

Chapter 2 Solutions of Equations of One Variable

2.2 The Bisection Method

- To begin the Bisection method, set $a_1 = a$ and $b_1 = b$, as shown in Figure 2.1, and let p_1 be the midpoint of the interval [a, b]:
 - (1) define $p_1 = a_1 + \frac{b_1 a_1}{2}$
 - (2) If $f(p_1)=0$, then the root p is given by $p = p_1$;

if $f(p_1) \neq 0$, then $f(p_1)$ has the same sign as either $f(a_1)$ or $f(b_1)$.

(3) If $f(a_1)$ and $f(p_1)$ have the same sign, then p is in the interval (p_1, b_1) , and we set $a_2 = p_1$ and $b_2 = b_1$

(4) If, on the other hand, $f(p_1)$ and $f(a_1)$ have opposite signs, then p is in the interval (a_1, p_1) , and we set $a_2 = a_1$ and $b_2 = p_1$

We rapply the process to the interval $[a_2, b_2]$, and continue forming $[a_3, b_3]$, $[a_4, b_4]$,...

(P.31 Figure 2.1) (P.32 ~ P.34) Example 1.

• <u>Bisection Method</u>

An interval $[a_{i+1}, b_{i+1}]$ containing an approximation to a root of f(x) = 0 is constructed from an interval $[a_i, b_i]$ containing the root by first letting

 $p_i = a_i + \frac{b_i - a_i}{2}$ Then set $a_{i+1} = a_i$ and $b_{i+1} = p_i$ if $f(a_i)f(p_i) < 0$ and $a_{i+1} = p_i$ and $b_{i+1} = b_i$ otherwise

2.3 The Secant Method

• (Figure 2.4) Setting $p_0 = a$ and $p_1 = b$. The equation of the secant line through $(p_0, f(p_0))$ and $(p_1, f(p_1))$ is

$$y = f(p_1) + \frac{f(p_1) - f(p_0)}{p_1 - p_0} (x - p_1)$$

The x-intercept $(p_2, 0)$ of this satisfies
$$0 = f(p_1) + \frac{f(p_1) - f(p_0)}{p_1 - p_0} (p_2 - p_1)$$

and solving for p_2 gives
$$p_2 = p_1 - \frac{f(p_1)(p_1 - p_0)}{f(p_1) - f(p_0)}$$

• <u>Secant Method</u>

The approximation p_{n+1} , for n > 1, to a root of f(x) = 0 is computed from the approximation p_n and p_{n-1} using the equation

$$p_{n+1} = p_n - \frac{f(p_n)(p_n - p_{n-1})}{f(p_n) - f(p_{n-1})}$$

P.37 Figure 2.4
P.38 Example 1

• <u>Method of False Position</u>

(結合 Secant Method 與 Bisection Method)

An interval $[a_{n+1}, b_{n+1}]$ for n > 1, containing an approximation to a root of f(x) = 0 is found from an interval $[a_n, b_n]$ containing the root by first computing

$$p_{n+1} = a_n - \frac{f(a_n)(b_n - a_n)}{f(b_n) - f(a_n)}$$
. Then set
 $a_{n+1} = a_n$ and $b_{n+1} = p_{n+1}$ if $f(a_n)f(p_{n+1}) < 0$
 $(\Rightarrow [a_n, p_{n+1}])$
and

 $a_{n+1} = p_{n+1}$ and $b_{n+1} = b_n$ otherwise $(\Rightarrow [p_{n+1}, b_n])$ P.39 Figure 2.5 Secant mwthod vs. False position

2.4 Newton's Method

• <u>Newton's Method</u>

The approximation p_{n+1} to a root of f(x) = 0 is computed from the approximation p_n using the equation

$$p_{n+1} = p_n - \frac{f(p_n)}{f'(p_n)}$$
$$\left\| \begin{array}{l} y - f(p_0) = f'(p_0)(x - p_0) \\ 0 - f(p_0) = f'(p_0)(p_1 - p_0) \\ \Rightarrow p_1 = p_0 - \frac{f(p_0)}{f'(p_0)} \end{array} \right\|$$

Expanding f in the first Taylor polynomial at p_n and evaluating at x = p gives

$$0 = f(p) = f(p_n) + f'(p_n)(p - p_n) + \frac{f''(\xi)}{2}(p - p_n)^2$$

where ξ lies between p_n and p. Consequently, if $f'(p_n) \neq 0$, we have

$$p - p_n + \frac{f(p_n)}{f'(p_n)} = -\frac{f''(\xi)}{2f'(p_n)}(p - p_n)^2$$

Since

$$p_{n+1} = p_n - \frac{f(p_n)}{f'(p_n)}$$

this implies that

$$p - p_{n+1} = -\frac{f''(\xi)}{2f'(p_n)}(p - p_n)^2$$

若 f'' is bounded by M⇒ $|p-p_{n+1}| \leq -\frac{M}{2|f'(p_n)|} |p-p_n|^2$ ⇒ converge quadratically. (因每次的 error 會比之前 error 之平 方還小) P.49 ~ 50 Example 1

• 此法之限制

(i) $f'(p) \neq 0$, 則根的地方一階微分為 0, 還是可收斂, 但收斂速 度會慢很多. P.46 Figure 2.7

(ii) 可能不收斂. 例: 反曲點.

2.5 Error Analysis and Accelerating Convergence

• <u>Aitken's Δ^2 Method</u> (用來加速 linearly convergent) $\hat{p}_n = p_n - \frac{(p_{n+1}-p_n)^2}{p_{n+2}-2p_{n+1}+p_n}$ (because $\frac{p_{n+1}-p}{p_n-p} \approx \frac{p_{n+2}-p}{p_{n+1}-p}$, 非鋸齒型逼近才有此性質) P.51 Example 2 與 Table 2.8

2.6 Müller's Method

• <u>Müller's Method</u>: (二次之 Secant method) 有機會找到所有 的根 (包括實數, 複數), 之前的方法除非一開始猜複數根, 不然 是無法找出複數根的.

Given initial approximations p_0 , p_1 and p_2 , generate

$$p_3 = p_2 - \frac{2c}{b + \operatorname{sgn}(b)\sqrt{b^2 - 4ac}}$$

where

$$c = f(p_2)$$

$$b = \frac{(p_0 - p_2)^2 [f(p_1) - f(p_2)] - (p_1 - p_2)^2 [f(p_0) - f(p_2)]}{(p_0 - p_2)(p_1 - p_2)(p_0 - p_1)}$$

and

$$a = \frac{(p_1 - p_2)[f(p_0) - f(p_2)] - (p_0 - p_2)[f(p_1) - f(p_2)]}{(p_0 - p_2)(p_1 - p_2)(p_0 - p_1)}$$

sgn(b) 之原因: 原本應有兩個解為 0, 取與 b 同號使得分母不會 有幾乎為 0 之情況, 使得 p_3 接近 p_2 .

Then continue the iteration, with p_1 , p_2 and p_3 replacing p_0 , p_1 and p_2

P.55 Example 1

		Initial interval containing the root	Continuity of f'
	D 4	containing the root	
	Bisection	Y	N
•	Secant	N	Y
	False Position	Y	Y
	Newton's	N	Y
	Müller's	N	N
		O + 1	

	Others
Bisection	Robust; need a good initial interval;
	singulatority may be caught as if were a root;
	一定收斂, 但速度很慢,
	因只用到 sgn(f), 而沒用到 f 之值.
Secant	未必收斂,
	但如果收斂速度比 Bisection 快,
	因爲其爲 Newton's 一種變形.
False Position	未必比 Bisection 快.
Newton's	need a good initial guess;
	iterative convergence rate is high;
	可用於 complex roots,
	if initial variable is a complex number.
Müller's	適合來 approximation polynomial 之 roots,
	因其 roots 通常是 complex number;
	need three initial points;
	且 initial points 是 real number
	依然可找到 complex roots;
	但 three initial points 之選擇依然是問題;
	效率比 Newton's 差, 但比 Secant 好.

- 高階多根時,每找到一個根,就降階,再繼續找下個根.(如此可以減少計算)
- 最後再將找到的所有根,當作 Newton's Method 之 initial guess, 放回原式中,找到精準的根. (如此可去掉降階之誤差)
- BS formula, Hull, Ch 12.

• Implied Volatility.