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Variance Reduction
for Multivariate Monte
Carlo Simulation

JR-YAN WANG

In practice, the rate of convergence for Monte Carlo
simulation is often unsatisfactory when a large number
of underlying variables are involved. The reason
behind this deficiency is the mismatch between the
prespecified and the sample variance-covariance
matrices of the underlying multivariate random sam-
ples, upon which the value of the option of interest
is highly dependent. In this article, a new method,
termed the inverse Cholesky decomposition transfor-
mation, is proposed to rectify this problem, in which
crude independent standard normal distributed random
samples are viewed as weakly correlated, normally
distributed random samples transformed from truly
independent standard normal distributed random sam-
ples via the Cholesky decomposition transformation.
In simulation of European calls on the maximum of
10 assets, the proposed method achieves a root mean
squared error (RMSE) about one-third of that of the
standard Monte Carlo simulation under the same
number of simulations. Furthermore, the analysis of
the RMSE and the computational time demonstrates
this new method’s superior efficiency compared with
the traditional variance-reduction techniques. Accord-
ingly, the proposed method is suggested as one of the
standard procedures in multivariate Monte Carlo
simulation.

ince the advent of the pricing formula
of European options by Black and
Scholes [1973], derivatives markets have
become highly evolved. However, not
all options currently in financial markets have

analytic pricing formulae. For those that lack
analytic solutions, various numerical methods,
including numerical integration, lattice models,
finite difference methods, and Monte Carlo
simulation, are employed to find theoretical
option values.

Among these methods, Monte Carlo sim-
ulation, introduced by Boyle [1977], has been
generally regarded as the most flexible and prac-
tical. For example, Monte Carlo simulation has
shown great success when the payoffs are path
dependent or when multiple underlying vari-
ables are considered. Still, some deficiencies exist
with the Monte Carlo approach. One draw-
back is that, in many cases, an exceedingly large
number of simulations are necessary to obtain
satisfactory precision, as the standard error of a
Monte Carlo estimate decreases with the square
root of the number of simulations. A better
alternative to this brute-force method is to
incorporate variance-reduction techniques,
which improve the rate of convergence and
hence generate a more accurate estimate with
fewer simulations.

Boyle, Broadie, and Glasserman [1997]
surveyed different variance-reduction tech-
niques for Monte Carlo simulation, including
the antithetic variate approach, control variate
approach, moment matching method, stratifi-
cation sampling, Latin hypercube sampling,
importance sampling, and the conditional
Monte Carlo method. In addition to these tech-
niques, Duan and Simonato [1998] introduced
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another variance-reduction technique known as empirical
martingale simulation, in which the martingale property
is imposed on the present value of the cross-sectional
average of stock prices at every future point in time. This
technique is generally viewed as an extension of the
moment matching method in the space of the stock price,
and significant convergence improvement over standard
Monte Carlo simulation is verified.

Nearly all aforementioned variance-reduction tech-
niques are originally designed for the case of one stochastic
variable only. To price options on multiple underlying
processes, Monte Carlo simulation is more appealing than
other numerical methods. Nevertheless, the requisite brute-
force simulation to obtain the desired precision highlights
the importance of designing variance-reduction techniques
tailored for multivariate Monte Carlo simulation. This article
seeks to present a new method focusing on variance reduc-
tion for multivariate Monte Carlo simulation.

Barraquand [1995] was the first to develop a variance-
reduction technique, termed quadratic resampling, for
multivariate Monte Carlo simulation. This technique is
similar to the multidimensional control variate method,
in which the gain matrix replaces the variance-minimizing
scalar. Some success has been achieved over standard
Monte Carlo simulation on pricing multivariate Euro-
pean rainbow options, but comparisons with traditional
variance-reduction techniques are absent in his numer-
ical results. Pellizzari [2001] introduced another type of
control variate method to reduce the variance of simu-
lated option prices with multiple underlying assets. It is
constructed based on replacing partial underlying values
in the payoff function with their unconditional expecta-
tions. The numerical results show that this method can
effectively reduce the variance.

In addition to the previously mentioned variance-
reduction techniques, Galanti and Jung [1997] used low-
discrepancy sequences (also termed quasi-Monte Carlo
random variables) to achieve high-level accuracy for mul-
tivariate Monte Carlo simulation. The simulation’s success
depends on the evenness with which these low-discrepancy
sequences are dispersed throughout the domain of the
uniform distribution. In general, the more uniformly
these deterministic points are dispersed, the smaller the
discrepancy and the higher the level of accuracy. How-
ever, many existing studies, for example, Brately, Fox, and
Niederreiter [1992], have shown that the performance
of low-discrepancy sequences deteriorates with an
increase in the number of underlying assets.

In this article, a new variance-reduction technique
designed for multivariate Monte Carlo simulation is devel-
oped, which does not rely on the concepts of the existing
control variate techniques and low-discrepancy sequences.
The motivation follows from the fact that the values of
options on multiple underlying assets, in general, depend
to a great extent on the correlation structure. However,
a mismatch occurs between the prespecified and sample
correlation structures in multivariate random samples,
which significantly erodes the precision of Monte Carlo
simulation. Based on the these observations, a novel
variance-reduction technique is derived by rectifying the
sampling errors in the correlations with independent stan-
dard normal distributed random samples. In addition to
matching the means and variances, the random samples
are also adjusted to ensure that sampling errors of the cor-
relation coefficients vanish.

The remainder of the article is organized as follows.
The basic concept of the Monte Carlo simulation, some
traditional variance-reduction techniques, and the
Cholesky decomposition transformation are described in
the next section. In the third section, a new variance-
reduction technique termed the inverse Cholesky decom-
position transformation designed for multivariate Monte
Carlo simulation is proposed. The results of the numer-
ical experiments are presented in the fourth section. The
last section concludes.

MONTE CARLO SIMULATION
ON OPTION PRICING

According to Black and Scholes [1973], the value
of a European call option is the expectation of the pre-
sent value of its payoff under the risk-neutral probability
measure, that is,

c=E°[e"" max(S(T) - K,0)]

where S(T) is the stock price at maturity T, K is the strike
price, ris the risk-free interest rate, and Q represents the
risk-neutral probability measure. Under the risk-neutral
probability measure, the lognormal random variable S(T)
can be simulated as

Si (T) — S(O)eﬁ.fo'z/Z)TwLO'\/F:, for i= 1’ e M
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where S(T) is the i-th simulation of the terminal stock
price, S(0) is the current stock price, O is the standard
deviation of the stock return, {z,} are independent random
samples from a standard normal distribution, and M is the
number of simulations. In the Monte Carlo simulation,
the arithmetic average of the present values of the ter-
minal cash flows is used as an estimate of the option price.
Specifically, the estimate can be calculated by

M

{(M) = iz ¢ Tmax(S,(T) - K, 0)

M i=1

If one wants to estimate the price of a European call option
on the maximum of multiple underlying assets, S (7T’ can
be replaced with max(S; (1), S,(1), ..., S;,\(1)) in the
preceding equation, where N is the number of under-
lying assets and SU(T) is the i-th simulated price of the
j-th underlying asset at maturity T in the risk-neutral
world. The estimate of the option value then becomes

i2

R 1 M
c((M)= MZ e_’Tmax(maX(S” (1),S

i=1

(T), ey S

~ (1)) = K,0)

Instead of increasing the number of simulations to
generate more accurate estimates, it is common to
improve the convergence rate by variance-reduction
techniques. One of the simplest and most widely used
variance-reduction techniques is the antithetic variate
approach. Following the symmetry of a normal distri-
bution, for every simulated sample z, the corresponding
antithetic sample —z; is also used. This method can halve
the number of simulations and also reduce the variance
of the random samples, thus improving the accuracy of
the Monte Carlo simulation method.

The moment matching method is also a commonly
used variance-reduction technique, which post-processes
the generated simulation samples and forces the generated
samples to satisty certain moment conditions of the pre-
specified distribution. In this article’s experiments, the
first and second moments of the underlying normal dis-
tribution are matched whenever the moment matching
method is employed.

The control variate method is another classic vari-
ance-reduction technique. Suppose one is interested in esti-
mating the expected option value, E[X], and has information
about another random variable Y, which may be correlated

FaLL 2008

with Xin some respects and with the expectation i, = E[Y].
The basic idea of the control variate method is to use the
additional information aboutY by estimating E[P] = E[X +
B(Y=p,)], rather than estimating E[X] directly. In practice,
the variance-minimizing parameter f3 is often estimated
directly via the regression of Y on X from the historical data.
If Py, the correlation between X and Y, is near —1 or 1,
working on E[P] has a strict efficiency improvement over
working directly on E[X].

The Cholesky Decomposition Transformation

The Cholesky decomposition transformation
method transforms independent standard normal random
variables into correlated normally distributed random
variables within a given variance-covariance structure.
Suppose the prespecified variance-covariance matrix of a
N-variate normal distribution is a symmetric N X N
matrix C, in which p, 6.0}, is the covariance between the
returns of the j-th and k-th underlying assets. The essence
of the Cholesky decomposition is to construct an upper
triangular N X N matrix A satisfying C = A”A. Once the
upper triangular matrix A is derived, the independent
standard normal distributed random samples [z, z, --- 2]
can be transformed into correlated normally distributed
random samples [x; x, --- x,] via the following equation:

[, 2, 2] = 2, 2, 0 2 XA (1)

Because the random samples [z, z, --- 2] are inde-
pendently standard normal distributed, the variance-

covariance matrix of [x, x, --- x,] is then

;X,'l_ z
E|| 7 {[xx,oxg ||= B AT] 72 (22,2, 4
XN <N
-
—A"E|| 7 (22,2 ||A= ATA= ATA=C

where I is the identity matrix.
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The upper triangular matrix A of the Cholesky
decomposition exists if C is positive semidefinite, which
holds generally except for the cases in which all variables
are perfectly positively correlated or when there are the-
oretical inconsistencies in the correlation structure. When
Cholesky decomposition fails, eigenvalue decomposition
is often used as an alternative to achieve the same effect.
However, eigenvalue decomposition has much higher
computational complexity relative to the Cholesky
decomposition. Therefore, in the following paragraphs,
only the Cholesky decomposition transformation is dis-
cussed. All arguments can apply to the eigenvalue decom-
position transformation as well.

THE NEW METHOD

In a multivariate Monte Carlo simulation, random
variables with a prespecified variance-covariance struc-
ture are generated by simulating vectors of independent
standard normal random variables and multiplying them
by the A matrix obtained from a Cholesky factorization.
But, in practice, the sample variance-covariance matrix
of the simulated vectors will not turn out to be the iden-
tity matrix. In option pricing, due to these variance-
covariance errors, the variance-covariance matrix of
simulated underlying random samples will not equal
exactly the prespecified variance-covariance matrix. More-
over, during the Cholesky decomposition transforma-
tion, these variance-covariance errors propagate with the
increase of the number of underlying variables, and this
error propagation problem further affects the variance-
covariance structure of simulated underlying random sam-
ples. Therefore, the accuracy of multivariate Monte Carlo
simulation is undermined, and a large number of simu-
lations are needed to average out the deviation caused by
these problems. In this article, a new variance-reduction
technique, termed the inverse Cholesky decomposition
transformation, is proposed to control the variance-
covariance structure among multivariate normally dis-
tributed random samples.

The central idea of the inverse Cholesky decom-
position transformation is that because the correlations
among independent standard normal distributed random
samples are not exactly zero, they can be viewed as weakly
correlated, normally distributed random samples trans-
formed from truly independent, standard normally dis-
tributed random samples via the Cholesky decomposition
transformation. By reversing the procedure of the Cholesky

decomposition transformation, it is possible to reconstruct
truly independent standard normal random samples.

Suppose there are N underlying assets and one desires
to generate M random samples for each underlying asset
via multivariate Monte Carlo simulation. Step-by-step
details of the inverse Cholesky decomposition transfor-
mation are as follows.

Step 1: Generate independent standard normal dis-
tributed random samples for each underlying asset and
obtain a matrix of random samples,

11 12 1N
z, z 2
|~z 2 2N | _
Z=| . o, : _[2122 ZN]
ZAW 1 z;\/l 2 ZA\/H\"

Step 2: Calculate the variance-covariance matrix C
between 5=z ,Lgl and 2, = 2z, — /Jkl,.where v and g,
are the sample means of z; and z,, and 1 isa M X 1 vector

of ones.!
Var(Z)) Cov(z,2,) ... Cov(Z,Z,)
oo Cov(%z,,%l) Var?%z) Cov(z,,2,) )
Cov(z,,2,) Cov(z,,%,) Var(z,)

Step 3: Based on the covariance matrix C, perform
the Cholesky decomposition C= A”A to obtain the cor-
responding linear transformation A. Find the inverse matrix
A7'such that 1= AA™, and A is referred to as the inverse
Cholesky decomposition matrix. If the eigenvalue decom-
position is employed as an alternative of the Cholesky
decomposition to derive the linear transformation A, the
corresponding A~ is termed as the inverse eigenvalue
decomposition matrix in the following paragraphs.?

Step 4: Since the variance-covariance matrix of [,

Z, ... 2] is not exactly the identity matrix, it can be viewed

as2 a group of correlated normally distributed random sam-
ples obtained from [z/z, ...
are truly independent, standard normally distributed random
samples. By applying the inverse Cholesky decomposition
matrix A, the matrix of truly independent standard normal

distributed random samples 2" can be obtained by

2yl X A, where [2/z) ... 2]

Z'=z/z) 2] T35 - Rl XA =Zx AT
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After completing these four steps, the correlations
between each new random vector z/ are exactly zero,
that is, Cov(z),', z,/) = 0. In addition, the mean and the
variance of each new random vector z.” are also stan-
dardized to be zero and one simultaneously.

In practice, the inverse Cholesky decomposition
transformation (for generating truly independent stan-
dard normally distributed random samples) is followed by
another application of the Cholesky decomposition trans-
formation (for converting the truly independent standard
normally distributed random samples into correlated nor-
mally distributed random samples to satisty the prespec-
ified variance-covariance matrix). For the prespecified
variance-covariance matrix C, define the corresponding
Cholesky decomposition matrix by A. Then, correlated
normally distributed random samples [x,x, --- x,] with
zero means and the variance-covariance matrix C can be
derived from [x,x, -+~ x] = [%%, --- K] X A", where A
= A7 X A. Since A™ is close to an identity matrix I, A"
is, in general, not far from A. It is easily found that this
new method changes nothing beyond replacing the tra-
ditional Cholesky decomposition matrix A with a slightly
different matrix A".

In theory, both the Cholesky and eigenvalue decom-
position transformations can deal with multivariate normal
transformation, and both the inverse Cholesky and eigen-
value decomposition transformations have the same effect
of correcting the errors of correlations between random
samples. In a preliminary study, different combinations of
the inverse Cholesky or eigenvalue transformation and
the Cholesky or eigenvalue decomposition transformation
were found to do exactly the same thing and end up with
very similar performance. Since there is little difference
in performance and the Cholesky decomposition trans-
formation admits less computational complexity, this
article focuses mainly on the Cholesky transformation.

NUMERICAL RESULTS

The experimental results illustrating the efficiency
improvement of the inverse Cholesky decomposition
transformation are presented in this section. European
calls on the maximum of multiple assets are taken as an
example, of which the payoft at the expiration date T can
be expressed as

max(max(S,(T), S,(T), ---, S

(1)~ K, 0)
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In this article, the set of basic parameters for the maximum
call option includes the current stock price for the j-th
underlying asset SJ.(O) =40, j=1,...,N, the risk-free interest
rate r = 0.1, the volatility of the rate of return of the j-th
underlying asset 0,=0.2, the strike price K= 40, and the
time to maturity 7= 0.25. The cases of N=5 and N=10
are examined.

To verify the efficiency improvement of the inverse
Cholesky decomposition transformation, the same crude
random samples are used in comparing the following four
methods: standard Monte Carlo simulation without any
variance-reduction technique (SMC), moment matching
method (SMC+MM), inverse Cholesky decomposition
transformation (SMC+IC), and inverse eigenvalue decom-
position transformation (SMC+IE). Using the same crude
samples helps to isolate the benefits of individual vari-
ance-reduction techniques from the effects of different real-
izations of simulated samples. Similarly, the same crude
random samples will be used in the four methods with
antithetic variates: (SMC+Anti), (SMC+Anti+MM),
(SMC+Anti+IC), and (SMC+Anti+IE).

The root mean squared errors (RMSEs) and the
required CPU times corresponding to different variance-
reduction techniques will be reported. The RMSEs are
computed by replicating each simulation method several
times. To be more explicit, suppose each Monte Carlo sim-
ulation uses M runs to generate one estimate. Then, the
Monte Carlo simulation is repeated several times and the
results are used to derive the corresponding RMSE. In this
article, the number of simulations M ranges from 1,280 to
12,800, and the number of replications is 10. The RMSE
for a variance-reduction technique with M simulations is

defined by RMSE = /.1 0 el where ¢, = ¢,(M)—cis the

pricing error of the [-th replication, ¢,(M) is the estimated
option value of the I-th replication, and ¢ is the “true”
option value derived based on 50,000 replications of
1,000,000 simulated and 1,000,000 antithetic independent
standard normally distributed random samples. In addition,
since the actual CPU times are machine dependent, only
the ratios of CPU times relative to the standard Monte
Carlo simulation with 1,280 simulations are reported.
There are two main parts to the numerical results. In
the first part, the comparisons between the inverse Cholesky
and eigenvalue decomposition transformations and some
traditional variance-reduction techniques are provided for
pricing maximum call options involving 5 and 10 under-
lying assets. In addition to the examples with equal volatility
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for all assets and equal value for all correlations, the
performance of different variance-reduction techniques
given randomly generated variance-covariance matrices is
examined. In the second part, whereas the inverse Cholesky
decomposition transformation eftectively improves the con-
vergence rate for the Monte Carlo estimates of option prices,
it would be interesting to know if this new method also
works with low discrepancy sequences. In this article, the
effect of applying the inverse Cholesky decomposition trans-
formation method to the simplest low discrepancy
sequences, Halton sequences, is also investigated.

European Calls on the Maximum of 5 Assets

This subsection reports on the simulation results of
European calls on the maximum of 5 assets with different
variance-reduction techniques. After applying different vari-
ance-reduction techniques, including the proposed inverse
Cholesky and eigenvalue decomposition transformations,
to adjust the crude independent standard normally distrib-
uted random samples, the Cholesky decomposition trans-
formation is employed to further transform the adjusted
samples into correlated normally distributed random
samples with the desired variance-covariance matrix.
Exhibits 1 and 3 compare the RMSEs and the relative
CPU times of different variance-reduction techniques for
P, =01 and P, =05, respectively. Meanwhile, the rates
of convergence, represented by the values of log(RMSE)
in relation to the number of simulations, are plotted in
Exhibits 2 and 4 as well.

In the upper diagram of Exhibit 2, the inverse
Cholesky and eigenvalue decomposition transformations
are compared with the classical moment matching method.
In general, all three techniques can reduce the RMSEs of
the estimates, and the inverse Cholesky and eigenvalue
decomposition transformations perform more effectively
than the method of moment matching. In the lower dia-
gram of Exhibit 2, the antithetic variate approach is also
considered. Compared to the upper diagram, the results
show that all the antithetic variate—based approaches have
smaller RMSEs than their nonantithetic counterparts.
The advantages of the inverse Cholesky and the eigen-
value decomposition transformations over the moment
matching method remain, even with the presence of the
antithetic variate technique. For example, when the
number of simulations is 12,800, the RMSEs of
SMC+Anti+MM+C and SMC+Anti+IC+C are 0.00818
and 0.00526, respectively, which indicates the RMSE

improvement of the inverse Cholesky decomposition
transformation over the moment matching method is
about 36%.

For the results in the case of p,, = 0.5 in Exhibits 3
and 4, the advantages of the inverse Cholesky and eigen-
value decomposition transformations over the moment
matching method become slight. To explain the perfor-
mance of the inverse Cholesky decomposition transforma-
tion method with highly correlated underlying random
variables—for example, Py = 0.5—consider the following
two-variate example with the variance-covariance matrix C:

2
O-l p120-10-2

2
2

C=
p,9,0, o

After performing the Cholesky decomposition transfor-
mation to derive the upper triangular matrix A, according
to Equation (1), the correlated normally distributed

random variables [x,x,] are represented as x; = 0,2, and

X, =0,(Pp3, + V 1- pfzzz ):

Suppose the traditional moment matching method
was employed, which corrects the first and second
moments of z; that is, E[Zi] =0 and Var(z/.), forj=1and
2, but the Cov(z,, z,) is not exactly equal to zero. Let ¢,
denote the value of Cov(z,, z,). The variance-covariance

matrix for x; and x, is as follows:

[ 3
612 0-102(/)12 + 1_/)122‘312) ( )
6102(:012 + \ll_p122€12) 022(1+2P12 \/1—,0122612)

By analyzing the preceding variance-covariance struc-
ture, it is clear that when the absolute value of p,, is

. 2 .
relatively large, the effect of the term /1= P, ¢, relative to

P, in Cov(x,, x,) becomes comparatively small.” There-
fore, the inverse Cholesky decomposition transformation
performs only slightly better than the moment matching
method in the case of Py, = 0.5, since the benefit of
enforcing ¢ = 0 1s less significant. In the real world, how-
ever, it is rare that the correlations among assets under-
lying a rainbow option are as high as 0.5. Instead, small
positive or negative correlations are the most common
scenarios; thus, the inverse Cholesky decomposition
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transformation method should offer significant improve-
ment in the real world.

Exhibits 1 and 3 also contain the CPU time com-
parisons of different variance-reduction techniques, and
several implications can be made. First, as expected, the
antithetic variate technique costs less CPU time due to
the fact that only half the simulated samples are drawn.
Second, for the inverse Cholesky and eigenvalue decom-
position transformations, about 20% more computational
time is necessary to generate RMSEs of only one-third
to one-quarter of the magnitude when compared with the
CPU times and the RMSE:s of the standard Monte Carlo
simulation. Third, since the inverse Cholesky decompo-
sition transformation and the Cholesky decomposition
transformation are combined in a single step by multi-
plying the crude independent standard normal distrib-
uted random samples with the matrix A*, the CPU times
of the inverse Cholesky decomposition transformation
method (SMCH+IC+C or SMC+Anti+IC+C) are less
than those of the moment matching method
(SMC+MM+C or SMC+Anti+MM+C). Finally, when
the tradeoft between the CPU times and the RMSEs is
considered, the antithetic variate approach, together
with the inverse Cholesky decomposition transforma-
tion, is the most efficient variance-reduction technique.

European Calls on the Maximum of 10 Assets

When the number of underlying assets rises to 10,
the results of RMSEs and relative CPU times are reported
in Exhibits 5 and 7, which include the cases of different
correlation coefficients, Py = 0.1 and Py = 0.5, respec-
tively. Similar to the previous subsection, a two-stage
process 1s employed. Different variance-reduction tech-
niques are first applied to crude independent standard
normal distributed random samples, and the Cholesky
decomposition transformation is used to further convert
the random samples into correlated normally distributed
random samples. The values of log(RMSE) in relation to
the number of simulations are plotted in Exhibits 6 and 8
to illustrate the convergence rates of different variance-
reduction techniques.

In the upper diagram of Exhibit 6, the inverse
Cholesky and eigenvalue decomposition transformations
are compared with the classical moment matching method.
All three techniques can reduce the RMSE of the esti-
mation, and the inverse Cholesky decomposition trans-
formation is superior to the method of moment matching.

FaLL 2008

In the lower diagram of Exhibit 6, the antithetic variate
technique is incorporated into each respective variance-
reduction technique. It is easily seen that the moment
matching method accounts for a larger improvement than
the antithetic variate approach. In addition, the inverse
Cholesky and eigenvalue decomposition transformations
again significantly outperform the traditional moment
matching method with the presence of the antithetic
variate technique. For instance, when the number of sim-
ulations is 12,800, the RMSEs of SMC+Anti+MM+C
and SMC+Anti+IC+C are 0.01045 and 0.00927, respec-
tively, which shows that the RMSE improvement of the
inverse Cholesky decomposition transformation over the
moment matching method is about 11%. Compared to
the results in the case of 5 assets, the advantage of the
inverse Cholesky and eigenvalue decomposition trans-
formations over the traditional variance-reduction tech-
niques remains, with the increase of the number of
underlying assets.

From Exhibit 8, it is shown that when Py = 0.5, the
advantage of the inverse Cholesky decomposition trans-
formation relative to the moment matching method still
exists, but diminishes. Similar to the discussion in the pre-
vious subsection, this phenomenon can be explained via
the analysis of Equation (3). The effect of errors of cor-
relations among simulated samples becomes less impor-
tant when the absolute values of correlations Py, are
relatively large.

As for the relative CPU times in Exhibits 5 and 7,
the results follow the same trend of those in the 5 asset
case. For the inverse Cholesky and eigenvalue decompo-
sition transformations, significantly smaller RMSEs can be
achieved compared with the standard Monte Carlo sim-
ulation method within a little marginal CPU time. Taking
the methods of SMC+C and SMC+IC+C for compar-
ison, SMC+IC+C costs about 20% more CPU time
than SMC+C, but the RMSEs of SMC+IC+C are only
one-half to one-third of the magnitude, compared with
the RMSEs of SMC+C. In addition, due to the one-step
transformation through the matrix A", the inverse
Cholesky or eigenvalue decomposition transformations
cost less time than the traditional moment matching
method. Results in Exhibits 5 and 7 suggest using the
inverse Cholesky decomposition transformation with the
antithetic variate approach as the most efficient variance-
reduction technique when both the CPU times and the
RMSE; are taken into account.
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EXHIBIT 2
Comparison of Rates of Convergence of Variance-Reduction Techniques in the 5 Asset Case when Py = 0.1

In order to obtain a better understanding of the rates of convergence, the values of log(RMSE) in relation to the number of simulations are graphed.
The exhibit shows that the proposed inverse Cholesky and eigenvalue decomposition transformations are significantly more efficient than the tra-
ditional moment matching method, especially when the antithetic variate approach is employed to derive option values. For example, when the
number of simulations is 12,800, the RMSEs of SMC+Anti+MM+C and SMC+Anti+IC+C are 0.00818 and 0.00526, respectively, which indi-
cate the RMSE improvement of the inverse Cholesky decomposition transformation over the moment matching method is about 36%.
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EXHIBIT 4
Comparison of Rates of Convergence of Variance-Reduction Techniques in the 5 Asset Case when Py = 0.5

European calls on the maximum of 5 assets are taken as examples. In order to obtain a better understanding of the rates of convergence, the values
of log(RMSE) in relation to the number of simulations are plotted. In general, the inverse Cholesky or eigenvalue decomposition transformation
generates the results with less RMSEs, which demonstrates that these two proposed methods have higher convergence rates than those traditional

variance-reduction techniques.
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EXHIB
Compariso

IT 6
n of Rates of Convergence of Variance-Reduction Techniques in the 10 Asset Case when p; = 0.1

The RMSEs are adapted as the proxy of the rates of convergence of different variance-reduction techniques. The values of log(RMSE) in rela-
tion to the number of simulations are plotted for the sake of better understanding the rates of convergence. The inverse Cholesky or eigenvalue

decomposition transformation outperforms the traditional variance-reduction techniques, including the antithetic variate approach or the moment

matching me

thod, and accelerates the rate of convergence. For instance, when the number of simulations is 12,800, the RMSEs of

SMC+Anti+MM+C and SMC+Anti+IC+C are 0.01045 and 0.00927, respectively, which indicate the RMSE improvement of the inverse
Cholesky decomposition transformation over the moment matching method is about 11%.
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EXHIBIT 8
Comparison of Rates of Convergence of Variance-Reduction Techniques in the 10 Asset Case when Py =05

European calls on the maximum of 10 assets are considered here. In order to obtain a better understanding of the rates of convergence, the values
of log(RMSE) in relation to the number of simulations are graphed. The exhibit shows that when the antithetic variate approach, the moment
matching method, and the proposed inverse Cholesky or eigenvalue decomposition transformation are used, the RMSEs can be reduced. The
inverse Cholesky decomposition transformation still shows the strongest convergence rate. Nevertheless, due to the large Py value, there is little
performance discrepancy between the moment matching method and the inverse Cholesky decomposition transformation.

log(RMSE)
-0.50 L L L . L L ! . ! Number of simulations
1,380 2,560 3,840 5,120 6,400 7,680 8,960 10,240 11,520 12,800
- % --SMC+C
-1.00 -- 0 - - SMC+MM+C
—&— SMCHIC+C

JRRESCARNRERP X, —a— SMCHIE+C
-1.50
-2.00
-2.50 -

log(RMSE)
-0.50 L 1 1 1 1 L 1 1 ) Number of simulations
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Results for Randomly Generated
Variance-Covariance Matrices

In the preceding two subsections, only examples
with equal volatility for all assets and constant correla-
tions of p,=0.1 and p;, = 0.5 are considered. They are
not enough to draw any firm conclusions about the pro-
posed new method. In this subsection, several random
scenarios of the variance-covariance structures are gen-
erated to reflect the real world condition, and the per-
formance of different variance-reduction techniques is
examined for these scenarios. European calls on the max-
imum of 10 assets are taken as examples. All parameter
values are the same as before, except that the volatility of
each asset is assumed to follow the uniform distribution
from 10% to 50%, and the correlations between assets are
uniformly distributed between 0 and 0.5. Ten scenarios
of variance-covariance structures are generated randomly,
and the reported RMSEs and relative CPU times in
Exhibit 9 are the averages across all scenarios. Meanwhile,
the comparison of the average rates of convergence of
different variance-reduction techniques is shown in
Exhibit 10.

In Exhibits 9 and 10, it is apparent that the inverse
Cholesky and eigenvalue decomposition transformations
show the strongest performance in variance reduction. For
instance, SMC+IC+C generates average RMSEs of about
one-third of the magnitude compared with that for the
standard Monte Carlo simulation (SMC+C). In addition,
when the number of simulations is 12,800, the average
RMSEs of SMC+Anti+MM+C and SMC+Anti+IC+C
are 0.02451 and 0.01484, respectively, an improvement over
the moment matching method of about 39%. Comparing
Exhibit 10 with previous results, because of the absence of
the homogeneous variance-covariance structures, the
average RMSE:s are a little larger than the results in
Exhibits 6 and 8. Meanwhile, due to the average effect, the
superiority of the inverse Cholesky and eigenvalue decom-
position transformations becomes more stable and evident,
which further supports that the proposed new method can
perform well in the real world. In addition, for the relative
CPU times in Exhibits 9, the results are very similar to
those in Exhibits 1, 3, 5, and 7, which all indicate that
employing the inverse Cholesky decomposition transfor-
mation with the antithetic variate approach is the most effi-
cient variance-reduction technique when both the CPU
times and the RMSEs are taken into account.

The Inverse Cholesky Decomposition
Transformation Applied to
Low-Discrepancy Sequences

From the previous discussion, the combination of
the inverse Cholesky decomposition transformation and
the Cholesky decomposition transformation effectively
reduces the variance for multivariate Monte Carlo sim-
ulation. In this subsection, these sequential methods are
applied to low-discrepancy Halton sequences.* European
calls on the maximum of 5 assets are taken as examples,
with correlations P, = 0.1 and Py = 0.5.

It should be noted that the Halton sequences sim-
ulate uniform distributions. After deriving the Halton
sequences, it is necessary to transform them into inde-
pendent standard normal distributed sequences. In this
article, a function in Excel named “NORMSINV” is
used to accomplish the transformation. Hereafter, the
word “Halton” represents a series of independent standard
normal distributed samples transformed from the uni-
form distributed Halton sequences.

The effects of applying the inverse Cholesky decom-
position transformation on the Halton sequences are
examined in Exhibits 11 and 12. It is clear that the inverse
Cholesky decomposition transformation further improves
the convergence rate of the Halton sequences in the case
of Py = 0.1. When Py = 0.5, the inverse Cholesky
decomposition transformation still demonstrates its efti-
ciency, but the advantage is less than for Py = 0.1. Sim-
ilar to the discussion in the previous subsection, the
phenomenon can be attributed to the effect of errors of
correlations e, s becoming comparatively small when the
absolute value of Py is large. As a result, correcting errors
of correlations by the inverse Cholesky decomposition
transformation brings slight improvement to the results
of option values.

By analyzing the correlations between the indepen-
dent standard normal distributed sequences generated from
the uniform-distributed Halton sequences in Exhibit 13, it
is found that the values of correlations among difterent vec-
tors of generated samples are almost the same and positive,
and they decrease to zero with the increase in the number
of simulations. Therefore, in Exhibit 12, the option value
increases with the increase of the number of simulations,
because of the well-known phenomenon that with the
decrease of the correlations among assets, the calls on the
maximum of multiple assets become more valuable. Fur-
thermore, since the correlations are corrected to zero, the
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EXHIBIT

10

Average Rates of Convergence of Variance-Reduction Techniques in the 10 Asset Case Given Randomly Gener-
ated Variance-Covariance Matrices

This exhibit compares the average rates of convergence of different variance-reduction techniques for 10 randomly generated variance-covari-
ance structures. The volatility for each asset is assumed to be distributed uniformly between 0.1 and 0.5. The correlations are uniformly distrib-
uted between 0 and 0.5. This exhibit shows that the inverse Cholesky or eigenvalue decomposition transformation, on average, outperforms the

traditional variance-reduction techniques and accelerates the rate of convergence, especially under the cases in which the antithetic variate approach

is combined with the proposed new method. Since generating variance-covariance matrices randomly is a reasonable reflection of various pos-

sible scenarios in the real world, the results in this exhibit demonstrate that the proposed inverse Cholesky and eigenvalue decomposition trans-

formations should perform well in the real world.

L L L L L 1 Number of simulations

log(RMSE)
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ExHIBIT 11

Inverse Cholesky Decomposition Transformation Applied to Halton Sequences

This exhibit contains the results of the estimates obtained from applying the inverse Cholesky decomposition transformation to independent stan-
dard normal distributed samples generated from the uniformly distributed Halton sequences. European calls on the maximum of 5 assets with p, =
0.1 and Py = 0.5 for j #k are taken as examples. According to the previous results, the true values of these options are 5.567073 and 4.529253,
respectively. For the case of Py = 0.1, 1tis obvious that when the inverse Cholesky decomposition transformation is applied, the derived option value

converges to the true value more quickly. In the case of Py = 0.5, the inverse Cholesky decomposition does help to improve the convergence rate,

but the improvement is not as large as that in the case of P, near zero.

p,=0.1 p, =05
Number of Simulations Halton+C Halton+IC+C Halton+C Halton+IC+C
1,280 5.48968 5.53928 4.46108 4.46185
2,560 5.53195 5.55658 4.49800 4.49561
3,840 5.53412 5.55367 4.50234 4.50313
5,120 5.54332 5.55804 4.51107 451112
6,400 5.54482 5.55759 4.51353 4.51452
7,680 5.54713 5.55835 4.51354 4.51537
8,960 5.55015 5.55999 4.51676 4.51840
10,240 5.55091 5.56019 4.51727 4.51884
11,520 5.55343 5.56167 4.51834 4.52023
12,800 5.55452 5.56172 4.52043 4.52156

option prices estimated by the inverse Cholesky decom-
position transformation converge to their true values more
quickly, even when the number of simulations is small. This
observation shows that the inverse Cholesky decomposition
transformation helps to improve the convergence rate of
the estimates even when the low-discrepancy sequences are
used.

CONCLUSION

This article introduces a new variance-reduction tech-
nique, the inverse Cholesky decomposition transformation,
which diminishes the sample errors of correlations among
multivariate independent standard normal distributed
random samples. The result is a set of random samples that
is a better representative for a multivariate independent stan-
dard normal distribution with an identity variance-covari-
ance matrix. Since the errors of the sample variances and
covariances among underlying assets can be eliminated, this
new method, invented for multivariate Monte Carlo sim-
ulation, is superior to the traditional variance-reduction
techniques for pricing rainbow options.

FaLL 2008

Numerical results conclude that the combination
of the inverse Cholesky decomposition transformation
with the antithetic variate approach results in the most
efficient estimation of European calls on the maximum
of multiple assets. Because the eigenvalue decomposition
is computationally more expensive, it is suggested that a
simple combination of the inverse Cholesky decomposi-
tion transformation and the Cholesky decomposition
transformation achieves an excellent balance between the
computational effort and the accuracy of the estimates.
Furthermore, the inverse Cholesky decomposition trans-
formation also helps to improve the convergence rate of
the estimates generated based on the low-discrepancy
sequences. Verified by these extensive simulation results,
the substantial convergence-rate improvement and the
feature of easy implementation for the inverse Cholesky
decomposition transformation encourages the use of this
new method as a standard variance-reduction procedure
in multivariate Monte Carlo and quasi-Monte Carlo
simulations.
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ExXHIBIT 12

Option Values from Halton Sequences with and without Inverse Cholesky Decomposition Transformation

European calls on the maximum of 5 assets with Py = 0.1 and py, =0.5 are taken as examples. The true values of these options are 5.567073 and
4.529253, respectively. For Py = 0.1, the upper diagram demonstrates that even for the low-discrepancy sequence, incorporating the inverse
Cholesky decomposition transformation helps to derive a more accurate option value with fewer simulations. However, similar to the previous

discussion, the improvement of the inverse Cholesky decomposition is less significant when the absolute value of Py 1s relatively large.

Option value pjk — 0 . 1

5.50

5.44

/x - - % - - Halton+C
—#&— Halton+IC+C
— — — True option value

Number of simulations

1,280 2,560 3,840 5,120 6,400 7,680 8,960 10,240 11,520 12,800

Option value P i = 05

4.54

4.52

4.50

4.48

4.46

4.44

4.42

- - % - - Halton+C
—=&— Halton+IC+C
— — — True option value

L L L L i i i i ,  Number of simulations

1,280 2,560 3,840 5,120 6,400 7,680 8,960 10,240 11,520 12,800
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ExHIBIT 13

Correlations between Independent Standard Normal
Distributed Samples Generated from Uniformly Dis-
tributed Halton Sequences

This exhibit contains the correlations between the independent stan-
dard normal distributed samples generated based on the uniformly
distributed Halton sequences. As the number of simulations increases,
the correlations draw closer to zero. Because the option value increases
with respect to the decrease of the values of correlations, option values
increase with the increase of the number of simulations as demon-
strated in Exhibit 12.

Number of Simulations is 1,280

V4 y4 V4 V4 V4

1 2 3 4 5
z, 1 0.0440 0.0449 0.0452 0.0464
z, 1 0.0453  0.0435  0.0455
z, 1 0.0484  0.0490
z, 1 0.0463
z 1

Number of Simulations is 2,560

z, z, z, z, z,
z, 1 0.0221 0.0233 0.0223 0.0238
z, 1 0.0222  0.0224  0.0228
z, 1 0.0237  0.0236
z, 1 0.0239
z 1

Number of Simulations is 3,840

z, z, z, z, z,
z, 1 0.0150 0.0151 0.0160 0.0138
z, 1 0.0164 0.0150 0.0152
zy 1 0.0148  0.0140
z, 1 0.0158
z 1

FaLL 2008

ENDNOTES

'Tf the antithetic variate approach is combined with
the inverse Cholesky decomposition transformation method,
this detrend process is not necessary and Cis the variance-
covariance matrix of [z,2, --+ 2.

’In fact, the only time to use the inverse eigenvalue
decomposition transformation is when the Cholesky decom-
position fails, which occurs when the covariance matrix Cis
not positive semidefinite (PSD). The only possibility a vari-
ance-covariance matrix constructed from data becomes non-
PSD is when there are missing observations, but that does not
happen in a simulated series. Therefore, it is almost impossible
for the Cholesky decomposition to fail here.

’The error term e, , affects Var(x,) as well. However, the

. 2 . . .
influence of 2p,,V1~ Pa¢ relative to 1 in Var(x,) is generally
much less than the influence of 1-ple, relative to O, in

Cov(x,, x,). Therefore, the analysis here focuses only on the
effect of e, on Cov(x,, x,).

‘Refer to Galanti and Jung [1997] for information about
how to generate the Halton sequences.
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