

tions D1
j and D2

j . Accordingly, the spot-rate durations of the portfolio are:

DP
j ¼

V1

V1 þ V2
D1

j þ
V2

V1 þ V2
D2

j ; for j ¼ l;m; and s; ð13Þ

More generally, for a portfolio consisting of g bonds (for k = 1, 2, …, g), its

spot-rate durations are:

DP
j ¼

Xg

k¼1

qkDk
j ; for j ¼ l;m; and s; ð14Þ

where the weights qk are the ratios of each bond value (Vk) to portfolio value

(
Pg

k¼1 Vk), and may be individually positive or negative but must sum to 1.

2.3.1. Special Portfolios

The purpose of portfolios designed in the paper is to examine the hedging perfor-

mance of spot-rate models with or without considering the third spot rate. Two

kinds of target portfolios, including three special portfolios (hereafter, SPi, for i = 1,

2, and 3) adapted from Bliss (1997) and a series of random portfolios, are con-

structed to examine the hedging performance of spot-rate models by using hedge

portfolios with matching different number of duration constraints. Bliss (1997)

originally construct three special portfolios to compare the Macaulay duration hedg-

ing and factor durations hedging, and these three special portfolios are related to

specific characteristics of the level, slope, and curvature of term structure move-

ments, respectively. However, different from our model, Bliss (1997) identifies these

factors by the principal component analysis rather than by the Elton et al. (1990)

method.

The first special portfolio SP1 holds a single 30-year coupon bond with 5%

semiannual coupons. Due to the heavy loading on the level factor and the existence

of a partial slope factor, we expect that the hedging performance of modified

duration is acceptable and hedging strategies based on two or three spot rates will

have superior performance.

The second special portfolio SP2 includes equal values of 1-year and 30-year

coupon bonds (both paying 5% semiannual coupons). That is, this portfolio

consists of variedly divergent-maturity coupon bonds and seems to be sensitive to
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both changes in levels and changes in the slope of the term structure. Presumably,

modified duration hedging will perform even worse on portfolio SP2 than on

portfolio SP1, but two-spot-rate duration hedging might still show reasonable

performance in this case.

Finally, the third special portfolio SP3 comprises one unit each of 1-year and

30-year zero-coupon bonds in long positions, and one unit of a 16-year zero-coupon

bond in a short position. That is, this portfolio mixes long positions on short-maturity

and long-maturity bonds (barbell strategy) and a short position on a medium-

maturity bond (bullet strategy). The whole portfolio is particularly sensitive to changes

in the curvature of the term structure. Intuitively, three-spot-rate duration hedging

would capture the interest rate changes of such a portfolio significantly better than

modified duration and even two-spot-rate duration hedging.

2.3.2. Hedge Portfolios

The three special portfolios (i.e. SPi, for i = 1, 2, and 3) and nine hedge portfolios

(i.e. HPiu, for i = 1, 2, and 3; u = 1, 2, and 3) related to them are briefly catego-

rized in Table 1.4 For each special portfolio (e.g. i = 1, SP1), three hedge portfolios

corresponding to u = 1, 2, and 3 (i.e. HP11, HP12, and HP13) are constructed to

match the value and durations of the portfolio being hedged. This is to immunize

the asset–liability (HP–SP) portfolio against any dollar price changes due to interest

rate moves. By comparing returns between the special portfolio and its three hedge

portfolios (i.e. hedging errors), the superior duration-matching model (with small-

est error) can be identified.

Corresponding to u = 1, the hedge portfolios (i.e. HPi1, for i = 1, 2, and 3) are,

in essence, the modified duration-matching portfolios consisting of two adjacent

zero-coupon bonds with maturities 6 months apart,5 in amounts chosen to match

both the value and the modified duration of the special portfolio being hedged.

The two-spot-rate duration-matching portfolios corresponding to u = 2 (i.e.

HPi2, for i = 1, 2, and 3) consist of 1-year, 10-year, and 30-year-maturity zero-

coupon bonds, in amounts chosen to match the value and both two-spot-rate dura-

tions of the special portfolio being hedged.

Similarly, the three-spot-rate duration-matching portfolios corresponding to

u = 3 (i.e. HPi3, for i = 1, 2, and 3) are combinations of 1-year, 5-year, 15-year,

and 30-year-maturity zero-coupon bonds whose amounts are chosen to match the

value and all three spot-rate durations of the special portfolio being hedged.

4Here, i is the index for the special portfolio and u = 1, 2 and 3 represent modified dura-

tion-matching, two-spot-rate, and three-spot-rate duration-matching portfolios, respectively.
5In this work, two adjacent zero-coupon bonds with maturities 6 months apart are chosen

for a modified duration-matching portfolio, and these two adjacent zero-coupon bonds are

chosen to cover the modified duration of each special portfolio being hedged. The minimum

number of assets required to fulfill the duration constraints can be referred to Soto (2001).
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2.3.3. Random Portfolios

Instead of up to only three bonds in a special portfolio, portfolios of larger size are

used to reconfirm the performance of the three-spot-rate model. Furthermore, the

same method described above is applied to generate duration-matching portfolios

(or hedge portfolios) for hedging randomly generated bond portfolios. For these

random portfolios, we choose a set of randomly distributed parameters (including

quantity of bond, time to maturity, and coupon rate) that reasonably reflect bond

portfolios of interest to academics and practitioners. The number of bonds in a ran-

dom portfolio is discretely distributed from 6 to 30 (i.e. 25 different portfolio sizes,

each with equal probability 0.04). The time to maturity for each bond is equal-

probability distributed from 1 year to 30 years, with an increment of 1 year (i.e.

30 different maturities). The coupon rate for each bond is distributed with equal

probability 0.05 and an increment of 0.5%, from 0.5 to 10% (i.e. 20 different cou-

pon rates). Each parameter is selected independently of the others. We simulate 100

random portfolios and, based on these RP, the performance of modified duration,

two-spot-rate duration, and three-spot-rate duration hedging strategies is compared.

3. Data and Empirical Analysis

Our empirical analysis is divided into two parts in terms of different time periods.

In Part I, we use the same dataset (obtained from McCulloch’s website)6 as those in

Elton et al. (1990), which includes monthly US Treasury term structures of spot

rates covering a 30-year period from 1957 to 1986, to compare the results of the

three-spot-rate model developed here with that of the optimal two-spot-rate model

(opt 2) proposed by Elton et al. (1990). Furthermore, more recent 10-year monthly

data over the period July 1997 to June 2007 are collected from the same source to

examine the robustness of our models and to compare the modified duration and

spot-rate duration hedging of various bond portfolios in Part II.7

3.1. Part I: January 1957–December 1986 (360 months)

The first dataset constitutes Part I of the empirical study, and includes monthly

term structures of spot rates with a series of different maturities over the 30-year

period from January 1957 to December 1986. Specifically, for each term structure of

6McCulloch and Kwon (1993) originally provided monthly estimates of continuously com-

pounded zero-coupon yields for a series of maturities over the 45-year period from 1947 to

1991. All monthly term structure data represent observations from the last trading day of the

month. They are derived from ranges of US Government bond prices and have become an

accepted criterion for empirical tests in immunization (e.g. Elton et al., 1990; Nawalkha and

Chambers, 1996). The data are available from McCulloch’s website: http://economics.

sbs.ohio-state.edu/jhm/ts/mcckwon/mccull.htm.
7The updated dataset is also available from McCulloch’s website: http://economics.sbs.ohio-

state.edu/jhm/ts/ts.html.
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the first dataset, we select a series of 31 spot rates with various times to maturity

(beginning at 1 month, and increasing by monthly intervals to 18 months, quarterly

intervals from 18 to 24 months, and yearly intervals from 2 to 13 years), as in Elton

et al. (1990). The entire 30-year sample period is divided into six 5-year subperiods,

with period 1 spanning January 1957 to December 1961, period 2 spanning January

1962 to December 1966, and so on. Among these subperiods, the data from periods

1 and 4 are defined as the in-sample data, and are used only to identify optimal

spot rates for the spot-rate models. The remaining data are defined as the out-of-

sample periods, and are used to test the fitness of the estimated models.

Following the methodology of Elton et al. (1990), the 4-year spot rate (4yr)

is identified as the optimal spot rate for the one-spot-rate (opt 1) model

through in-sample data from periods 1 and 4, while the optimal spot rates for

the two-spot-rate (opt 2) model are the 8-month and the 6-year spot rates (8mo,

6yr). These results are consistent with Elton et al. By extending the Elton et al.

framework with an equally weighted scheme, and with the assumption that inno-

vation in spot rates follows a random walk, we identify the 6-month, 3-year, and

9-year spot rates (6mo, 3yr, and 9yr) as the three optimal proxies for the state

variables of the three-spot-rate model (opt 3) in describing unexpected move-

ments in the term structure of interest rates.

The criteria we use to evaluate the fit and performance of the estimated models

include computing the mean square errors (MSE) on unexpected changes in interest

rates. We then apply paired sample t-statistics to test the significance of the differ-

ences in mean between these models for each out-of-sample period (60 months)

and the overall period, combining four out-of-sample periods (240 months).8

Sensitivities of optimal spot rates for all models (see equation 5) are estimated from

the previous 5-year period,9 and each maturity is weighted equally to calculate the

mean and variance of the mean square errors for each competing model.

8First, for each model (i.e. opt 1, opt 2, and opt 3), square errors are computed monthly for

the interest rate of each maturity. More specifically, this procedure is repeated each month in

examined periods, resulting in a matrix of 60 (months) by 31 (maturities) for single out-of-

sample period (i.e. Periods 2, 3, 5, and 6, as shown in Table 2), and 240 (months) by 31

(maturities) for the overall period (combining the four out-of-sample periods into one, as

reported in the attached table of Figure 1). Next, the mean square errors (MSE) are calcu-

lated for each maturity through 60 months for each single period and 240 months for the

overall period. Finally, for each model, the mean and the standard deviation of the MSE (i.e.

MSE) are computed along the dimension of different maturities. In addition, to compare the

performance of two models, the paired sample t-test is applied to the series of the difference

between correspondent MSE with the same maturity in these two competing models.
9That is, coefficients estimated from Periods 1, 2, 4, and 5 are applied to explain unexpected

changes in interest rates of the out-of-sample Periods 2, 3, 5, and 6, respectively. Periods 1

and 4 are in-sample data, exclusive of estimation.
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As reported in Table 2, the mean value of MSE (defined as MSE) cross the

whole term structure of the opt 3 model is always significantly lower than that of

the opt 2 and opt 1 models over each out-of-sample period. For instance, in period

2, the MSE of the opt 1 model (0.0122) is significantly higher than that of the opt 2

and opt 3 models (0.0041 and 0.0033) at the 1% level, with t-statistics of 6.94 and

8.68, respectively. Additionally, the MSE of the opt 3 model is smaller than that of

the opt 2 model, at the 5% level, with a t-statistic of 1.87. The results of paired

sample t-tests are consistent in each subperiod.10

Figure 1 plots the MSE results of different models with respect to different

maturities for the overall period (i.e. a combination of the four out-of-sample peri-

ods). The figures in the last two columns, 5.47, 3.40, and 5.90, denote the t-statistics

Table 2 Performance of explanation ability and paired sample t-test of competing models

for various out-of-sample periods

This table shows the mean and standard deviation of mean square errors (i.e. MSE) of three optimal

spot-rate models over various out-of-sample periods. Based on the data in periods 1 and 4, the opt 1,

opt 2, and opt 3 models denote using (4-year), (8-month, 6-year), and (6-month, 3-year, 9-year) optimal

spot rates as state variables, respectively. The mean, variance, and t-statistics of paired sample t-tests of

the mean square errors calculated across varied maturities among these optimal spot-rate models for

each out-of-sample time period are provided. The figures 6.94, 1.87, and 8.68 from the last two columns

of period 2 denote the t-statistics for the paired sample t-test under the one-tailed tests of opt 1 versus

opt 2 (i.e. H0 : MSEopt1 � MSEopt2 and Ha : MSEopt1 > MSEopt2), opt 2 versus opt 3 (i.e. H0 : MSEopt2

� MSEopt3 and Ha : MSEopt2 > MSEopt3), and opt 1 versus opt 3 (i.e. H0 : MSEopt1 � MSEopt3 and Ha :

MSEopt1 > MSEopt3), respectively. SD refers standard deviation. *** or ** asterisks associated with the

t-statistics indicate differences significant at the 1 or 5%, level, respectively.

Period Model MSE (SD) t-statistics

2 (1962–1966) opt 1 0.0122 (0.0101) 6.94***

1.87**

8.68***

opt 2 0.0041 (0.0071)

opt 3 0.0033 (0.0073)

3 (1967–1971) opt 1 0.0464 (0.0326) 6.11***

2.11**

7.15***

opt 2 0.0168 (0.0188)

opt 3 0.0129 (0.0156)

5 (1977–1981) opt 1 0.1856 (0.2177) 4.89***

1.79**

5.13***

opt 2 0.0395 (0.0867)

opt 3 0.0352 (0.0947)

6 (1982–1986) opt 1 0.1056 (0.1049) 6.10***

4.98***

6.67***

opt 2 0.0307 (0.0540)

opt 3 0.0201 (0.0476)

10One might argue that the opt 2 model will have one more exact match explaining the

unexpected changes in interest rates than the opt 1 model (as with the opt 3 versus opt 2

models). The authors also modify the MSE computed from the opt 1, opt 2, and opt 3

models by multiplying by 31 ⁄ 30, 31 ⁄ 29, and 31 ⁄ 28, respectively, to eliminate this effect. The

conclusion still holds.
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for paired sample t-test under the one-tailed tests of opt 1 versus opt 2 (H0 :

MSEopt1 � MSEopt2 and Ha : MSEopt1 > MSEopt2), opt 2 versus opt 3 (H0 : MSEopt2

� MSEopt3 and Ha : MSEopt2 > MSEopt3), and opt 1 versus opt 3 (H0 : MSEopt1 �
MSEopt3 and Ha : MSEopt1 > MSEopt3) models, respectively, and they demonstrate

that all these t-statistics have differences significant at the 1% level during this 240-

month sample period. Patterns showing that higher MSE generally occur at shorter

maturities are consistent in each subperiod and are in accordance with Navarro and

Nave (2001). Overall, the opt 3 model has a lower MSE than the opt 2 and opt 1

models across the entire maturity spectrum. Because of its significantly smaller MSE

than the opt 1 and opt 2 models in each subperiod, as well as in the overall period,

the opt 3 model shows explanation superiority. As a result, the opt 3 model

provides better estimation with respect to unexpected changes in interest rates and

is significantly superior to the opt 1 and even the opt 2 models proposed by Elton

et al. (1990).

3.2. Part II: July 1997–June 2007 (120 months)

The second part of this empirical study verifies the robustness of the model’s pre-

diction ability using updated and extended data; furthermore, it compares the

0
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0.5
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Maturity

M
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opt 1 opt 2 opt 3

Period Model MSE  (SD) t-statistics

Overall
opt 1 0.0875 (0.0905) 

5.47***

3.40*** 
5.90***opt 2 0.0228 (0.0410) 

opt 3 0.0179 (0.0410) 

Figure 1 Overall out-of-sample performance of competing models.

This figure displays the mean square errors (MSE) of three optimal spot-rate models across various

maturities. The attached table shows the mean and standard deviation of mean square errors (i.e. MSE)

and t-statistics of paired sample t-test results over time among these models for the overall four out-of-

sample periods (periods 2, 3, 5, and 6). The figures 5.47, 3.40, and 5.90 denote the t-statistics for paired

sample t-test under the one-tailed tests of: opt 1 versus opt 2 (i.e. H0 : MSEopt1 � MSEopt2 and Ha :

MSEopt1 > MSEopt2), opt 2 versus opt 3 (i.e. H0 : MSEopt2 � MSEopt3 and Ha : MSEopt2 > MSEopt3), and opt

1 versus opt 3 (i.e. H0 : MSEopt1 � MSEopt3 and Ha : MSEopt1 > MSEopt3), respectively. *** The three aster-

isks associated with the t-statistics indicate a difference significant at the 1% level during this 240-month

sample period.
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results of portfolio hedging by matching modified duration and spot-rate durations

for executing immunization strategies.

3.3. Optimal Spot Rates and Explanation Ability

The updated monthly term structure of spot rates that cover the

period July 1997–June 2007 (120 months) is divided into two subsamples. The

first 60-month period is defined as the in-sample data used to identify the opti-

mal spot rates for the spot-rate models, and the remaining 60-month period is

defined as the out-of-sample data for examining the prediction ability and the

explanatory power of the estimated models. To extend the empirical evidence for

matching US government bonds’ longest time to maturity, which can be up to

30 years, we lengthen the maturity of the term structure data to 30 years for this

Part II. As a result, each term structure of spot rates for the second

dataset comprises a series of 48 maturities (including the 31 maturities defined in

Part I, plus 17 additional annual maturities, which are 14, 15, …, and 30 years).

Using the same methodology as in Part I with the updated in-sample data from

July 1997 to June 2002, we identify the 13-year spot rate (13yr) as the optimal spot

rate for the one-spot-rate model. For the two-spot-rate model, the optimal spot

0.00
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0.05

0.06

0 5 10 15 20 25 30 35
Maturity

M
S

E

One-spot-rate Two-spot-rate Three-spot-rate

Period Model MSE  (SD) t-statistics
July 2002 –
June 2007 
(out-of-sample 
of Part II) 

7.98***

6.03*** 7.98***

0.0219 (0.0177) One-spot-rate
Two-spot-rate 0.0059 (0.0056) 
Three-spot-rate 0.0019 (0.0016) 

Figure 2 Out-of-sample performance of competing models for updated samples.

This top figure displays mean square errors (MSE) of three optimal spot-rate models across varied

maturities with updated data over the 5-year out-of-sample period from July 2002 to June 2007. All

monthly term structure data represents observations on the last trading day of each month. The attached

table shows the mean and standard deviation of mean square errors (i.e. MSE) and t-statistics of paired sam-

ple t-test results among these models. The optimal spot rates for one-spot-rate, two-spot-rate, and three-

spot-rate models with updated samples are (13 year), (3, 20 year), and (2, 9, and 23 year), respectively. The

figures, 7.98, 6.03, and 7.98, denote the t-statistics for paired sample t-test of one- versus two-spot-rate,

two- versus three-spot-rate, and one- versus three-spot-rate models, respectively, and show that all t-statis-

tics have differences significant at the 1% level during the out-of-sample period of July 2002–June 2007.
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rates are the 3-year and 20-year spot rates (3yr, 20yr) simultaneously. For the three-

spot-rate model, the optimal spot rates are the 2-year, 9-year, and 23-year spot rates

(2yr, 9yr, and 23yr). Extending the maturity of the term structure of spot rates in

Part II up to as long as 30 years results in longer maturities of optimal spot rates

relative to those in Part I.

We reconfirm the explanation ability of these models with respect to unexpected

changes in interest rates using the out-of-sample data from July 2002 to June 2007.

Figure 2 illustrates that the MSE for the three-spot-rate model is still smallest

(0.0019, compared with the two-spot-rate and one-spot-rate models, 0.0059 and

0.0219, respectively), and the differences in MSE between each spot-rate-model pair

are significant at the 1% level. These results once again support the superior

explanation ability of the three-spot-rate model relative to its counterparts, the one-

spot-rate and two-spot-rate models.

3.4. Estimated Consequent Sensitivities

After optimal spot rates are selected, the consequent sensitivities of the changes in

these proxy factors to each spot rate on the term structure can be estimated based

on the regression of equations (4) or (5). Figure 3(a) and (b) exhibits the sensitivities

of the two-spot-rate (âi and� b̂i) and the three-spot-rate (âi;�b̂i; and� ĉi) models

estimated from July 1997 to June 2002, respectively. The estimated sensitivities are

used to calculate their corresponding durations. For further comparison, Figure 3(c)

illustrates the first three factors loading (F1, F2, and F3) from principal component

analysis, which have been chosen to represent the level, slope and curvature of the

term structure of interest rates in many published studies (e.g. Steeley, 1990;

Litterman and Scheinkman, 1991; Knez et al., 1994; Willner, 1996; Bliss, 1997; Byun

and Lee, 2009).

By comparing Figure 3(a) and (b), we can infer the effect of incorporating the

third spot rate. For the two-spot-rate model in Figure 3(a), the humped shape of âi

can be viewed as a mixed influence of level and curvature. Although the third spot

rate is introduced in Figure 3(b), it slightly affects the slope (�b̂i) of the two-

spot-rate model, but indeed extracts curvature influence (�ĉi) from âi in

Figure 3(a) of the two-spot-rate model. Therefore, the level coefficient âi of the

three-spot-rate model (in Figure 3(b)) becomes an approximately flat line. More-

over, in comparison with Figure 3(c), the pattern of the sensitivity �ĉi in

Figure 3(b) has a similar characteristic to the loading of the third factor (F3). From

principal component analysis, we can infer that this evidence supports that the third

spot rate captures the curvature of the term structure of interest rates.

As described in equations (9) and (12), we also explore the hedging

performance of modified duration and spot-rate durations (i.e. D̂l; D̂m; and D̂s).

Continuous curves of the term structure of interest rates and spot-rate sensitivities

are more convenient for estimating spot-rate durations for cash flows with any time

to maturity. We simply employ the widely used cubic spline method to perform the

curve fitting for these coefficients with respect to different maturities.
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3.5. A Comparison of Modified and Spot-rate Duration Hedging

In this Subsection, we investigate whether the third spot rate added to a spot-rate

model enhances the explanation of the term structure of interest rates, especially with
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(a) Estimated two-spot-rate sensitivities

(b) Estimated three-spot-rate sensitivities

(c) The first three factors loading from principal
     component analysis

Figure 3 Estimated sensitivities of the two-spot-rate and three-spot-rate model versus princi-

pal component analysis for updated samples.

(a, b and c) Display estimated sensitivities of the two- and three-spot-rate models from the updated in-

sample data (from July 1997 to June 2002). The two- and three-spot-rate models respectively employ 3-

and 20-year spot rates and 2-, 9-, and 23-year spot rates as their optimal state variables. For comparative

purposes, (c) illustrates the first three factors loading from principal component analysis.
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respect to curvature, and whether it improves the efficiency of prediction on portfolio

returns by comparing the performance of modified duration hedging with two-

spot-rate and three-spot-rate duration hedging. The empirical data for execution of

duration hedging are the same term structures of interest rates obtained from

McCulloch’s website over the period July 1997–June 2007, as described in Subsection

3.3.

The objective of duration hedging is the construction of a portfolio that is

immunized to changes in interest rates. More specifically, for each special portfolio

(SP) or random portfolio (RP), a hedge portfolio (HP) is constructed to match the

value and the modified or spot-rate durations of the target portfolio. In our experi-

ments, following Bliss (1997), the face values of the component bonds in the SP

and RP (defined in Subsection 2.3) are adjusted such that the initial value of each

component bond and the initial investment amount of the portfolio are $100 at the

beginning of each month. In contrast, the initial investment amount of the HP is

fixed at $100, and the values (or the weights) of the component bonds in the HP

are determined by solving a set of simultaneous equations specifying the duration

matching criteria. Taking the three-spot-rate model as an example, we need to solve

the weights, q1; q2; q3, and q4, of the four component bonds. The set of simulta-

neous equations consists of four equations: three equations for spot-rate duration

matching, that is, D̂HP
j ¼ D̂SP

j , for j = l, m, and s, according to equations (12) and

(14), and one equation to assure that the weights sum to 1 (
P4

k¼1 qk ¼ 1). Once

equipped with the solutions of qk, the corresponding values of the component

bonds can be decided through Vk ¼ 100qk. In addition, the face value of each com-

ponent bond can be derived based on the value Vk and the real term structure at

the beginning of the examined period. These component bonds and, therefore,

‘‘SP’’s (or ‘‘RP’’s) and ‘‘HP’’s are revalued on the last trading day of each month

according to the real term structure at the end of the examined time period. Finally,

the absolute difference between the values of SP (or RP) and HP for each month is

computed to analyze hedge performance.

Similar to the methodology in Elton et al. (1990), the 120-month data are split

up equally into in-sample and out-of-sample periods. The spot-rate durations, as

derived in equation (12), are calculated by applying sensitivities âi, b̂i, and ĉi

estimated over the first 60-month in-sample period (from July 1997 to June 2002),

as reported in Figure 3(b). Because the coefficients âi, b̂i, and ĉi are estimated based

on the in-sample data, in the out-of-sample period (from July 2002 to June 2007),

we would expect the performance of spot-rate models to worsen over time,

especially when sensitivity estimates are not updated. In practice, more frequent

recalibrations might yield precise estimation but might also induce frequent trading

turnover, thereby increasing transaction costs. Our purpose, however, is only to

illustrate the relative performance of these hedging strategies under fair conditions.

3.5.1. Duration Hedging on Special Portfolios

Table 3 presents the performance of portfolio hedging on SP using modified dura-

tion and spot-rate durations with 10-year monthly term structures from July 1997 to
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June 2007. Panels A, B, and C present the results for in-sample, out-of-sample, and

overall-sample periods, respectively. From the paired sample t-test for these methods,

the results strongly support the notion that hedge strategies based on two-spot-rate

and three-spot-rate durations outperform hedge strategies based on the modified

duration. In addition, modified duration does not provide acceptable performance

for hedging a portfolio with widely divergent cash flows, like portfolios SP2 and SP3,

in which nonparallel shifts or intense term structure movements occur. As expected,

the mean of the absolute value of monthly return errors of two-spot-rate duration

hedging for portfolios SP1 and SP2 is fairly close to that of three-spot-rate duration

hedging (e.g. 0.0002 versus 0.0000 and 0.0001 versus 0.0000 for SP1 and SP2 for the

in-sample period, respectively). However, for portfolio SP3, the mean value of

hedging errors of the three-spot-rate durations is smaller than that of the other two

methods, with t-statistics indicating a difference significant at the 1% level for all

three periods. For example, the hedging errors of the 10-year overall sample period

are 0.0006, 0.0046, and 0.0228 for three-spot-rate, two-spot-rate, and modified

durations, respectively. These results show that incorporating the third spot rate into

the two-spot-rate model not only enhances understanding of the feature of

curvature, but also significantly reduces hedging errors, by approximately 40 basis

points on average (for the entire 120 months).

3.5.2. Duration Hedging on Random Portfolios

Duration hedging results for the three SP in Table 3 do not represent a sufficiently

large sample to draw firm conclusions about our three-spot-rate model. Therefore,

larger and more random bond portfolios are needed to evaluate the efficiency of

the spot-rate model. These RP are simulated by choosing a random distribution of

parameters, as described in Subsection 2.3.3. We randomly generate 100 RP with

different quantities of bonds (6–30 types), times to maturity (1–30 years), and cou-

pon rates (0.5–10%). For purposes of comparison, the same 100 RP are applied to

each of the 10-year monthly term structures from July 1997 to June 2007.

Figure 4 shows the hedging performance of various duration-matching methods

on RP across the 120-month period. The data consist of the average of absolute

values of hedging errors on 100 RP. Results from the first 60 months illustrate the

domination of the three-spot-rate duration-matching method in the in-sample

period. Even in the out-of-sample period, the three-spot-rate method outperforms

the two-spot-rate and modified duration-matching methods. Table 4 provides the

mean, the standard deviation and the paired sample t-test of the absolute value of

monthly duration hedging errors between each duration-matching method pair.

The results still show that hedge strategies based on two-spot-rate and three-

spot-rate durations outperform those based on modified duration. For example, the

average hedging errors on 100 RP over the overall sample period are 0.03, 0.10, and

0.26% for three-spot-rate, two-spot-rate, and modified durations, respectively.

Although the differences in hedging errors among RP are smaller than those of SP,

all t-statistics in Table 4 are significant at the 1% level across the entire period.

These results reconfirm that incorporating the third spot rate into the two-spot-rate
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Table 3 Hedging performance of modified versus spot-rate duration-matching methods on

special portfolios

This table presents the performance of portfolio hedging using modified duration and spot-rate dura-

tions with 10-year monthly term structures. Panels A, B, and C show results for in-sample, out-of-sample

and overall-sample periods, respectively. From the paired sample t-test of the absolute value of monthly

duration hedging errors, the results strongly support the notion that hedge strategies based on two-spot-

rate and three-spot-rate durations outperform hedge strategies based on modified duration. Adding the

third spot rate into the two-spot-rate model could significantly reduce hedging errors, by 40 basis points,

and enhance understanding of curvature, as shown for hedging special portfolio SP3 within an overall

sample period. SD refers standard deviation. ***indicate a difference significant at the 1% level.

Special Portfolios (SP) Duration-matching Mean (SD) t-statistics

Panel A: In-sample period (July 1997–June 2002)

SP1 Modified 0.0065 (0.0069) 7.04***

5.95***

7.17***

Two-spot-rate 0.0002 (0.0002)

Three-spot-rate 0.0000 (0.0000)

SP2 Modified 0.0082 (0.0074) 8.48***

5.97***

8.53***

Two-spot-rate 0.0001 (0.0001)

Three-spot-rate 0.0000 (0.0000)

SP3 Modified 0.0242 (0.0238) 7.48***

7.67***

7.85***

Two-spot-rate 0.0029 (0.0028)

Three-spot-rate 0.0001 (0.0001)

Panel B: Out-of-sample period (July 2002–June 2007)

SP1 Modified 0.0062 (0.0082) 5.13***

3.69***

5.75***

Two-spot-rate 0.0015 (0.0030)

Three-spot-rate 0.0002 (0.0004)

SP2 Modified 0.0063 (0.0056) 8.31***

3.62***

8.71***

Two-spot-rate 0.0007 (0.0015)

Three-spot-rate 0.0001 (0.0002)

SP3 Modified 0.0213 (0.0266) 5.50***

4.76***

6.14***

Two-spot-rate 0.0064 (0.0106)

Three-spot-rate 0.0010 (0.0020)

Panel C: Overall-sample period (July 1997–June 2007)

SP1 Modified 0.0063 (0.0076) 8.57***

3.89***

9.07***

Two-spot-rate 0.0008 (0.0022)

Three-spot-rate 0.0001 (0.0003)

SP2 Modified 0.0072 (0.0066) 11.52***

3.79***

11.95***

Two-spot-rate 0.0004 (0.0011)

Three-spot-rate 0.0001 (0.0001)

SP3 Modified 0.0228 (0.0252) 9.15***

6.73***

9.85***

Two-spot-rate 0.0046 (0.0079)

Three-spot-rate 0.0006 (0.0015)
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model not only improves the understanding of term structure but also reduces

hedging error and variance. Moreover, the results support the notion that the esti-

mated sensitivities of spot rates are sustainable over a wide horizon; that is, hedging

performance does not deteriorate significantly even if sensitivities of spot rates are

not re-estimated after as much as 5 years. The persistence of the sensitivity of spot

rates suggests that the three-spot-rate duration hedging strategy is a more conve-

nient and easier way for those using this technique to manage interest rate risk.

Figures 5(a) and (b) display three vivid examples corresponding to the three

largest errors associated with modified duration hedging strategies in Figure 4, for

in-sample and out-of-sample periods, to illustrate the significant changes in slope

and curvature of the term structures. The monthly dynamics of the term structure

of interest rates are estimated by McCulloch and are observed from the last trading

day of each month.

The first graph of Figure 5(a) reveals that the 1-month spot rate increases 40

basis points, but the 30-year spot rate decreases 30 basis points; that is, the term

structures become flatter from December 1999 to January 2000. In contrast, the

short-term spot rate plunges 89 basis points and the long-term spot rate increases

21 basis points in the second graph of Figure 5(a); that is, the term structures

become steeper from August 2001 to September 2001. The average hedging errors

for modified, two-spot-rate and three-spot-rate duration hedging within these two

periods are: 0.66, 0.52; 0.12, 0.01; and 0.01, 0.00%, respectively. The third graph of

Figure 5(a) shows that the 1-month spot rate increases 35 basis points, but that the

1.08%

0.66%

0.52%

1.28% 1.29%

1.09%

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

J-97 J-98 J-99 J-00 J-01 J-02 J-03 J-04 J-05 J-06 J-07
Date

H
ed

gi
ng

 e
rr

or
 (

%
)

Modified
Two-spot-rate
Three-spot-rate 

Figure 4 Hedging performance of modified versus spot-rate duration-matching methods on

random portfolios.

This figure displays the hedging performance of various duration-matching methods on random portfo-

lios across the 120-month period July 1997–June 2007. The data are averaged from the absolute value of

hedging errors on 100 random portfolios. The six figures above ‘‘¤’’ are each the first three largest modi-

fied-duration hedging errors for in-sample and out-of-sample periods, respectively.
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30-year spot rate drops 12 basis points from June 2002 to July 2002; the corre-

sponding hedging errors for modified, two-spot-rate and three-spot-rate duration

hedging over this period are 1.08, 0.09, and 0.05%, respectively.

For out-of-sample examples, the left graph of Figure 5(b) shows that the short-

term spot rate increases only 18 basis points, whereas the long-term spot rate

dramatically increases by 98 basis points from June 2003 to July 2003. That is, the

spread between 1-month and 30-year spot rates widens 80 basis points during the

period. In contrast, in the second graph of Figure 5(b), two term structures cross

each other more frequently. That is, the curvature of the term structure of interest

rates changes profoundly over the period June 2004–July 2004. We expect a signifi-

cant improvement in hedging performance from incorporating the third optimal

spot rate, because of its superior ability to explain the curvature of the term struc-

ture of interest rates for the three-spot-rate model. The final graph of Figure 5(b)

shows that the 1-month spot rate increases 21 basis points, but that the 30-year spot

rate decreases 15 basis points from January 2006 to February 2006. Similarly, for

these three out-of-sample examples, the average hedging errors of modified,

two-spot-rate and three-spot-rate duration-matching methods are: 1.28, 0.15, and

0.15%; 1.29, 1.02, and 0.46%; and 1.09, 0.45, and 0.25%, respectively.

Table 4 Hedging performance of modified versus spot-rate duration-matching methods on

random portfolios

This table demonstrates the performance of hedging on random portfolios using modified duration and

spot-rate durations with 10-year monthly term structures. Panels A, B, and C show results for in-sample,

out-of-sample, and overall-sample periods, respectively. From the paired sample t-test of the absolute

value of monthly duration hedging errors, the results strongly support the notion that hedge strategies

based on two-spot-rate and three-spot-rate durations outperform hedge strategies based on the modified

duration. SD refers standard deviation. *** asterisks on the upper right side of the t-statistics indicate a

difference significant at the 1% level during this 10-year sample period.

Random Portfolio (RP) Duration-matching Mean (SD) t-statistics

Panel A: In-sample period (July 1997–June 2002)

RP Modified 0.0023 (0.0019) 6.94***

7.49***

9.15***

Two-spot-rate 0.0006 (0.0006)

Three-spot-rate 0.0001 (0.0001)

Panel B: Out-of-sample period (July 2002–June 2007)

RP Modified 0.0030 (0.0031) 5.42***

5.08***

7.62***

Two-spot-rate 0.0014 (0.0021)

Three-spot-rate 0.0005 (0.0009)

Panel C: Overall-sample period (July 1997–June 2007)

RP Modified 0.0026 (0.0026) 8.66***

7.36***

11.63***

Two-spot-rate 0.0010 (0.0016)

Three-spot-rate 0.0003 (0.0007)
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According to the above analysis, it can be concluded that these three examples

illustrate the significant changes in slope and curvature of the term structures, and

the more severe the changes in the term structure of interest rates, the larger the

difference in hedging error between modified and spot-rate duration-matching

methods. In addition, the three-spot-rate model always shows its superiority to the

two-spot-rate model for reducing hedging errors, especially when there is a

significant change in the curvature of the term structure of interest rates.

In order to explore the effect of investment horizon longer than 1 month, the six

term structures of interest rates corresponding to the three largest hedging errors for

in-sample and out-of-sample periods in Figure 5 are chosen to investigate the hedging

performance of different models on the 100 RP for longer investment horizons.

Table 5 reports the hedging performance of modified duration and spot-rate dura-

tions for these 6-month term structures given the investment horizon of 2, 3 and

4 months. The paired sample t-test of the absolute value of monthly duration hedging

errors is performed and the two and three asterisks on the upper right side of the

t-statistics indicate a difference significant at the 5 and 1% level, respectively. The

results show that the hedging performance between the two-spot-rate and the modi-

fied duration matching are no longer significantly different while the investment hori-

zon is longer than 1 month. However, the hedging errors of the three-spot-rate model

are still within an acceptable level, even for a longer investment horizon (e.g. the mean
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(a) In-sample examples

(b) Out-of-sample examples

Figure 5 Examples of changes in slope and curvature of the term structure of interest rates.

(a,b) Display each three monthly dynamics of the term structure of interest rates (observed from the last

trading day of the month) corresponding to the first three largest hedging errors in Figure 4, for in-sam-

ple and out-of-sample periods, respectively. The term structures of interest rates are estimated by McCul-

loch and reported in his website (http://economics.sbs.ohio-state.edu/jhm/ts/ts.html). This figure

demonstrates that large hedging errors for the modified duration-matching correspond to significant

changes in slope and curvature of term structures.
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of 0.23% for 4-month holding period). The results strongly support that even with a

longer investment horizon, hedge strategies based on three-spot-rate durations still

outperform hedge strategies based on two-spot-rate and modified durations.

The deterioration of the performance of the two-spot-rate durations for longer

horizons further consolidates the contribution of introducing the third spot rate,

which not only enhances the understanding of the curvature feature of the term

structure of interest rates, but can also reduce the rebalancing frequency and, there-

fore, effectively save transaction costs of the risk management.

In summary, empirical tests of duration hedging on SP and RP (both are target

portfolios) show that the second spot rate contributes significantly toward lessening

hedging error. However, three constraints related to the level, slope, and curvature

of term structure movements are necessary to assure a return of HP close to that of

target portfolios; that is, incorporating the third spot rate not only enriches our

understanding of the term structure of interest rates, especially the feature of

curvature, but also improves the explanation ability for the dynamics of the

term structure and reduces hedging errors for bond portfolios to a sufficiently small

Table 5 Effect of longer investment horizons on hedging performance

This table shows results of using modified duration and spot-rate durations with six monthly term struc-

tures for holding periods as long as 2 months, 3 months, and 4 months, respectively. The six monthly

term structures of interest rates are associated to the first three largest hedging errors in Figures 4 and 5,

for in-sample and out-of-sample periods. From the paired sample t-test of the absolute value of monthly

duration hedging errors, the results strongly support the notion that even the longer investment horizon

hedge strategies based on three-spot-rate durations still outperform hedge strategies based on two-spot-

rate and the modified durations. SD refers standard deviation. ** and *** asterisks on the upper right

side of the t-statistics indicate a difference significant at the 5% and 1% level, respectively.

Random Portfolio (RP) Duration-matching Mean (SD) t-statistics

Panel A: 2-month holding period

RP Modified 0.0088 (0.0068) )0.81

2.54**

3.25**

Two-spot-rate 0.0108 (0.0109)

Three-spot-rate 0.0013 (0.0018)

Panel B: 3-month holding period

RP Modified 0.0096 (0.0052) 0.17

2.08**

4.59***

Two-spot-rate 0.0090 (0.0107)

Three-spot-rate 0.0013 (0.0016)

Panel C: 4-month holding period

RP Modified 0.0126 (0.0056) 0.03

2.77**

4.04***

Two-spot-rate 0.0125 (0.0098)

Three-spot-rate 0.0023 (0.0022)
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magnitude. The excellent explanatory power and the fairly small hedging errors of

our three-spot-rate model suggest that adding a fourth or more spot rates into a

spot-rate model is unnecessary.11 These empirical results are consistent with Lit-

terman and Scheinkman (1991), Bliss (1997), and Soto (2004).12 Furthermore, in

contrast to previous models, the spot-rate model simply extracts the optimal spot

rates (as driving factors) from the term structure itself, rather than from other

sources, which is an important feature of the hedging strategy in this paper.

4. Conclusion

Because the framework in Elton et al. (1990) is reliable and performs well in selecting

optimal spot rates as proxies for unknown driving state variables of the term struc-

ture of interest rates, we propose a three-spot-rate model and identify state variables

using the methodology of Elton et al. (1990). The concise and elegant three-spot-rate

model determined from the information content of the term structure of interest

rates itself provides better description for the parallel, slope, and curvature character-

istics of the term structure of interest rates than two-spot-rate model.

11Higher-degree spot-rate models might enhance both the performance of estimating the

unexpected changes of the term structure of interest rates and the performance of hedging

bond portfolios. However, the improvement might be marginal or even insignificant. In addi-

tion to the results of one-spot-rate, two-spot-rate, and three-spot-rate models reported in

Figure 1, we further provide empirical evidence for the same examined period that the opti-

mal four-spot-rate-model (opt 4 model with 2-month, 13-month, 3-year, and 9-year spot

rates) does not significantly outperform the optimal three-spot-rate model (opt 3 model with

6-month, 3-year, and 9-year spot rates) in prediction ability of unexpected changes of the

term structure. The MSE (standard deviation) for opt 4 is 0.0102 (0.0168), smaller than that

of opt 3, 0.0179 (0.0410), but the t-statistic for the paired sample t-test of the difference

between opt 3 and opt 4 is insignificant (1.46). Furthermore, our results are consistent with

the findings in Soto (2004, Journal of Banking and Finance 28, p. 1089), in which Soto argues

that: ‘‘the number of risk factors considered has a greater influence on the result than the

particular model chosen and three-factor immunization strategies offer the highest immuni-

zation benchmark.’’
12There are several differences between Soto (2004) and the present paper. First, Soto (2004)

introduces a three-factor model based on the principal component analysis to implement

immunization strategies, but the three-spot-rate model (optimal keyrate model in Soto’s

term) proposed in this paper is not considered in Soto (2004). Second, Soto (2004) adopts

the maximum diversification criterion to construct hedging portfolios, but our method is to

minimize the estimation error for individual rates and to diminish the difference between the

returns of target and hedge portfolios. Third, we focus on the US Treasury market, which is

the largest in the world, whereas the Spanish Treasury market is examined in Soto (2004).

Finally, to reflect the practical problems on risk management for financial institutions, a

unique feature of the present paper is the examination of different duration-matching meth-

ods for randomly generated bond portfolios.

B.-H. Lin et al.

574 � 2011 Korean Securities Association



Empirical results show that the model introduced in the present study is consis-

tently superior over a variety of horizons. The optimal three-spot-rate model per-

forms very well in estimating the unexpected change in the dynamics of the term

structure and in executing spot-rate duration hedging of various bond portfolios. In

addition, the results indicate that incorporating the third spot rate not only

enhances the understanding of the curvature feature of the term structure of interest

rates, but also implies that it is feasible to reduce the dimensions of state variables,

extracted from the term structure itself, to three for the risk management of bond

portfolios. This model is more convenient and easier to implement, and likely car-

ries lower transaction costs, in modeling interest rate risk management for investors

in bond portfolios.
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