
An Ingenious, Piecewise Linear Interpolation
Algorithm for Pricing Arithmetic Average

Options

Tian-Shyr Dai1, Jr-Yan Wang2, and Hui-Shan Wei3

1 Department of Information and Finance Management, National Chiao Tung
University, Hsinchu, Taiwan
cameldai@mail.nctu.edu.tw

2 Graduate School of Finance, National Taiwan University of Science and Technology,
Taipei, Taiwan

jywang@mail.ntust.edu.tw
3 Department of Finance, National Central University, Taoyuan County, Taiwan

Abstract. Pricing arithmetic average options continues to intrigue re-
searchers in the field of financial engineering. Since there is no analytical
solution for this problem until present, developing an efficient numerical
algorithm becomes a promising alternative. One of the most famous nu-
merical algorithms for pricing arithmetic average options is introduced
by Hull and White [10]. In this paper, motivated by the common idea
of reducing the nonlinearity error in the adaptive mesh model [7] and
the adaptive quadrature numerical integration method [6], the logarith-
mically equally-spaced placement rule in the Hull and White’s model is
replaced by an adaptive placement method, in which the number of rep-
resentative average prices is proportional to the degree of curvature of
the option value as a function of the arithmetic average price. Numerical
experiments verify the superior performance of our method in terms of
reducing the interpolation error. In fact, it is straightforward to apply
this method to any pricing algorithm with the techniques of augmented
state variables and the piece-wise linear interpolation approximation.

Keywords: Arithmetic average options, logarithmically equally-spaced
placement, adaptive placement.

1 Introduction

Asian options are path dependent securities whose payoff depends on the average
of the underlying prices during the option life. They were originally issued in 1987
by Banker’s Trust Tokyo on crude oil contracts, and hence the name “Asian”
option. Asian options are commonly traded in a thinly traded market to prevent
price manipulation. Besides, Asian options are less expensive than comparable
vanilla options, because the volatility of the average value of an underling asset is
lower than the volatility of the value of the underling asset. In practice, end-users
of commodities, energies, or foreign currencies tend to be exposed to average
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prices over time, so Asian options are also attractive for them. This is because
Asian options are often used as they more closely replicate the requirements of
end-users exposed to price movements on the underlying asset.

To this date, more and more financial instruments include the average feature
from Asian options, for example, structure notes issued by international banks,
the contracts of convertible bonds in Taiwan, etc. If the underlying price process
follows the geometric Brownian motion, the analytical pricing formula for geo-
metric average options is feasible since the product of lognormally distributed
prices remains to follow the lognormal distribution. Based upon this observa-
tion, Kemna and Vorst proposed an analytical solution for European geometric
average options [11]. Unfortunately, it is still analytically intractable to price
arithmetic average options due to the lack of proper mathematical representa-
tion for the sum of lognormal random variables. Thus many researches were
devoted to deal with the distribution of the sum of lognormal random variables
and derive approximated pricing formulae for arithmetic average options. Sev-
eral works along this direction include the fast Fourier transformation in [2], the
Edgeworth series expansion in [16], the reciprocal Gamma distribution in [13],
the Laplace transform inversion in [9], etc.

The tree-based model is a possible alternative to price arithmetic average
options. However, the naive pricing method based on the tree model which is
able to derive the exact value of the arithmetic average options by recording all
possible arithmetic average prices is simply intractable due to the exponential
growth of the number of possible arithmetic average prices with respect to the
number of time steps. In this paper, the exact option value stands for the option
value derived from a tree-based model without any interpolation error.

To overcome the problem of the exponential growth of the number of possible
arithmetic average prices, Dai and Lyuu develop a trinomial-tree pricing model
for arithmetic average options that guarantees the convergence to the exact
option value [5], in which the notion of integrality of stock prices is employed
to reduce the time complexity of recording all possible arithmetic average prices
to be sub-exponential. However, it is still intractable to price arithmetic average
options via this model when the number of time steps is large.

On the other hand, in Hull and White’s model [10], instead of keeping track of
all possible arithmetic average prices, representative average prices are logarith-
mically equally-spaced placed between the maximum and minimum arithmetic
average prices for each node, and the piece-wise linear interpolation is adopted
to derive the corresponding option values for nonexistent average prices during
the backward induction. Therefore, the interpolation error occurs and whether
the interpolation error vanishes is uncertain for all but a single scenario in which
the number of representative average prices for each node and the number of
time steps for the tree model are well collocated, see [8].

Along with the line of [10], Neave and Turnbull [14] suggest using the con-
ditional frequency distribution to adjust the number of representative average
prices for each node. Cho and Lee [3] replace the uniform allocation of the num-
ber of representative average prices in the Hull and White’s model with the
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Fig. 1. The illustration of our adaptive placement method. Hull and White [10]
adopted the combination of the uniform allocation and logarithmically equally-spaced
placement rules in their pricing algorithm, i.e. m=100. Other modifications of the Hull
and White’s model focus on devising more efficient non-uniform allocation rules, i.e.
M(i, j) is different for each node(i, j). However, the logarithmically equally-spaced
placement rule is a common component in these models. In our adaptive placement
method, the number of representative average prices is proportional to the degree
of curvature of the option value function and an efficient non-uniform allocation of
representative average prices is achieved automatically.

distribution of the number of possible geometric average prices. Klassen [12]
proposes a revised version of the algorithm of [10], in which only a set of average
prices at each node is considered, and the grid space for the logarithm of the
arithmetic average prices is a pre-specified function of the time to maturity, the
time steps, and the volatility of the stock price process. Although these methods
of adjusting the allocation of the number of the representative average prices over
the tree exhibit superior convergence rate to exact option values than the Hull
and White’s model, their major disadvantages are the absence of the economic
meanings and the guarantee of the convergence of the interpolation error.

A different point of view is adopted in [1] and [4] to improve the convergence
rate of the tree-based models for pricing arithmetic average options. Instead of
recording the maximum and minimum arithmetic average prices, a more compact
range is derived such that the interpolation error can be reduced effectively.
Moreover, for European-style arithmetic average options, the optimal allocation
of the representative average prices over the tree is derived in [4] to minimize
the accumulated interpolation error of the option value.

Dedicated to devising the allocation of representative average prices over the
tree to reduce the interpolation error, the suggested allocation rules of the above
modifications are no longer uniformly distributed but are contingent on the
probability reaching the underlying node, the time to maturity of the underlying
node, the number of time steps in the tree model, and the volatility of the
underlying process. The differences between uniform and non-uniform allocations
are illustrated in Panel 1 of Fig. 1.
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With the uniform allocation rule being replaced, the logarithmically equally-
spaced placement rule proposed by Hull and White is still retained in the afore-
mentioned works. Aiming at simultaneously guaranteeing the convergence of the
interpolation error and improving the efficiency, we proposed a novel aspect to
minimize the interpolation error by replacing the logarithmically equally-spaced
placement rule with an adaptive placement method, in which more represen-
tative average values are needed in the area around which the option value
function of the arithmetic average price is with higher degree of curvature, and
fewer representative average values are placed where the option value function is
with lower degree of curvature. The ideas of the adaptive placement method and
the logarithmically equally-spaced rules are illustrated in Panel 2 of Fig. 1. To
achieve this goal, the adaptive placement method is actually designed to govern
the linear interpolation error between each pair of adjacent representative aver-
age prices under a limit criterion. Moreover, our method forms automatically an
efficient non-uniform allocation of representative average prices over the tree.

2 Arithmetic Average Options

In this paper, the non-dividend-paying underlying stock price in the risk neutral
world is assumed to follow the geometric Brownian motion: dSt/St = rdt+σdZ,
where r is the risk free rate, σ is the volatility of the asset price, and Z is
a Wiener process. Suppose that the stock price is sampled at the time points
0 = t0 < t1 < · · · < tn = T during the life of the arithmetic average options. If
the corresponding stock prices are St0 , St1 , · · · , Stn , the arithmetic average price
from time 0 to t is A(t) = (

∑l
i=0 Sti)/(l + 1), where tl ≤ t < tl+1. In addition,

the exercise value of the arithmetic average call considered in this paper at time
t is max(A(t) − X, 0), where X is the strike price of the arithmetic average call.
Furthermore, the stock price is assumed to be sampled periodically, which is
often the case in the real world, and therefore ti = iΔt and Δt = T/n.

The Hull and White’s Model
In the field of option pricing, the binomial-tree model divides the time horizon
of an option into n discrete time steps and discretizes the stock prices at each
time step. In Panel 1 of Fig. 2, it is shown that the stock price at time step 0 is
S0 (at node(0, 0)), and the stock price can either move up to S0u (at node(1, 0))
or down to S0d (at node(1, 1)) at the first time step, where u = exp(σ

√
Δt) is

the magnitude of a upward movement for the stock price, and d = exp(−σ
√

Δt)
is the magnitude of a downward movement for the stock price. Similarly, each
stock price can either move up or move down at subsequent time steps.

It is in theory possible to employ the binomial-tree model to calculate exact
values of arithmetic average options by recording all possible average values
reaching each node. Unfortunately, if the option life is divided into n periods,
the number of all possible arithmetic average prices is 2n, which implies that the
computation complexity is intractable even for small values of n.
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Fig. 2. The illustration of the Hull and White’s model. In Panel 1, the node(i, j)
stands for the node at time point i with j cumulative down movements and the S0u

i−jdj

is the corresponding stock price. Amax(i, j) (Amin(i, j)) is the maximum (minimum)
average stock price among all possible paths from node(0, 0) to node(i, j). In Panel 2, for
each possible average price A(i, j, k), it is necessary to find the corresponding Au and Ad

and then to derive the option values Cu and Cd by the piece-wise linear interpolation.
The continuation value for A(i, j, k) is C(i, j, k) = (p · Cu + (1 − p) · Cd)e−rΔt.

One of the most famous tree-based models to price arithmetic average options
efficiently is proposed in [10]. In their algorithm, to avoid tracking all possible
arithmetic average prices of each node, only the maximum and the minimum
arithmetic average prices of all traversed paths for each node are calculated,
which is illustrated in Panel 1 of Fig. 2.

For node(i, j) with the stock price S0u
i−jdj for 0 ≤ j ≤ i ≤ n, the maximum

arithmetic average price is contributed by a price path starting with i − j con-
secutive up movements followed by j consecutive down movements, whose value
is Amax(i, j) = (S0

1−ui−j+1

1−u + S0u
i−jd1−dj

1−d )/(i + 1). Likewise, the value of the
corresponding minimum arithmetic average price can be calculated from a price
path starting with j consecutive down movements followed by i − j consecutive
up movements: Amin(i, j) = (S0

1−dj+1

1−d + S0d
ju 1−ui−j

1−u )/(i + 1). Once equipped
with the knowledge about the maximum and minimum arithmetic average prices
for each node, the logarithmic space between Amax(i, j) and Amin(i, j) is divided
into m equal-length sub-intervals and m + 1 representative average prices are
obtained via A(i, j, k) = exp

(
m−k

m ln(Amax(i, j)) + k
m ln(Amin(i, j))

)
.

After building the tree and the table of representative average prices for each
node, we decide the payoff of each representative average price of the nodes
at maturity first. Next, the option value is derived via the backward induction
procedure. The backward induction procedure from node(i + 1, j) and node(i +
1, j + 1) to node(i, j) is illustrated in Panel 2 of Fig. 2.

For A(i, j, k), the evolutions of the arithmetic average price at the next time
point are Au = [(i+1)A(i, j, k)+S0u

i+1−jdj ]/(i+2), and Ad = [(i+1)A(i, j, k)+
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S0u
i+1−(j+1)d(j+1)]/(i + 2). Suppose that Au is inside the range [A(i + 1, j, ku),

A(i + 1, j, ku − 1)]. The option value Cu for the arithmetic average price Au is
approximated by the linear interpolation Cu = wuC(i+1, j, ku)+ (1−wu)C(i+
1, j, ku−1), where wu = (A(i+1, j, ku−1)−Au)/(A(i+1, j, ku−1)−A(i+1, j, ku)).
Similarly, the option value of Cd for the arithmetic average price Ad is derived
from Cd = wdC(i + 1, j + 1, kd) + (1 − wd)C(i + 1, j + 1, kd − 1), where wd =
(A(i + 1, j + 1, kd − 1) − Ad)/(A(i + 1, j + 1, kd − 1) − A(i + 1, j + 1, kd)), if Ad

is inside the range [A(i + 1, j + 1, kd), A(i + 1, j + 1, kd − 1)]. As a consequence,
the continuation value for A(i, j, k) is C(i, j, k) = (p · Cu + (1 − p) · Cd)e−rΔt.

Some Modifications for the Hull and White’s Model
The interpolation error is inevitable in the Hull and White’s model due to the
limited number of representative average prices at each node and employing
the piece-wise linear interpolation to find option values for nonexistent average
prices. The brute-force method via increasing the number of representative aver-
age prices for each node is able to enhance the accuracy for the option values of
course, but meanwhile it is accompanied with unacceptable computation time.
In Section 4, in addition to the Hull and White’s model, the performance of some
modifications, including inserting the strike price into the average price table,
applying the quadratic interpolation, and tightening the range for representative
average prices,1 will be compared to that of our adaptive placement method.

3 Our Models

The goal of our adaptive placement method is to intelligently reduce the inter-
polation error for pricing arithmetic average options in the tree-based model.
Motivated by the common idea of dealing with the nonlinearity error in the
Figlewski and Gao’s adaptive mesh model [7] and the adaptive quadrature nu-
merical integration method [6], our method differs from the Hull and White’s
method in the sense that more representative average prices are placed in the
range where the option value function is with higher degree of curvature and
fewer representative average prices are placed in the range where the option
value function is with lower degree of curvature (see Fig. 1).

1 For European fixed-strike-price arithmetic average calls, according to [1], for nodes at
time point i, if some average price A is larger than the upper bound (n+1)X/(i+1),
because this path is sure to be in the money at maturity, the corresponding expected
option value can be calculated directly via

e−r(n−i)Δt[(i + 1)A − (n + 1)X + S0u
i−jdjerΔt 1 − er(n−i)Δt

1 − erΔt
]/(n + 1).

Therefore, the range [Amin(i, j), Amax(i, j)] can be curtailed to [min(Amin(i, j), (n+
1)X/(i + 1)), min(Amax(i, j), (n + 1)X/(i + 1))], and whenever the average price is
above the upper bound, the corresponding expected option value can be derived via
the above equation without any interpolation error.
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The details of our adaptive placement method are elaborated as follows. For
any A ∈ [A1, A2], where A1 and A2 stand for any pair of adjacent representative
average prices in the table of average prices for some node, the option value for A
can be derived from the linear interpolation C = C1 · A−A2

A1−A2
+C2 · A−A1

A2−A1
, where

C1 and C2 are corresponding option values for A1 and A2. By the mean-value
theorem, the error term of the linear interpolation caused from the nonlinearity
of the option value function in [A1, A2] can be expressed as

C′′(ξ)
2!

· (A − A1) · (A − A2), for some number ξ between A1 and A2. (1)

Our adaptive placement method is designed to examine whether the linear inter-
polation error between each pair of adjacent representative average prices in Eq.
(1) is below some pre-specified limit. Once the error of the linear interpolation
inside the range of [A1, A2] is not negligible, i.e. C′′(ξ) is too large or the distance
between A1 and A2 is too far, we divide [A1, A2] into finer subsets by inserting
an extra representative average price inbetween and then repeat the same pro-
cedure of examining the error of the linear interpolation for each subset. Once
the value of the error term between any pair of adjacent representative average
prices is smaller than the predefined threshold (termed the second order error
criterion in our method), this examining-and-dividing process is stopped.

In practice, another constant termed the precision criterion is also defined
to represent the threshold of negligible refinement for both average prices and
option values in our method. The above examining-and-dividing process is also
terminated when the difference between adjacent representative average prices
or their corresponding option values is smaller than this minimum criterion. The
purpose of introducing the precision criterion is to prevent possibly infinite di-
viding caused from the non-differentiable point. Within each examination of the
linear interpolation error, we approximate C′′(ξ) in Eq. (1) by the second order
numerical differentiation. For any pair of adjacent representative average prices
A1 and A2, the midpoint A = (A1 +A2)/2 is employed together to approximate
the error term of the linear interpolation for this range.

The steps to price arithmetic average options in this paper are described as
follows. During the phase of building the stock price tree, only the maximum
and minimum average prices for each node are recorded as representative average
prices. Meanwhile, we also determine whether the strike price is needed to be
inserted into the range between the maximum and the minimum average prices.
As a consequence, there will be two or three representative average prices for each
node after building the stock price tree. Since the number of possible arithmetic
average prices for the nodes at the initial three time steps is not larger than
three, it is not necessary to perform the above procedure and instead we record
all possible average prices for these nodes.

After building the stock price tree, the tables of representative average prices
for all nodes are mainly constructed during the phase of backward induction
We take an example to illustrate the examining-and-dividing process of our
adaptive placement method step by step. Suppose S0 = X = 50, n = 40,
T = 1, r = 10%, σ = 80%, and both the second order error criterion and the
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Fig. 3. The numerical example for the examining-and-dividing process. The
values of parameters in this example are S0 = X = 50, n = 40, T = 1, r = 10%,
σ = 80%, and the second order error criterion and the precision criterion are both 0.5.
These figures illustrate the examining-and-dividing process for node(37, 25). Once the
approximate linear interpolation error is larger than 0.5, the pair of the average price
and the call value in boldface will be inserted into the table of representative average
prices of node(37, 25). The approximate linear interpolation error for any pair of adjacent
representative prices in the final table is bounded by the second order error criterion.

precision criterion are 0.5. For node(37, 25), the examining-and-dividing process
is sketched in Fig. 3. Inside the frame of each step, there are three pairs of
representative average prices and the corresponding call values, and we also
report the linear interpolation error when these three pairs of representative
average prices and option values are considered.

When the backward induction progresses to node(37, 25), only 83.4062, 50,
and 12.3309 are in the initial table of representative average prices, and their cor-
responding option values are 28.1577, 0, and 0 respectively. In step 1, the pairs of
(83.4062, 28.1577), ((83.4062+50)/2=66.7031, 13.2048), and (50, 0) are consid-
ered to approximate the linear interpolation error for the range between 83.4062
and 50. Because the approximate linear interpolation error 0.8740 is larger than
the second order error criterion, the pair of the average price 66.7031 and the
corresponding call value 13.2048 should be inserted into the table of represen-
tative average prices. In step 2, the approximated linear interpolation error in
the range between 83.4062 and 66.7031 is 3.2452E-15, which is smaller than the
second order error criterion 0.5. Therefore, we do not insert the pair of the av-
erage price 75.0546(=(83.4062+66.7031)/2) and the corresponding option value
20.6813 since the linear interpolation works pretty well in the range between
83.4062 and 66.7031. Following the same reasoning, we can derive the final table
of representative average prices and their corresponding option values through
steps 3 to 8, in which the approximate linear interpolation error for any pair of
adjacent representative average prices is below the second order error criterion.



270 T.-S. Dai, J.-Y. Wang, and H.-S. Wei

Fig. 4. Comparisons of the distributions of representative average prices of
the adaptive placement method and the Hull and White’s model. For the
readability of this figure, the values of parameters are specified as: S0 = X = 50,
n = 40, T = 1, r = 10%, σ = 30%, the second order error criterion is 0.01, and the
precision criterion is 0.001. In addition, the number of representative average prices in
the Hull and White’s model is 20.

In addition, the option value as the function of the arithmetic average price
is plotted in Fig. 3. Since the performance of the piece-wise linear interpolation
is poor around where the option value function is with high degree of curvature,
our algorithm places more representative average prices in these areas to reduce
the linear interpolation error. On the other hand, due to the satisfactory per-
formance of the piece-wise linear interpolation for dealing with the option value
function with low degree of curvature, our algorithm argues that less represen-
tative average prices placed in those areas will be sufficient.

4 Numerical Results

Comparisons with the Hull and White’s Model
The differences between the logarithmically equally-spaced placed rule in the
Hull and White model [10] and the adaptive placement rule in our model are
shown in Fig. 4. In Panel 1 of Fig. 4, for some node at maturity, it is easily
found that there is no linear interpolation error for both linear segments, and
therefore it is not necessary to insert any representative average price. However,
the Hull and White’s model still employs m + 1 representative average prices
for each node at maturity. For each linear segment, our method provides the
interpolated results as accurate as those in the Hull and White’s model, but
near the kink, our method will outperform the Hull and White’s model except
the strike price happens to be one of representative average prices in their model.

In Panel 2 of Fig. 4, it is clear that the logarithmically equally-spaced place-
ment in the Hull and White’s model places too many representative average
prices on the region with low degree of curvature, but only a few representative
average prices are needed in our adaptive placement method to derive inter-
polated results with sufficient accuracy in this region. On the contrary, to deal
with regions with high degree of curvature, the Hull and White’s model generates
unexpected large pricing errors due to large interpolation error.
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Fig. 5. The rates of convergence of seven different methods of pricing arith-
metic average calls. Note that our adaptive placement method converges faster than
other methods with respect to the number of representative average prices. Note also
that except our adaptive placement method, the convergence rates of other methods
are improved when the algorithm of AMO is applied.

Convergence Rates with the Number of Representative Average Prices
This section compares the rate of convergence with respect to the number of
representative average prices for different methods. The values of parameters in
our numerical example are as follows: S0 = X = 50, T = 1, r = 10%, σ = 80%,
n = 40, and different numbers of representative average prices are examined. In
order to obtain a better understanding of the rates of convergence, an analysis on
the relative error and the number of representative average prices is performed.
Plots of ln(|relative error|) in relation to the number of representative average
prices for the arithmetic average calls are in Fig. 5.

Obviously, the Hull and White’s model converges poorly, but the relative error
decreases significantly when the strike price X is inserted as a representative
average price. This is because for nodes near maturity, the kink is near where the
average price is equal to the strike price, and the piece-wise linear interpolation
is inclined to overestimate the option value around the kink.

Note that the improvement is minor when combining the AMO algorithms
[1] with our adaptive placement method. The idea of the AMO algorithm is
to derive the option values of the arithmetic average prices higher than some
threshold without incurring any interpolation error and meanwhile concentrate
representative average prices on a smaller range to further reduce the interpola-
tion error. However, for the region above the threshold, the interpolation error is
in fact very small, so our adaptive placement method already places fewer rep-
resentative average prices in the region above the threshold, and automatically
concentrates on dealing with the region below the threshold. Thus the concept
of the AMO algorithm is already nested in our adaptive placement method.
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5 Conclusion

This paper proposes the adaptive placement method to price arithmetic average
options. In our method, the representative average prices are placed effectively to
reduce the interpolation error. Numerical results show that our adaptive place-
ment method is superior to other methods in reducing interpolation error. Thus
this method can be employed to price arithmetic average options efficiently and
accurately. In fact, this novel technique can be applied to any other algorithms
with augmented state variables and the piece-wise linear interpolation approxi-
mation like GARCH option pricing algorithm in [15].
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