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(forthcoming) or by the linearly implicit scheme with
in Khaliq et al. (2006).
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In contrast to the constant exercise boundary assumed by Broadie and Detemple (1996) [Broadie, M.,
Detemple, J., 1996. American option valuation: New bounds, approximations, and comparison of existing
methods. Review of Financial Studies 9, 1211–1250], we use an exponential function to approximate the
early exercise boundary. Then, we obtain lower bounds for American option prices and the optimal exer-
cise boundary which improve the bounds of Broadie and Detemple (1996). With the tight lower bound for
the optimal exercise boundary, we further derive a tight upper bound for the American option price using
the early exercise premium integral of Kim (1990) [Kim, I.J., 1990. The analytic valuation of American
options. Review of Financial Studies 3, 547–572]. The numerical results show that our lower and upper
bounds are very tight and can improve the pricing errors of the lower bound and upper bound of Broadie
and Detemple (1996) by 83.0% and 87.5%, respectively. The tightness of our upper bounds is comparable
to some best accurate/efficient methods in the literature for pricing American options. Moreover, the
results also indicate that the hedge ratios (deltas and gammas) of our bounds are close to the accurate
values of American options.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

One stream of the American option pricing literature is to derive
lower and/or upper bounds for American option values,1 see e.g.
Perrakis (1986), Chen and Yeh (2002), and Chung and Chang
(2007).2 Notably Broadie and Detemple (1996) provide tight lower
and upper bounds for American call prices based on the assumption
that the early exercise boundary is a constant. In this paper, we pro-
vide even tighter bounds for American option prices by making a
more realistic and flexible assumption that the early exercise bound-
ll rights reserved.

: +886 2 33652245.
(S.-L. Chung), hung@mana-

ent.ntu.edu.tw (J.-Y. Wang).
ms of the development of
partial differential equation,

e least-squares approach, and
options. In addition to these

by the static hedge portfolio
998), and Chung and Shih

a penalty method approach

e see Chung and Wang (2008)

et al. Tight bounds on American
ary follows an exponential function.3 Since the optimal exercise
boundary is a monotone function in time-to-maturity, the assumed
exponential boundary can improve the constant boundary in Broadie
and Detemple (1996).

We first derive a tight lower bound for the American call op-
tion as the price of a capped (barrier) call option with an expo-
nential exercise policy. Since all admissible exponential exercise
policies generate lower price bounds, a tight lower bound for
the American call option can be obtained based on maximizing
the values of the capped options over the parameters of the expo-
nential exercise barrier. Given the derivative information of the
capped call price with respect to parameters of the exponential
function, the optimization problem can be easily solved by an
iterative procedure.

Next, we obtain a tight lower bound for the optimal exercise
boundary based on our tight lower bound for the American call op-
tion price. The idea is intuitive and can be described as follows.
Note that the optimal exercise boundary (B�t ) is the intersection
point (i.e. the value-matching point) of the early exercise value
3 Although Omberg (1987) and Ingersoll (1998) suggest using an exponential
function to approximate the early exercise boundary, they do not provide detailed
formulae to solve the lower bound and the optimal exercise boundary. In contrast, we
follow the approach of Broadie and Detemple (1996) and derive the essential
formulae for solving the lower bound and the optimal exercise boundary.
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Fig. 1. Illustration of the relationship between the optimal exercise boundary ðB�t Þ and our lower bound ðL�t ea�t ðT�tÞÞ. This figure shows the relationship between the optimal
exercise boundary ðB�t Þ and our lower bound ðL�t ea�t ðT�tÞÞ for the optimal exercise boundary. Since CE

t ðSt ; L; aÞ generates the lower price bound of the American call option and
ðL�t ; a�t Þ is the solution of L�t ea�t ðT�tÞ � K ¼ CE

t ðL
�
t ea�t ðT�tÞ; L�t ; a

�
t Þ, it is obvious that L�t ea�t ðT�tÞ should be smaller than the optimal exercise boundary B�t . Moreover, if a tighter lower

bound for the American call price is derived, a tighter lower bound for the optimal exercise boundary can be obtained.

6 Ju (1998) approximates the early exercise boundary as a multipiece exponential
function and substitute it to the early exercise premium integral, derived by Kim
(1990), to price American options. Closed-form formulae can be derived and the bases
and exponents of the multipiece exponential function can be obtained backward by
using value-matching and smooth-pasting conditions. Thus a two-dimensional New-
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and the holding value for American call option as the underlying
asset price (St) increases from below. Since our lower price bound
is always smaller than American option price in the holding region
(i.e. the region where St � B�t ), the intersection point of the early
exercise value and the holding value for the capped call option un-
der the exponential exercise policy must be less than the optimal
exercise boundary B�t . Please see Fig. 1 for the ease of understand-
ing our explanation.4

Equipped with our tight lower bound for optimal exercise
boundary and the integral representation formula for the early
exercise premium in Kim (1990), Jacka (1991), and Carr et al.
(1992), a tight upper bound for the American call price is then de-
rived in this paper.

Finally, following the method in Broadie and Detemple (1996),
we combine both lower and upper bounds, with an optimization
and regression exercise, to derive two accurate approximations
for American option prices.5 This optimization regression is based
on a set of simulated option contracts, and once equipped with the
estimated coefficients, it is possible to approximate American option
prices accurately.

Based on the numerical experiments in Tables 1 and 2, we find
that our method can improve the errors of the lower bound and
upper bound of Broadie and Detemple (1996) by 83.0% and
87.5%, respectively. Moreover, our option pricing bounds are so
tight that their accuracy is comparable to the best accurate/effi-
cient methods for pricing American options in the literature. For
example, the integral representation formula of Kim (1990), Jacka
(1991), and Carr et al. (1992) has been successfully implemented
4 Moreover, it is straightforward to show that a tighter lower bound for the
American call price can result in a tighter lower bound for the optimal exercise
boundary. Since our lower bound is closer, than the lower bound of Broadie and
Detemple (1996), to theAmerican call price, our lower bound for the optimal exercise
boundary is also tighter than that of Broadie and Detemple (1996).

5 Broadie and Detemple (1996) provide two American option price approximations,
one based on the lower bound (termed LBA) and one based on both bounds (termed
LUBA). Following their approach, we also provide two American option price
approximations based on our lower bound and upper bound.

Please cite this article in press as: Chung, S.-L., et al. Tight bounds on American
in a series of papers, such as Huang et al. (1996), Ju (1998),6 and
Ibáñez (2003).7 These papers offer the best speed-accuracy trade-
offs in the literature. Our numerical results indicate that the errors
of our upper bounds for pricing long term American put options
are only 0.049% which is close to the errors of Ju (1998), i.e.
0.032% (see Table 3 of this study).8 Similarly, for pricing short term
American put options, the errors of our upper bounds and Ibáñez’s
method are 0.014% and 0.024%, respectively (see Table 4 of this arti-
cle). Moreover, the two approximations based on our pricing bounds
are generally more accurate than Ju (1998) and Ibáñez (2003) for
pricing American options.

The rest of this article proceeds as follows. Section 2 provides
lower bounds for the American call option price and the optimal
exercise boundary based on the assumption that the optimal exer-
cise boundary follows an exponential function. Section 3 applies
the lower bound of the optimal exercise boundary to the integral
representation formula of Kim (1990), Jacka (1991), and Carr
et al. (1992) to obtain an upper bound for the American option
price. Section 4 shows the numerical results to analyze the tight-
ness of our lower and upper bounds. Section 5 concludes the paper.
ton–Raphson method must be used to solve the bases and exponents at different
times (e.g. see Eqs. (13) and (14) of Ju (1998)).

7 Ibáñez (2003) introduces a new algorithm to implement the decomposition
formula of Kim (1990). He proposes an adjustment of Kim’s (1990) discrete-time early
exercise premium so that these premiums monotonically converge and therefore it is
appropriate to apply them in Richardson extrapolation. Moreover, Ibáñez (2003) also
derives the correct order for the error term when applying extrapolation, which is
then used to control the error of the extrapolated prices.

8 Since the pricing error of the proposed method is small, it may be also suitable for
pricing long term American-style employee stock options (e.g. see Leon and Vaello-
Sebastia (2009)).
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Table 1
American call option value bounds and approximations (maturity T = 0.5 years).

Option parameter Asset price LB1 LB2 UB1 UB2 LBA1 LBA2 LUBA1 LUBA2 True value

r = 0.03, r = 0.2, q = 0.07 80 0.2178 0.2191 0.2196 0.2194 0.2188 0.2194 0.2195 0.2193 0.2194
90 1.3759 1.3849 1.3885 1.3868 1.3824 1.3863 1.3862 1.3859 1.3864

100 4.7501 4.7784 4.7919 4.7838 4.7707 4.7827 4.7821 4.7811 4.7826
110 11.0488 11.0922 11.1253 11.1005 11.0897 11.1008 11.0975 11.0953 11.0977
120 20.0000 20.0002 20.0575 20.0064 20.0000 20.0119 20.0000 20.0015 20.0005

r = 0.03, r = 0.4, q = 0.07 80 2.6759 2.6871 2.6908 2.6891 2.6889 2.6891 2.6893 2.6882 2.6888
90 5.6942 5.7186 5.7272 5.7229 5.7207 5.7227 5.7231 5.7210 5.7221

100 10.1901 10.2329 10.2494 10.2401 10.2350 10.2396 10.2402 10.2367 10.2387
110 16.1101 16.1731 16.2006 16.1835 16.1758 16.1826 16.1817 16.1782 16.1812
120 23.2712 23.3504 23.3917 23.3632 23.3559 23.3616 23.3574 23.3558 23.3597

r = 0.00, r = 0.3, q = 0.07 80 1.0287 1.0360 1.0389 1.0375 1.0355 1.0372 1.0373 1.0367 1.0373
90 3.0981 3.1198 3.1290 3.1241 3.1179 3.1231 3.1232 3.1218 3.1233

100 6.9845 7.0288 7.0509 7.0373 7.0267 7.0358 7.0355 7.0325 7.0355
110 12.8818 12.9462 12.9883 12.9585 12.9517 12.9575 12.9531 12.9505 12.9551
120 20.6501 20.7099 20.7787 20.7233 20.7432 20.7247 20.7208 20.7131 20.7173

r = 0.07, r = 0.3, q = 0.03 80 1.6644 1.6644 1.6644 1.6644 1.6644 1.6644 1.6644 1.6644 1.6644
90 4.4947 4.4947 4.4947 4.4947 4.4947 4.4947 4.4947 4.4947 4.4947

100 9.2506 9.2506 9.2506 9.2506 9.2506 9.2506 9.2506 9.2506 9.2506
110 15.7975 15.7975 15.7975 15.7975 15.7975 15.7975 15.7975 15.7975 15.7975
120 23.7062 23.7062 23.7062 23.7062 23.7062 23.7062 23.7062 23.7062 23.7062

RMS 0.5033% 0.0674% 0.1633% 0.0205% 0.1229% 0.0179% 0.0163% 0.0262%

All options have K = 100. LB1 and UB1 are lower and upper bounds of Broadie and Detemple (1996). LB2 and UB2 are lower and upper bounds proposed in this paper. LBA1
and LUBA1 are approximations based on Broadie and Detemple’s (1996) bounds while LBA2 and LUBA2 are based on our bounds. The ‘‘true value” column is calculated from
the Binomial Black and Scholes method with Richardson extrapolation (BBSR) and the length of each time step is 0.0001 years.

Table 2
American call option value bounds and approximations (maturity T = 3 years).

Option parameter Asset price LB1 LB2 UB1 UB2 LBA1 LBA2 LUBA1 LUBA2 True value

r = 0.03, r = 0.2, q = 0.07 80 2.5529 2.5745 2.5891 2.5812 2.5718 2.5787 2.5804 2.5785 2.5800
90 5.1207 5.1579 5.1865 5.1695 5.1551 5.1655 5.1677 5.1643 5.1670

100 9.0017 9.0537 9.1023 9.0708 9.0527 9.0653 9.0651 9.0621 9.0660
110 14.3710 14.4300 14.5037 14.4516 14.4321 14.4448 14.4443 14.4386 14.4434
120 21.3540 21.4031 21.5060 21.4270 21.4095 21.4182 21.4119 21.4099 21.4139

r = 0.03, r = 0.4, q = 0.07 80 11.2379 11.3101 11.3537 11.3285 11.3155 11.3269 11.3272 11.3225 11.3257
90 15.6088 15.7023 15.7628 15.7261 15.7065 15.7230 15.7236 15.7175 15.7220

100 20.6562 20.7698 20.8496 20.7991 20.7698 20.7936 20.7926 20.7874 20.7933
110 26.3366 26.4678 26.5687 26.5022 26.4592 26.4930 26.4893 26.4870 26.4944
120 32.6074 32.7522 32.8758 32.7911 32.7301 32.7766 32.7723 32.7720 32.7810

r = 0.00, r = 0.3, q = 0.07 80 5.4631 5.5067 5.5397 5.5202 5.5102 5.5161 5.5199 5.5139 5.5176
90 8.7658 8.8266 8.8783 8.8459 8.8339 8.8401 8.8435 8.8360 8.8415

100 13.0477 13.1238 13.1985 13.1490 13.1351 13.1412 13.1415 13.1347 13.1421
110 18.3473 18.4331 18.5344 18.4634 18.4474 18.4529 18.4530 18.4440 18.4531
120 24.6849 24.7711 24.9022 24.8053 24.7882 24.7908 24.7974 24.7807 24.7907

r = 0.07, r = 0.3, q = 0.03 80 12.1447 12.1452 12.1453 12.1452 12.1675 12.1452 12.1453 12.1452 12.1452
90 17.3674 17.3683 17.3684 17.3683 17.3972 17.3683 17.3685 17.3683 17.3683

100 23.3467 23.3484 23.3486 23.3484 23.3828 23.3484 23.3486 23.3484 23.3484
110 29.9608 29.9634 29.9639 29.9635 30.0017 29.9634 29.9639 29.9634 29.9635
120 37.0992 37.1032 37.1040 37.1034 37.1426 37.1032 37.1040 37.1032 37.1033

RMS 0.6188% 0.1174% 0.3213% 0.0401% 0.1403% 0.0162% 0.0159% 0.0380%

All options have K = 100. LB1 and UB1 are lower and upper bounds of Broadie and Detemple (1996). LB2 and UB2 are lower and upper bounds proposed in this paper. LBA1
and LUBA1 are approximations based on Broadie and Detemple’s (1996) bounds while LBA2 and LUBA2 are based on our bounds. The ‘‘true value” column is calculated from
the Binomial Black and Scholes method with Richardson extrapolation (BBSR) and the length of each time step is 0.0001 years.
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2. Lower bounds for the American call option value and the
optimal exercise boundary

Consider the pricing of an American call option with a strike
price K and a fixed maturity date T. Following Black and Scholes
(1973) model, we assume that the underlying asset price St under
the risk-neutral world satisfies

dSt ¼ ðr � qÞStdt þ rStdWt ; ð1Þ

where Wt is a standard Brownian motion process. The volatility r,
the risk-free rate r, and the dividend yield rate q are assumed con-
Please cite this article in press as: Chung, S.-L., et al. Tight bounds on American
stant. Let Ct(St) denote the American call option price, where the
parameters K, T, r, r, and q are omitted for simplicity.

It is well-known that the valuation of American options is a free
boundary problem (see McKean (1965)) and the optimal exercise
boundary B�t must be solved simultaneously with the valuation
problem. Although it is difficult and time consuming to solve B�t ,
the asymptotic behavior of B�t has been derived in the literature.
For example, Merton (1973) proves that the optimal exercise
boundary for the perpetual (i.e. T ?1) American put option is a
constant. Using Merton’s technique, one can easily show that the
optimal exercise boundary for the perpetual American call option
option prices. J. Bank Finance (2009), doi:10.1016/j.jbankfin.2009.07.004
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Table 3
Price of American put options (K = 100, T = 3 years, r = 0.2, r = 0.08).

(S, q) True value EXP3 LB2 UB2 LBA2 LUBA2

(80, 0.12) 25.6578 25.6570 25.6572 25.6578 25.6572 25.6577
(90, 0.12) 20.0832 20.0817 20.0829 20.0833 20.0832 20.0832
(100, 0.12) 15.4984 15.4970 15.4982 15.4984 15.5005 15.4984
(110, 0.12) 11.8032 11.8022 11.8031 11.8032 11.8061 11.8032
(120, 0.12) 8.8855 8.8850 8.8854 8.8855 8.8886 8.8855
(80, 0.08) 22.2050 22.2084 22.1963 22.2091 22.2022 22.2032
(90, 0.08) 16.2071 16.2106 16.1973 16.2096 16.2076 16.2062
(100, 0.08) 11.7039 11.7066 11.6953 11.7054 11.7057 11.7038
(110, 0.08) 8.3670 8.3695 8.3512 8.3680 8.3600 8.3664
(120, 0.08) 5.9298 5.9323 5.9247 5.9304 5.9321 5.9300
(80, 0.04) 20.3501 20.3511 20.3448 20.3626 20.3487 20.3512
(90, 0.04) 13.4968 13.5000 13.4853 13.5043 13.4978 13.4959
(100, 0.04) 8.9440 8.9474 8.9320 8.9486 8.9443 8.9437
(110, 0.04) 5.9118 5.9146 5.9016 5.9147 5.9116 5.9120
(120, 0.04) 3.8974 3.8997 3.8896 3.8992 3.8970 3.8976
(80, 0) 20.0000 20.0000 20.0000 20.0155 20.0000 20.0000
(90, 0) 11.6976 11.6991 11.6908 11.7075 11.6970 11.6980
(100, 0) 6.9322 6.9346 6.9235 6.9379 6.9324 6.9319
(110, 0) 4.1550 4.1571 4.1473 4.1583 4.1546 4.1549
(120, 0) 2.5103 2.5119 2.5044 2.5122 2.5095 2.5103
RMS 0.0316% 0.1138% 0.0487% 0.0247% 0.0040%

The parameters are adopted from Table 2 of Ju (1998). The ‘‘true value” is calculated from the Binomial Black and Scholes method with Richardson extrapolation (BBSR) and
the length of each time step is 0.0001 years. EXP3 represents the America put price estimate using the three-point multipiece exponential boundary method of Ju (1998). LB2
and UB2 are lower and upper bounds proposed in this paper. LBA2 and LUBA2 are approximations based on our bounds.

Table 4
Prices of (short-term) standard American put options.

St = 40, r = 0.0488

K T (years) True value PEXT LB2 UB2 LBA2 LUBA2

r = 0.20
35 0.0833 0.0062 0.0062 0.0062 0.0062 0.0062 0.0062
35 0.3333 0.2004 0.2003 0.2002 0.2004 0.2004 0.2004
35 0.5833 0.4328 0.4327 0.4323 0.4329 0.4327 0.4328
40 0.0833 0.8523 0.8523 0.8519 0.8524 0.8516 0.8523
40 0.3333 1.5799 1.5799 1.5786 1.5801 1.5799 1.5799
40 0.5833 1.9905 1.9909 1.9885 1.9910 1.9903 1.9905
45 0.0833 5.0000 5.0000 5.0000 5.0002 5.0000 5.0000
45 0.3333 5.0883 5.0889 5.0871 5.0894 5.0904 5.0883
45 0.5833 5.2670 5.2640 5.2647 5.2684 5.2681 5.2669

r = 0.30
35 0.0833 0.0775 0.0774 0.0774 0.0775 0.0774 0.0775
35 0.3333 0.6976 0.6975 0.6971 0.6977 0.6976 0.6976
35 0.5833 1.2199 1.2197 1.2188 1.2200 1.2199 1.2199
40 0.0833 1.3102 1.3101 1.3098 1.3103 1.3098 1.3103
40 0.3333 2.4827 2.4825 2.4811 2.4830 2.4811 2.4826
40 0.5833 3.1697 3.1697 3.1673 3.1702 3.1697 3.1698
45 0.0833 5.0598 5.0588 5.0588 5.0601 5.0606 5.0595
45 0.3333 5.7057 5.7046 5.7034 5.7063 5.7065 5.7056
45 0.5833 6.2437 6.2423 6.2402 6.2446 6.2440 6.2435

r = 0.40
35 0.0833 0.2467 0.2467 0.2467 0.2467 0.2467 0.2467
35 0.3333 1.3462 1.3461 1.3454 1.3463 1.3460 1.3463
35 0.5833 2.1550 2.1547 2.1535 2.1553 2.1550 2.1552
40 0.0833 1.7685 1.7685 1.7680 1.7686 1.7680 1.7686
40 0.3333 3.3876 3.3874 3.3859 3.3881 3.3857 3.3877
40 0.5833 4.3528 4.3526 4.3500 4.3534 4.3496 4.3528
45 0.0833 5.2870 5.2870 5.2862 5.2873 5.2862 5.2872
45 0.3333 6.5099 6.5106 6.5074 6.5105 6.5097 6.5101
45 0.5833 7.3831 7.3841 7.3791 7.3839 7.3827 7.3832
RMS 0.0236% 0.0618% 0.0136% 0.0336% 0.0045%

The parameters are adopted from Table 1 of Ibáñez (2003). The ‘‘true value” is calculated from the Binomial Black and Scholes method with Richardson extrapolation (BBSR) and
the length of each time step is 0.0001 years. PEXT represents the extrapolated America put price from three Bermudan prices with 4, 5, and 6 exercise dates with the modified
early exercise premium derived by Ibáñez (2003). LB2 and UB2 are lower and upper bounds proposed in this paper. LBA2 and LUBA2 are approximations based on our bounds.
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is bK/(b � 1), where b ¼ 1
2�

ðr�qÞ
r2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr�qÞ
r2 � 1

2

� �2
þ 2r

r2

r
. On the other

hand, when r > q and the time to maturity approaches zero (i.e.
t ? T), Evans et al. (2002, Eq. (1.11)) show that the early exercise
boundary near expiration satisfies
Please cite this article in press as: Chung, S.-L., et al. Tight bounds on American
B�t �
r
q

K 1þ ra0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðT � tÞ

p� �
;

where a0 is a constant determined by a transcendental equation.
option prices. J. Bank Finance (2009), doi:10.1016/j.jbankfin.2009.07.004
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Inspiring by the above results,9 we approximate the early exer-
cise boundary of an American call using an exponential function, i.e.
Bt = Lea(T�t). The payoff of the approximate American call is either
max(Lea(T�s) � K, 0), if the underlying asset price first hits the expo-
nential exercise boundary from below at time s where t � s < T , or
max(ST � K, 0), otherwise. The American call under the exponential
exercise boundary is essentially a capped (barrier) option and its
value ðCE

t ðSt ; L; aÞÞ is given by

CE
t ðSt ; L; aÞ ¼ LeaðT�tÞ k̂

~b�~b
t Nð~d0Þ þ k̂

~bþ~b
t Nð~d0 þ 2~br

ffiffiffiffiffiffiffiffiffiffiffi
T � t
p

Þ
h i

� K k̂b̂�b̂
t Nðd̂0Þ þ k̂b̂þb̂

t Nðd̂0 þ 2b̂r
ffiffiffiffiffiffiffiffiffiffiffi
T � t
p

Þ
h i

þ Ste�qðT�tÞ N d̂�1 ðLeaðT�tÞÞ � r
ffiffiffiffiffiffiffiffiffiffiffi
T � t
p� �n

�N d̂�ðKÞ � r
ffiffiffiffiffiffiffiffiffiffiffi
T � t
p� �

þ k̂ĉ�1
t N d̂þðKÞ � r

ffiffiffiffiffiffiffiffiffiffiffi
T � t
p� �h

�N d̂þ1 ðLeaðT�tÞÞ � r
ffiffiffiffiffiffiffiffiffiffiffi
T � t
p� �io

� Ke�rðT�tÞ N d̂�1 ðLeaðT�tÞÞ
� �n

�Nðd̂�ðKÞÞ þ k̂ĉþ1
t Nðd̂þðKÞÞ � N d̂þ1 ðLeaðT�tÞÞ

� �h io
; ð2Þ

where N(.) is the cumulative distribution function of a standard nor-
mal variable,

k̂t ¼ St=ðLeaðT�tÞÞ; b̂ ¼ � r � qþ a� 1
2
r2

� ��
r2;

b̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b̂2 þ 2r=r2

q
;

d̂0 ¼
1

r
ffiffiffiffiffiffiffiffiffiffiffi
T � t
p lnðk̂tÞ � b̂r2ðT � tÞ

h i
; ~b ¼ � rþ a� q� 1

2
r2

� ��
r2;

~b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~b2 þ 2ðr þ aÞ=r2

q
; ~d0 ¼

1
r
ffiffiffiffiffiffiffiffiffiffiffi
T � t
p lnðk̂tÞ � ~br2ðT � tÞ

h i
;

ĉ ¼ �2ðr � qþ aÞ=r2;

d̂�ðxÞ ¼ 1
r
ffiffiffiffiffiffiffiffiffiffiffi
T � t
p � lnðk̂tÞ � lnðLÞ þ lnðxÞ � r � qþ a� 1

2
r2

� �
ðT � tÞ

� 	
;

d̂�1 ðxÞ ¼
1

r
ffiffiffiffiffiffiffiffiffiffiffi
T � t
p � lnðk̂tÞ � lnðLÞ þ lnðxÞ � r � qþ 2a� 1

2
r2

� �
ðT � tÞ

� 	
:

Please note the Eq. (2) holds only when both the current stock price
and the strike price are below the exponential exercise boundary,
i.e. Lea(T�t) P max (St, K). For completeness, we define CE

t ðSt; L; aÞ ¼
maxðminðSt; LeaðT�tÞÞ � K;0Þ when Lea(T�t) < max (St, K) .

Since the policy of exercising when the underlying asset price
reaches the exponential exercise boundary is an admissible (but
not the optimal) policy for the American option, the above formula
for CE

t ðSt ; L; aÞ gives an immediate lower bound of the American op-
tion price Ct(St), i.e. CE

t ðSt ; L; aÞ � CtðStÞ for any {L, a}. Moreover a
lower bound is still obtained after maximizing over {L, a} subject
to the constraint that LeaðT�tÞ � St ,10 i.e. maxLeaðT�tÞ�St

CE
t ðSt ; L; aÞ �

CtðStÞ. Denote the optimal solution fbLðStÞ; âðStÞg as

fbLðStÞ; âðStÞg ¼ arg max
LeaðT�tÞ�St

CE
t ðSt ; L; aÞ: ð3Þ
9 The results indicate that the first derivative of the early exercise boundary with
respective to time is in between 0 (perpetual) and �1 (short maturity).

10 If Lea(T�t) < St, by definition the capped option with the exponential boundary has
been exercised and its value equals max(Lea(T�s) � K, 0). Thus the optimization is
solved under the constraint that LeaðT�tÞ � St .
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Hence

Cl
tðStÞ ¼ max

LeaðT�tÞ�St

CE
t ðSt ; L; aÞ � CtðStÞ: ð4Þ

Note that our lower bound in Eq. (4) improves over the naïve
lower bound of the European call value, denoted as ct(St), because
ctðStÞ ¼ lim

L!1
CE

t ðSt; L; a ¼ 0Þ. Moreover, since the constant exercise
boundary of Broadie and Detemple (1996) is a special case of our
exponential exercise boundary with a = 0, our lower bound is also
tighter than their lower bound.

Solving fbLðStÞ; âðStÞg is a bi-variate differentiable optimization
problem for any given St. We apply an iterative procedure to solve
the optimization problem. With the formulae of derivatives
@CE

t ðSt ; L; aÞ=@L and @CE
t ðSt ; L; aÞ=@a, the optimal solution should

satisfy

½@CE
t ðSt; L; aÞ=@L�2 þ ½@CE

t ðSt ; L; aÞ=@a�2 ¼ 0: ð5Þ

We first give an initial guess of the level L0 and then find the opti-
mal solution of the growth rate a0 by minimizing the value of the
left hand side (LHS) of Eq. (5).11 Using a0 we find the optimal solu-
tion of L1 by minimizing the value of the left hand side of Eq. (5). We
repeat the above procedure to generate a series of Li and ai until Eq.
(5) is satisfied.12 The derivatives @CE

t ðSt ; L; aÞ=@L and @CE
t ðSt; L; aÞ=@a

are given in Proposition 1 of Appendix A.
Following the same idea of Broadie and Detemple (1996), the

lower price bound based on the exponential exercise policy can
give a lower bound for the optimal exercise boundary. As the asset
price St approaches Lea(T�t) from below, we can evaluate the deriv-
atives of the exponential barrier option price with respect to L and
a, respectively:

DLðL; a; tÞ ¼ lim
St"LeaðT�tÞ

@CE
t ðSt; L; aÞ
@L

;

DaðL; a; tÞ ¼ lim
St"LeaðT�tÞ

@CE
t ðSt; L; aÞ
@a

:

ð6Þ

The formulae of DL(L, a, t) and Da(L, a, t) are also given in Proposition
1 of Appendix A. Let H(L, a, t) = [DL(L, a, t)]2 + [Da(L, a, t)]2 and denote
by L�t and a�t the solutions to the equation

HðL; a; tÞ ¼ 0: ð7Þ

It is worth emphasizing that Eq. (7) does not need to be solved
recursively, i.e. Eq. (7) can be solved for L�t and a�t without having
first solved for L�s and a�s for s e (t, T]. We solve Eq. (7) using the
same iterative procedure as the one for solving Eq. (5).

It should be noted that L�t ea�t ðT�tÞ; t 2 ½0; T�; provides a lower
boundary for the optimal exercise boundary. Although a rigorous
proof of this statement is difficult, the intuition behind it is
straightforward.13 The solution of Eq. (7), ðL�t ; a�t Þ, can generate the
exponential exercise barrier and thus the lower bound for American
call prices through Eq. (2) when the asset price St approaches
L�t ea�t ðT�tÞ from below. Please note that Eq. (2) is the formula to calcu-
late the option value of a capped call and its value equals Lea(T�t) � K
when St = Lea(T�t). Therefore, the solution of Eq. (7) satisfies

L�t ea�t ðT�tÞ � K ¼ CE
t ðL
�
t ea�t ðT�tÞ; L�t ; a

�
t Þ:

Since CE
t ðSt; L; aÞ generates the lower bounds of the American call

prices, L�t ea�t ðT�tÞ should be the lower-biased early exercise boundary
for the American call. Fig. 1 illustrates the above inference and
11 The initial guess is chosen as L0 = max(K, rK/q).
12 The number of iterations is typically within 10 and thus the computation is quick.
13 The authors thank an anonymous referee for providing the reference of Ibáñez

and Paraskevopoulos (forthcoming), which motivates us to derive the following
explanation to show that L�t ea�t ðT�tÞ is indeed a low-biased exercise boundary for the
optimal exercise boundary B�t .
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shows that L�t ea�t ðT�tÞ is smaller than the optimal exercise boundary
B�t . In addition, from the figure, we find that if a tighter lower bound
for the American call price is derived, a tighter lower bound for the
optimal exercise boundary can be obtained.

3. An upper bound for the American call option value

Under Black and Scholes (1973) model, Kim (1990), Jacka
(1991), and Carr et al. (1992) derive the following formula for
the price of an American call option:

CtðStÞ ¼ ctðStÞ þ
Z T

t
qSte

�qðs�tÞNðd1ðSt ;B
�
s ; s� tÞÞ

h
�rKe�rðs�tÞNðd2ðSt;B

�
s ; s� tÞÞ

i
ds; ð8Þ

where

d1ðx; y; tÞ ¼
lnðx=yÞ þ ðr � qþ r2=2Þt

r
ffiffi
t
p ;

d2ðx; y; tÞ ¼ d1ðx; y; tÞ � r
ffiffi
t
p
:

The second term in the right hand side of Eq. (8) is called the
early exercise premium in the literature.14 The critical exercise
boundary solves the following integral equation for B�s for all
s e [t, T]:

B�s � K ¼ csðB�s Þ þ
Z T

s
qB�s e�qðs�sÞNðd1ðB�s ;B

�
s; s� sÞÞ

h
�rKe�rðs�sÞNðd2ðB�s ;B

�
s; s� sÞÞ

i
ds: ð9Þ

Once B�t is obtained, the price of the American option can be calcu-
lated easily using Eq. (8). However, solving for B�t is usually a time-
consuming process because it needs to be solved recursively, i.e. be-
fore solving for B�t one needs to first solve for B�s for s e (t, T] .

Because the early exercise premium in the above formula is
decreasing in the boundary, Carr et al. (1992) show that it is possi-
ble to bound the American call value analytically. For example,
substituting B�t ¼ K into Eq. (8) yields an upper bound of the Amer-
ican call. Actually substituting any lower estimates of the critical
exercise boundary into Eq. (8) will result in an upper bound of
the early exercise premium and thus an upper of the American call
price. As a result we can substitute our tight lower bound for opti-
mal exercise boundary into the premium integral of Kim (1990),
Jacka (1991), and Carr et al. (1992) to obtain a tight upper bound
of the American call price. In other words, the American call option
price is bounded above by the following formula:

Cu
t ðStÞ ¼ ctðStÞ þ

Z T

t
qSte

�qðs�tÞN d1ðSt ; L
�
s ea�s ðT�sÞ; s� tÞ


 �h
�rKe�rðs�tÞN d2ðSt; L

�
s ea�s ðT�sÞ; s� tÞ


 �i
ds; ð10Þ

where L�s ea�s ðT�sÞ is the lower bound on the optimal exercise bound-
ary given by the solution to Eq. (7).

4. Numerical results and discussions

In this section we compare our lower and upper bounds with
those of Broadie and Detemple (1996). The comparison is based
on the speed of computation and the accuracy of the results. Be-
sides the option pricing bounds, Broadie and Detemple (1996) also
14 In fact, according to Ibáñez (2008), American option prices in an incomplete
market setting can be decomposed into three components. The first part is priced by
arbitrage, the second part depends on a risk orthogonal to the first part, and third part
is the early exercise premium.
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propose two approximations for the American option prices. The
first approximation is based on the lower bound (LBA) and the sec-
ond approximation is based on the lower and upper bounds
(LUBA). Following Broadie and Detemple (1996), we also develop
two approximations based on our lower and upper bounds. Details
of our LBA and LUBA are given in Appendix B.

4.1. Comparing the tightness of bounds

We first compare the tightness of our lower and upper bounds
with those of Broadie and Detemple (1996). The results reported
include (1) the lower bound of Broadie and Detemple (1996)
(LB1), (2) our lower bound (LB2), (3) the upper bound of Broadie
and Detemple (1996) (UB1), (4) our upper bound (UB2), (5) the
approximation based on Broadie and Detemple’s lower bound
(LBA1), (6) the approximation based on our lower bound (LBA2),
(7) the approximation based on Broadie and Detemple’s lower
and upper bounds (LUBA1), and (8) the approximation based on
our lower and upper bounds (LUBA2). The parameters used are
adopted from Tables 1 and 2 of Broadie and Detemple (1996).
There are 40 options considered in Tables 1 and 2. In this paper,
we calculate ‘‘true” option values by the Binomial Black and Sholes
model with Richardson extrapolation (BBSR) where the length of
each time step is 0.0001 years.15

As expected, the results in Tables 1 and 2 suggest that our lower
and upper bounds are tighter than Broadie and Detemple’s (1996)
bounds since their bounds are special cases of our bounds with
a = 0. For short term options, Table 1 shows that the difference be-
tween our upper bound and lower bound is generally small. For
example, the maximum difference between our upper bound and
lower bound is only $0.0134. The average difference is only
$0.0049 and the difference is smaller than 1 cent for 16 out 20
cases. In contrast, the average difference of Broadie and Detemple’s
(1996) bounds is about nine times ($0.0425) of our average differ-
ence. Similarly, Table 2 also indicates that our bounds are far tigh-
ter than Broadie and Detemple’s (1996) bounds for long term
options. Even for long term options, the average difference of our
bounds is only $0.0174 which is smaller than the bid-ask spreads
observed in the option market.

Based on the numerical results from 40 American call option
contracts reported in Tables 1 and 2, we find that the average
pricing errors of our lower bounds and upper bounds are
0.0957% and 0.0318%, respectively. In contrast, the average pric-
ing errors of Broadie and Detemple’s (1996) lower bound and
upper bound are 0.5641% and 0.2549%, respectively. Thus our
method can improve the errors of the lower bound and upper
bound of Broadie and Detemple (1996) by 83.0% and 87.5%,
respectively.

Tables 1 and 2 also show that the pricing error of our LBA2 (an
approximation based on our lower bound) is smaller than that of
LBA1 which is based on the lower bound of Broadie and Detemple
(1996). The average pricing errors of our LBA2 based on 40 options
in Tables 1 and 2 are 0.0170%, which improve a lot over LBA1
(0.1319%). However, while our bounds are far more accurate than
the bounds of Broadie and Detemple (1996), the approximation
based on our bounds (LUBA2) is not necessarily more accurate than
their LUBA1. Nevertheless, note that the results in Tables 1 and 2
are illustrative because they are only based on 40 options. This
15 More specifically, we first employ the BBS method with the length of each time
step equaling 0.0001 (0.0002) years to calculate the option values C1 (C2). Then apply
the Richardson extrapolation C = 2C1 � C2 to deriving the approximate option value,
which is the termed the BBSR estimate with the length of each time step equaling
0.0001 years in this paper.

option prices. J. Bank Finance (2009), doi:10.1016/j.jbankfin.2009.07.004

http://dx.doi.org/10.1016/j.jbankfin.2009.07.004


Table 5
Deltas of American call options (maturity T = 0.5 years).

Option parameter Asset price LB1 LB2 UB1 UB2 LBA1 LBA2 LUBA1 LUBA2 True value

r = 0.03, r = 0.2, q = 0.07 80 0.04872 0.04904 0.04916 0.04911 0.04896 0.04909 0.04909 0.04908 0.04912
90 0.20634 0.20768 0.20826 0.20795 0.20727 0.20788 0.20785 0.20783 0.20795

100 0.48111 0.48341 0.48487 0.48381 0.48299 0.48380 0.48363 0.48356 0.48372
110 0.77259 0.77235 0.77479 0.77244 0.77444 0.77278 0.77305 0.77225 0.77221
120 1.00000 0.99701 0.99094 0.99579 1.00000 0.99711 1.00000 0.99666 0.99535

r = 0.03, r = 0.4, q = 0.07 80 0.23114 0.23215 0.23251 0.23233 0.23221 0.23232 0.23233 0.23225 0.23236
90 0.37506 0.37668 0.37731 0.37694 0.37669 0.37692 0.37695 0.37682 0.37694

100 0.52308 0.52509 0.52603 0.52540 0.52509 0.52537 0.52533 0.52523 0.52536
110 0.65773 0.65966 0.66091 0.65995 0.65979 0.65990 0.65964 0.65975 0.65986
120 0.77060 0.77176 0.77328 0.77195 0.77225 0.77188 0.77155 0.77176 0.77182

r = 0.00, r = 0.3, q = 0.07 80 0.13237 0.13333 0.13372 0.13352 0.13323 0.13347 0.13346 0.13342 0.13354
90 0.29119 0.29312 0.29405 0.29348 0.29297 0.29341 0.29343 0.29328 0.29347

100 0.48924 0.49166 0.49330 0.49210 0.49186 0.49208 0.49189 0.49179 0.49200
110 0.68752 0.68875 0.69110 0.68904 0.69028 0.68917 0.68873 0.68873 0.68884
120 0.86105 0.85838 0.86135 0.85829 0.86269 0.85862 0.85875 0.85820 0.85798

r = 0.07, r = 0.3, q = 0.03 80 0.19429 0.19429 0.19429 0.19429 0.19429 0.19429 0.19429 0.19429 0.19435
90 0.37778 0.37778 0.37778 0.37778 0.37778 0.37778 0.37778 0.37778 0.37783

100 0.57077 0.57077 0.57077 0.57077 0.57077 0.57077 0.57077 0.57077 0.57078
110 0.73099 0.73099 0.73099 0.73099 0.73099 0.73099 0.73099 0.73099 0.73098
120 0.84265 0.84265 0.84265 0.84265 0.84265 0.84265 0.84265 0.84265 0.84263

RMS 0.4715% 0.0836% 0.2091% 0.0203% 0.2216% 0.0522% 0.1125% 0.0496%

All options have K = 100. LB1 and UB1 (LB2 and UB2) are deltas calculated from Broadie and Detemple’s (our) lower and upper bounds. LBA1 and LUBA1 (LBA2 and LUBA2) are
deltas based on the approximations of Broadie and Detemple’s (our) bounds. The ‘‘true value” column is computed from the extended tree method described in Pelsser and
Vorst (1994) using the Binomial Black and Scholes method where the length of each time step is 0.0001 years.
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small sample may not fully reflect the superiority of the approxi-
mations of LUBA2 over the approximations based on LUBA1.16

Besides comparing with Broadie and Detemple (1996), it is also
important to contrast our option pricing bounds and two approxi-
mations with the best accurate/efficient methods available in the
literature for the American options in the Black and Scholes
(1973) setting. Since our upper bounds are based on the decompo-
sition approach of Kim (1990), Jacka (1991), and Carr et al. (1992),
it may be appropriate to compare our results with other papers
which have successfully implemented the decomposition formula.
To the best of our knowledge, Ju (1998) and Ibáñez (2003) repre-
sent the best speed-accuracy trade-offs using the decomposition
approach.

We first compare the errors of our option pricing bounds and
two approximation formulae with those of Ju (1998) for pricing
long term American put options.17 The parameters used in Table
3 are adopted from Table 2 of Ju (1998). The ‘‘true” American put op-
tion values are also computed using the BBSR method with the
length of each time step equaling 0.0001 years.18 The results indicate
that our option pricing bounds are generally tight and close to the
‘‘true” American put values, especially when q > r. The average differ-
ence between our upper bound and lower bound is only $0.01 and
the maximum difference is smaller than 2 cents. Moreover, the er-
rors of the proposed method are of similar magnitudes to those of
Ju (1998). The RMS relative error of Ju (1998) is 0.032% while the
16 In Section 4.3, a similar method as that in Broadie and Detemple (1996) is
adopted to compare the accuracy and efficiency of the approximations of LBA1, LBA2,
LUBA1, and LUBA2. In the sample of about 2500 options, the LUBA2 based on the
exponential exercise barrier on average generates more accurate approximations than
the LUBA1 based on the constant exercise barrier.

17 For brevity, our option pricing bounds and two approximation formulae for
American put options are not shown here. The detailed formulae and implementa-
tions of our method are available upon request from the authors.

18 Note that the ‘‘true” American option values in Ju (1998) are based on the
binomial model with 10,000 time steps. Since the considered American puts are long
term (T = 3 years) options, a binomial model with 10,000 time steps is not accurate
enough as the benchmark values. Thus, we recalculate the ‘‘true” American option
values using the BBSR method with 10,000 time steps per year.
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errors of our LB2, UB2, LBA2, and LUBA2 are 0.114%, 0.049%,
0.025%, and 0.004%, respectively. Our LUBA2 is exceptionally accu-
rate for pricing American put options.

We also compare the accuracy of the proposed method with
that of Ibáñez (2003) for pricing short term American put options.
The parameters applied in Table 4 are adopted from Table 1 of
Ibáñez (2003). Again the results suggest that our option pricing
bounds and two approximation formulae are accurate for pricing
short term American puts. For instance, the RMS relative error of
Ibáñez (2003) is 0.024% while the errors of our LB2, UB2, LBA2,
and LUBA2 are 0.062%, 0.014%, 0.034%, and 0.005%, respectively.

In summary, the numerical results show that the accuracy of
our option pricing bounds, especially the upper bound, is compara-
ble to that of Ju (1998) and Ibáñez (2003), two best accurate/effi-
cient methods for American options in the literature. Moreover,
our LBA2 and LUBA2 are generally more accurate than Ju (1998)
and Ibáñez (2003).19
4.2. Comparing the accuracy of hedge ratios based on bounds

One possible application of our pricing bounds in Eqs. (4) and
(10) is to use them to calculate the hedge ratios for American op-
tions. For example, deltas of our lower bound and upper bound
can be respectively defined as:20
19 Note that the computational time of Ibáñez (2003) is close to that of a six-point
recursive scheme of Huang et al. (1996) because both methods involve the
calculations of Bermudan option prices with 4, 5, and 6 exercise dates. Moreover,
the computational time of our LUBA2 is also close to that of Broadie and Detemple’s
(1996) LUBA1 (see Fig. 2 of this study). According to Table 3 of Ju (1998), the
computational time is of the same magnitude for the methods of Huang et al. (1996),
Broadie and Detemple (1996), and Ju (1998) (see columns 5, 6, and 12 of Ju’s Table 3).
Thus we would expect that the computational time of the proposed method is similar
to Ju (1998) and Ibáñez (2003).

20 Since bL and â are functions of St, it is impossible to derive analytical solutions of
hedge ratios for the lower bound. However, the numerical derivatives of our lower
bound are accurate and easy to compute.
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Table 6
Deltas of American call options (maturity T = 3 years).

Option parameter Asset price LB1 LB2 UB1 UB2 LBA1 LBA2 LUBA1 LUBA2 True value

r = 0.03, r = 0.2, q = 0.07 80 0.19858 0.20000 0.20111 0.20044 0.19991 0.20028 0.20040 0.20024 0.20035
90 0.31900 0.32062 0.32233 0.32117 0.32070 0.32100 0.32093 0.32086 0.32100

100 0.46008 0.46132 0.46358 0.46183 0.46158 0.46170 0.46139 0.46144 0.46157
110 0.61583 0.61584 0.61857 0.61619 0.61618 0.61606 0.61633 0.61576 0.61580
120 0.78237 0.78022 0.78331 0.78033 0.78087 0.78001 0.77756 0.77993 0.77976

r = 0.03, r = 0.4, q = 0.07 80 0.40187 0.40398 0.40555 0.40452 0.40397 0.40441 0.40451 0.40429 0.40442
90 0.47163 0.47373 0.47554 0.47428 0.47348 0.47409 0.47403 0.47399 0.47415

100 0.53712 0.53903 0.54105 0.53956 0.53840 0.53926 0.53901 0.53923 0.53939
110 0.59825 0.59983 0.60203 0.60032 0.59873 0.59987 0.59964 0.59994 0.60011
120 0.65524 0.65636 0.65870 0.65677 0.65478 0.65614 0.65636 0.65637 0.65653

r = 0.00, r = 0.3, q = 0.07 80 0.28319 0.28491 0.28656 0.28547 0.28523 0.28531 0.28542 0.28516 0.28534
90 0.37840 0.38009 0.38218 0.38068 0.38050 0.38050 0.38028 0.38028 0.38048

100 0.47862 0.47992 0.48242 0.48049 0.48029 0.48026 0.47997 0.48001 0.48021
110 0.58163 0.58219 0.58502 0.58265 0.58244 0.58233 0.58267 0.58213 0.58229
120 0.68605 0.68551 0.68861 0.68581 0.68593 0.68531 0.68607 0.68530 0.68536

r = 0.07, r = 0.3, q = 0.03 80 0.48025 0.48028 0.48029 0.48029 0.48096 0.48028 0.48029 0.48028 0.48030
90 0.56219 0.56225 0.56226 0.56225 0.56287 0.56225 0.56226 0.56225 0.56226

100 0.63163 0.63171 0.63173 0.63172 0.63220 0.63171 0.63173 0.63171 0.63172
110 0.68934 0.68946 0.68948 0.68946 0.68972 0.68946 0.68948 0.68946 0.68946
120 0.73678 0.73693 0.73696 0.73693 0.73688 0.73693 0.73696 0.73693 0.73694

RMS 0.4109% 0.0765% 0.3480% 0.0438% 0.1262% 0.0235% 0.0786% 0.0322%

All options have K = 100. LB1 and UB1 (LB2 and UB2) are deltas calculated from Broadie and Detemple’s (our) lower and upper bounds. LBA1 and LUBA1 (LBA2 and LUBA2) are
deltas based on the approximations of Broadie and Detemple’s (our) bounds. The ‘‘true value” column is computed from the extended tree method described in Pelsser and
Vorst (1994) using the Binomial Black and Scholes method where the length of each time step is 0.0001 years.

Table 7
Gammas of American call options (maturity T = 0.5 years).

Option parameter Asset price LB1 LB2 UB1 UB2 LBA1 LBA2 LUBA1 LUBA2 True value

r = 0.03, r = 0.2, q = 0.07 80 0.00894 0.00900 0.00903 0.00902 0.00899 0.00901 0.00901 0.00901 0.00902
90 0.02273 0.02287 0.02294 0.02289 0.02283 0.02289 0.02289 0.02288 0.02289

100 0.03022 0.03022 0.03032 0.03021 0.03030 0.03023 0.03018 0.03020 0.03020
110 0.02676 0.02619 0.02628 0.02614 0.02666 0.02618 0.02643 0.02617 0.02612
120 0.00000 0.01898 0.00681 0.01269 0.00000 0.01890 0.00000 0.01782 0.01593

r = 0.03, r = 0.4, q = 0.07 80 0.01343 0.01349 0.01352 0.01350 0.01349 0.01350 0.01350 0.01350 0.01350
90 0.01496 0.01501 0.01504 0.01502 0.01501 0.01502 0.01502 0.01501 0.01502

100 0.01435 0.01437 0.01440 0.01437 0.01437 0.01437 0.01436 0.01437 0.01437
110 0.01244 0.01240 0.01243 0.01240 0.01243 0.01240 0.01237 0.01240 0.01239
120 0.01012 0.01000 0.01003 0.00999 0.01005 0.00999 0.01001 0.00999 0.00999

r = 0.00, r = 0.3, q = 0.07 80 0.01275 0.01283 0.01288 0.01285 0.01282 0.01285 0.01285 0.01284 0.01285
90 0.01851 0.01860 0.01867 0.01862 0.01861 0.01862 0.01862 0.01860 0.01861

100 0.02040 0.02039 0.02046 0.02039 0.02046 0.02040 0.02035 0.02038 0.02038
110 0.01883 0.01859 0.01866 0.01856 0.01879 0.01858 0.01865 0.01857 0.01855
120 0.01580 0.01525 0.01531 0.01521 0.01561 0.01522 0.01502 0.01524 0.01520

r = 0.07, r = 0.3, q = 0.03 80 0.01612 0.01612 0.01612 0.01612 0.01612 0.01612 0.01612 0.01612 0.01612
90 0.01970 0.01970 0.01970 0.01970 0.01970 0.01970 0.01970 0.01970 0.01970

100 0.01816 0.01816 0.01816 0.01816 0.01816 0.01816 0.01816 0.01816 0.01816
110 0.01364 0.01364 0.01364 0.01364 0.01364 0.01364 0.01364 0.01364 0.01364
120 0.00880 0.00880 0.00880 0.00880 0.00880 0.00880 0.00880 0.00880 0.00880

RMS 22.3925% 4.2845% 12.7993% 4.5417% 22.3768% 4.1744% 22.3642% 2.6502%
RMS exclude the 5th option 1.2248% 0.1343% 0.3397% 0.0339% 0.8714% 0.0843% 0.4094% 0.0893%

All options have K = 100. LB1 and UB1 (LB2 and UB2) are gammas calculated from Broadie and Detemple’s (our) lower and upper bounds. LBA1 and LUBA1 (LBA2 and LUBA2)
are gammas based on the approximations of Broadie and Detemple’s (our) bounds. The ‘‘true value” column is computed from the extended tree method described in Pelsser
and Vorst (1994) using the Binomial Black and Scholes method where the length of each time step is 0.0001 years.
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where n(.) is the probability density function of a standard normal
variable.

We can also obtain the hedge ratios of Broadie and Detemple’s
bounds in the same way. For comparison, we also calculate hedge
Please cite this article in press as: Chung, S.-L., et al. Tight bounds on American
ratios of LBA1, LBA2, LUBA1, and LUBA2. We apply the extended
tree method described in Pelsser and Vorst (1994) to compute
benchmark values of D and C using the Binomial Black and Scholes
method with the length of each time step equaling 0.0001 years.

Tables 5 and 6 present the deltas of American call options consid-
ered in Tables 1 and 2, respectively. The results suggest that the del-
tas based on bounds and the related approximations are generally
accurate. The RMS relative errors range from 0.0203% (UB2) to
0.4715% (LB1) for short term options (maturity T = 0.5 years) and
from 0.0235% (LBA2) to 0.4109% (LB1) for long term options (matu-
rity T = 3 years). Moreover, we also find that the deltas of our bounds
can enhance the accuracy of the deltas of Broadie and Detemple’s
(1996) lower and upper bounds by 81.9% and 88.1%, respectively.
option prices. J. Bank Finance (2009), doi:10.1016/j.jbankfin.2009.07.004
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Table 8
Gammas of American call options (maturity T = 3 years).

Option parameter Asset price LB1 LB2 UB1 UB2 LBA1 LBA2 LUBA1 LUBA2 True value

r = 0.03, r = 0.2, q = 0.07 80 0.01078 0.01082 0.01087 0.01083 0.01083 0.01083 0.01083 0.01082 0.01083
90 0.01319 0.01318 0.01324 0.01319 0.01321 0.01319 0.01315 0.01318 0.01318

100 0.01493 0.01485 0.01490 0.01484 0.01486 0.01484 0.01486 0.01483 0.01483
110 0.01616 0.01599 0.01603 0.01597 0.01599 0.01596 0.01597 0.01597 0.01595
120 0.01712 0.01686 0.01689 0.01683 0.01695 0.01680 0.01627 0.01684 0.01681

r = 0.03, r = 0.4, q = 0.07 80 0.00718 0.00718 0.00721 0.00719 0.00717 0.00718 0.00717 0.00718 0.00718
90 0.00677 0.00676 0.00678 0.00676 0.00673 0.00675 0.00673 0.00675 0.00675

100 0.00633 0.00630 0.00632 0.00630 0.00626 0.00629 0.00627 0.00630 0.00630
110 0.00590 0.00586 0.00588 0.00586 0.00581 0.00584 0.00586 0.00585 0.00585
120 0.00550 0.00545 0.00546 0.00544 0.00541 0.00542 0.00549 0.00544 0.00544

r = 0.00, r = 0.3, q = 0.07 80 0.00917 0.00918 0.00923 0.00919 0.00920 0.00919 0.00917 0.00918 0.00919
90 0.00982 0.00980 0.00984 0.00980 0.00980 0.00979 0.00976 0.00979 0.00979

100 0.01019 0.01013 0.01017 0.01013 0.01012 0.01012 0.01015 0.01012 0.01012
110 0.01039 0.01030 0.01033 0.01028 0.01029 0.01027 0.01035 0.01028 0.01027
120 0.01048 0.01036 0.01038 0.01034 0.01041 0.01031 0.01028 0.01034 0.01033

r = 0.07, r = 0.3, q = 0.03 80 0.00881 0.00881 0.00882 0.00882 0.00881 0.00881 0.00882 0.00881 0.00881
90 0.00757 0.00757 0.00757 0.00757 0.00756 0.00757 0.00757 0.00757 0.00757

100 0.00634 0.00634 0.00634 0.00634 0.00632 0.00634 0.00634 0.00634 0.00634
110 0.00523 0.00523 0.00523 0.00523 0.00521 0.00523 0.00523 0.00523 0.00523
120 0.00429 0.00429 0.00429 0.00429 0.00425 0.00429 0.00429 0.00429 0.00429

RMS 0.7805% 0.1398% 0.4017% 0.0633% 0.4460% 0.1098% 0.8058% 0.0559%

All options have K = 100. LB1 and UB1 (LB2 and UB2) are gammas calculated from Broadie and Detemple’s (our) lower and upper bounds. LBA1 and LUBA1 (LBA2 and LUBA2)
are gammas based on the approximations of Broadie and Detemple’s (our) bounds. The ‘‘true value” column is computed from the extended tree method described in Pelsser
and Vorst (1994) using the Binomial Black and Scholes method where the length of each time step is 0.0001 years.

Fig. 2. Speed-accuracy trade-off for all observations with option price P 0.5. RMS relative error is defined as RMS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
m

Pm
i¼1ðCi � eC iÞ2=C2

i

q
, where Ci is the ‘‘true” option price

(estimated by the BBSR method with the length of each time step to be 0.0001 years), eC i is the estimated option price. Speed is measured in option prices calculated per
second on a Pentium 4 3.4 GHz PC. The BBSR method is based on the length of each time step to be 0.1, 0.05, 0.025, and 0.01 years. Preferred methods are in the upper-left
corner.
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Tables 7 and 8 illustrate the estimations of gammas based on
bounds and their related approximations. The accuracy
of gamma estimates is similar to that of price and delta estimates
except for the fifth option, a deep in-the-money option, in Table 7.
When the fifth option in Table 7 is excluded, the RMS relative er-
rors of gamma estimates based on our LB2, UB2, LBA2, and LUBA2,
are 0.1372%, 0.0512%, 0.0982%, and 0.0741%, respectively. Overall,
the results in Tables 5–8 demonstrate that the proposed method
can generate very accurate delta and gamma estimates.
4.3. Comparing the numerical efficiency of pricing American options

To make a comprehensive analysis of numerical efficiency, we
compare our bounds and approximations with those of Broadie
and Detemple (1996). Following Broadie and Detemple (1996),
Please cite this article in press as: Chung, S.-L., et al. Tight bounds on American
the comparison is on the basis of the computational speed and
the accuracy of the results over a wide range of option parameters.

We apply the same methodology of Broadie and Detemple
(1996) to choose 2500 options to test the results. Volatility (r) is
distributed uniformly between 0.1 and 0.6. Time to maturity is,
with probability 0.75, uniform between 0.1 and 1.0 years, and, with
probability 0.25, uniform between 1.0 and 5.0 years. The strike
price (K) is fixed at 100. The dividend yield (q) is uniform between
0.0 and 0.1. The risk-free rate (r) is, with probability 0.8, uniform
between 0.0 and 0.1, and, with probability 0.2, equal to 0.0. Each
parameter is drawn independently of the others. Following Broadie
and Detemple (1996), 500 sets of r, q, r, and T are generated, and
for each parameter set, five initial stock prices (S0) are examined
from the uniform distribution between 70 and 130.

The accuracy measure used in this paper is the root mean
squared (RMS) relative error. RMS relative error is defined as
option prices. J. Bank Finance (2009), doi:10.1016/j.jbankfin.2009.07.004
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i

vuut ;

where ei ¼ ðCi � eCiÞ=Ci is the relative error, Ci is the ‘‘true” option
price (estimated by the BBSR method with the length of each time
step equaling 0.0001 years), eCi is the estimated option price. Same
as in Broadie and Detemple (1996), the summation is taken over op-
tions in the data set satisfying Ci � 0:5. Out of the 2500 options,
2285 satisfy this criterion.

Fig. 2 indicates that the approximations based on our bounds
and Broadie and Detemple’s (1996) bounds are more efficient than
the BBSR method. Our LBA2 and LUBA2 can improve the accuracy
of Broadie and Detemple’s (1996) LBA1 and LUBA1 by 74.7% and
9.2%, respectively.21 Our LUBA2 is the most accurate one in compar-
ison to the other approximations although it takes more computa-
tional time.
5. Conclusion

The optimal exercise boundary is vital for pricing American op-
tions. Thus a better approximation of the early exercise boundary
yields a better lower bound for the American option price. In con-
trast to the constant exercise barrier assumed by Broadie and
Detemple (1996), this paper uses an exponential function to
approximate the early exercise boundary and obtains tight lower
bounds for both the American option value and the optimal exer-
cise boundary. Moreover, the tight lower bound of the optimal
exercise boundary allows us to derive a tight upper bound of the
American option price using the premium integral of Kim (1990),
Jacka (1991), and Carr et al. (1992).

The numerical results can be summarized as follows: first of all,
the American option prices are bounded tightly between our lower
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21 Moreover, our results (not reported here) show that LB2 and UB2 can improve the
accuracy of Broadie and Detemple’s 1996) LB1 and UB1 by 82.4% and 78.3%,
respectively.
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and upper bounds. The average difference between our upper
bound and lower bound is only 0.49 cents and the maximum dif-
ference is just 1.34 cents for short term options. Secondly, our
bounds can improve the pricing errors of the lower bound and
upper bound of Broadie and Detemple (1996) by 83.0% and
87.5%, respectively. Moreover, the approximations (LBA2 and
LUBA2) based on our bounds are also more accurate than the
approximations (LBA1 and LUBA1) based on their bounds. Thirdly,
the accuracy of our upper bounds for pricing American is analo-
gous to that of the best accurate/efficient methods in the literature,
e.g. Ju (1998) and Ibáñez (2003). Moreover, our LBA2 and LUBA2
are generally more accurate than Ju (1998) and Ibáñez (2003) for
pricing American put options. Finally, our pricing bounds and
approximations also provide accurate hedge ratios except for deep
in-the-money options. The approximation errors of our pricing
bounds and approximations for estimating deltas and gammas
range from 0.0235% to 0.1398%. The small approximation errors
show the superiority of our method to estimate deltas and gammas
for American options.
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and DL(L, a, t) can be written as
DLðL; a; tÞ

¼ lim
St"LeaðT�tÞ

@CE
t ðSt; L; aÞ
@L

¼ eaðT�tÞ Nð~d0Þ þ N ~d0 þ 2~br
ffiffiffiffiffiffiffiffiffiffiffi
T � t
p� �h i

� Ke�rðT�tÞ nðd̂�1 ðLeaðT�tÞÞÞ
L
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðT � tÞ

p
r
þ � 2nðd̂þðKÞÞ

L
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðT � tÞ

p
r
þ nðd̂þ1 ðLeaðT�tÞÞÞ

L
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðT � tÞ

p
r

" #
þ � ĉþ 1
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Appendix B

B.1. LBA2: Approximation based on our lower bound

In this paper, a process similar to that in Broadie and Detemple
(1996) is adopted to convert our lower bound to the approximate
American option value LBA2. The LBA2 is assumed to follow

LBA2 ¼ k̂1Cl
tðStÞ;

where the adjusting parameter k̂1 ¼ k̂1ðSt ;K; T; r; qÞ is a function of
St, K, T, r, and q.

The details of deciding k̂1ðSt ;K; T; r; qÞ are as follows. First we
define x1 = 1, x2 = T, x3 ¼

ffiffiffi
T
p

, x4 = St/K, x5 = r, x6 = q, x7 = min
(r/(max(q, 10�5), 5), x8 ¼ x2

7; x9 ¼ ðCl
tðStÞ � ctðStÞÞ=K; x10 ¼ x2

9; x11 ¼
Cl

tðStÞ=ctðStÞ; x12 ¼ St=L̂ðStÞ, and x13 ¼ âðStÞ. Then derive an interme-
diate variable yl via the following equation.

yl ¼ 1:002Eþ00x1 þ 1:647E-04x2 þ 8:245E-05x3 � 1:336E-03x4

� 3:679E-03x5 þ 1:035E-02x6 þ 1:220E-04x7 � 6:357E-04x8

� 1:035E-02x9 þ 1:292E-02x10 � 2:726E-04x11

þ 3:976E-04x12 � 4:452E-04x13:

Finally, k̂1ðSt;K; T; r; qÞ can be derived by

k̂1ðSt;K; T; r; qÞ

¼ 1 ifClðStÞ ¼ cðStÞ or ClðStÞ � St � K

maxðminðyl;1:008Þ;1Þ otherwise

(
;

where the maximum value of k̂1ðSt;K; T; r; qÞ is assumed to be 1.008
because our lower bounds are always within 0.79% of the true option
values. The coefficients for yl are derived from a regression based on
the randomly generated 2500 option contracts in Section 4.3.22

B.2. LUBA2: Approximation based on our lower and upper bounds

The process to derive the approximate option value LUBA2
based on the information of Cl

tðStÞ and Cu
t ðStÞ is elaborated as fol-

lows. First, consider a linearly weighted average relation between
the LUBA2 and the lower and upper bounds Cl

tðStÞ and Cu
t ðStÞ.

LUBA2 ¼ k̂2Cl
tðStÞ þ ð1� k̂2ÞCu

t ðStÞ;

where the weighted average parameter k̂2 ¼ k̂2ðSt;K; T; r; qÞ is a
function of St, K, T, r, and q.

To determine the function k̂2ðSt ;K; T; r; qÞ, we first define x1 = 1,
x2 = T, x3 ¼

ffiffiffi
T
p

, x4 = r, x5 = q, x6 = min(r/(max(q, 10�5), 5), x7 ¼
x2

6; x8 ¼ dCl
tðStÞ=dSt ,23 x9 ¼ x2

8; x10 ¼ ðCl
tðStÞ � ctðStÞÞ=K; x11¼x2

10; x12 ¼
Cl

tðStÞ=ctðStÞ; x13 ¼ ðCu
t ðStÞ � Cl

tðStÞÞ=K; x14 ¼ Cu
t ðStÞ=Cl

tðStÞ; x15 ¼ St=

ðL�t ea�t ðT�tÞÞ;x16¼x2
15; x17¼St=L�t ; x18¼a�t ; x19¼St=bLðStÞ, and x20¼ âðStÞ.

Then we calculate an intermediate variable yu via the following
equation.

yu ¼ 2:329E-01x1 � 2:384E-02x2 þ 1:457E-01x3 þ3:718E-02x4

þ1:849E-01x5 �3:111E-01x6 þ 2:447E-01x7 � 1:887E-01x8

þ3:801E-01x9 þ 3:556E-01x10 � 6:465E-01x11 þ 4:622E-02x12

þ6:454E-02x13 �2:170E-01x14 þ 8:079E-02x15

þ2:202E-01x16 þ 6:245E-01x17 � 2:970E-01x18

�4:320E-01x19 þ 2:964E-01x20:
22 In this paper, two separately random sets of option contracts are generated
following the same rule described in Section 4.3. One is used to estimate k̂1 and k̂2,
and the other is used to compute the RMS-speed results in Fig. 2. For the set to
determine k̂1 and k̂2, the number of qualified option contracts (i.e. option price P 0.5)
is 2277.

23 In this paper, the term x8 ¼ dCl
tðStÞ=dSt is approximated by using a numerical

differentiation with respect to St given the same exponential exercise barrierbLðStÞeâðSt ÞðT�tÞ .
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Finally, k̂2ðSt ;K; T; r; qÞ can be derived according to the following
rule:

k̂2ðSt ;K; T; r; qÞ

¼ 1 if ClðStÞ ¼ cðStÞ or ClðStÞ 6 St � K

maxðminðyu;1Þ;0Þ otherwise

(
:

Based on the above framework for determining k̂2ðSt;K; T; r; qÞ; a
weighted regression is employed to find the coefficients in the for-
mula of yu. More specifically, the target function is

min
X

i

Cu
i � Cl

i

Ci

 !
k̂2Cl

i þ ð1� k̂2ÞCu
i � Ci

Ci

 !2

;

where Cl
i;C

u
i , and Ci are the lower and upper bounds and the true va-

lue for the ith option contract. The intuition behind the weighted
regression is that if the lower and upper bounds are very tight,
the value of k̂2 become less important in predicting Ci. Via perform-
ing this weighted regression on the randomly generated 2500 op-
tion contracts, the coefficients in the equation of yu can be
determined.
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