數値分析

Chapter 2
Solutions of Equations of One Variable

2.2 The Bisection Method

- To begin the Bisection method, set $a_{1}=a$ and $b_{1}=b$, as shown in Figure 2.1, and let p_{1} be the midpoint of the interval $[a, b]$:
(1) define $p_{1}=a_{1}+\frac{b_{1}-a_{1}}{2}$
(2) If $f\left(p_{1}\right)=0$, then the root p is given by $p=p_{1}$;
if $f\left(p_{1}\right) \neq 0$, then $f\left(p_{1}\right)$ has the same sign as either $f\left(a_{1}\right)$ or $f\left(b_{1}\right)$.
(3) If $f\left(a_{1}\right)$ and $f\left(p_{1}\right)$ have the same sign, then p is in the interval $\left(p_{1}, b_{1}\right)$, and we set $a_{2}=p_{1}$ and $b_{2}=b_{1}$
(4) If, on the other hand, $f\left(p_{1}\right)$ and $f\left(a_{1}\right)$ have opposite signs, then p is in the interval $\left(a_{1}, p_{1}\right)$, and we set $a_{2}=a_{1}$ and $b_{2}=p_{1}$

We rapply the process to the interval $\left[a_{2}, b_{2}\right]$, and continue forming $\left[a_{3}, b_{3}\right],\left[a_{4}, b_{4}\right]$,...
(P. 31 Figure 2.1) (P. 32 ~ P.34) Example 1.

- Bisection Method

An interval $\left[a_{i+1}, b_{i+1}\right]$ containing an approximation to a root of $f(x)=0$ is constructed from an interval $\left[a_{i}, b_{i}\right]$ containing the root by first letting
$p_{i}=a_{i}+\frac{b_{i}-a_{i}}{2}$
Then set
$a_{i+1}=a_{i}$ and $b_{i+1}=p_{i}$ if $f\left(a_{i}\right) f\left(p_{i}\right)<0$
and
$a_{i+1}=p_{i}$ and $b_{i+1}=b_{i}$ otherwise

2．3 The Secant Method

－（Figure 2．4）Setting $p_{0}=a$ and $p_{1}=b$ ．The equation of the secant line through $\left(p_{0}, f\left(p_{0}\right)\right)$ and $\left(p_{1}, f\left(p_{1}\right)\right)$ is
$y=f\left(p_{1}\right)+\frac{f\left(p_{1}\right)-f\left(p_{0}\right)}{p_{1}-p_{0}}\left(x-p_{1}\right)$
The x －intercept $\left(p_{2}, 0\right)$ of this satisfies
$0=f\left(p_{1}\right)+\frac{f\left(p_{1}\right)-f\left(p_{0}\right)}{p_{1}-p_{0}}\left(p_{2}-p_{1}\right)$
and solving for p_{2} gives
$p_{2}=p_{1}-\frac{f\left(p_{1}\right)\left(p_{1}-p_{0}\right)}{f\left(p_{1}\right)-f\left(p_{0}\right)}$

－Secant Method

The approximation p_{n+1} ，for $n>1$ ，to a root of $f(x)=0$ is computed from the approximation p_{n} and p_{n-1} using the equation
$p_{n+1}=p_{n}-\frac{f\left(p_{n}\right)\left(p_{n}-p_{n-1}\right)}{f\left(p_{n}\right)-f\left(p_{n-1}\right)}$
P． 37 Figure 2.4
P． 38 Example 1

－Method of False Position

（結合 Secant Method 與 Bisection Method）
An interval $\left[a_{n+1}, b_{n+1}\right]$ for $n>1$ ，containing an approx－ imation to a root of $f(x)=0$ is found from an interval $\left[a_{n}, b_{n}\right]$ containing the root by first computing
$p_{n+1}=a_{n}-\frac{f\left(a_{n}\right)\left(b_{n}-a_{n}\right)}{f\left(b_{n}\right)-f\left(a_{n}\right)}$ ．Then set
$a_{n+1}=a_{n}$ and $b_{n+1}=p_{n+1}$ if $f\left(a_{n}\right) f\left(p_{n+1}\right)<0$
$\left(\Rightarrow\left[a_{n}, p_{n+1}\right]\right)$
and
$a_{n+1}=p_{n+1}$ and $b_{n+1}=b_{n}$ otherwise $\left(\Rightarrow\left[p_{n+1}, b_{n}\right]\right)$
P．39 Figure 2．5 Secant mwthod vs．False position

2．4 Newton＇s Method

－Newton＇s Method

The approximation p_{n+1} to a root of $f(x)=0$ is computed from the approximation p_{n} using the equation
$p_{n+1}=p_{n}-\frac{f\left(p_{n}\right)}{f^{\prime}\left(p_{n}\right)}$

$$
\begin{aligned}
& y-f\left(p_{0}\right)=f^{\prime}\left(p_{0}\right)\left(x-p_{0}\right) \\
& 0-f\left(p_{0}\right)=f^{\prime}\left(p_{0}\right)\left(p_{1}-p_{0}\right) \\
& \Rightarrow p_{1}=p_{0}-\frac{f\left(p_{0}\right)}{f^{\prime}\left(p_{0}\right)}
\end{aligned}
$$

Expanding f in the first Taylor polynomial at p_{n} and eval－ uating at $x=p$ gives
$0=f(p)=f\left(p_{n}\right)+f^{\prime}\left(p_{n}\right)\left(p-p_{n}\right)+\frac{f^{\prime \prime}(\xi)}{2}\left(p-p_{n}\right)^{2}$
where ξ lies between p_{n} and p ．Consequently，if $f^{\prime}\left(p_{n}\right) \neq 0$ ， we have
$p-p_{n}+\frac{f\left(p_{n}\right)}{f^{\prime}\left(p_{n}\right)}=-\frac{f^{\prime \prime}(\xi)}{2 f^{\prime}\left(p_{n}\right)}\left(p-p_{n}\right)^{2}$
Since
$p_{n+1}=p_{n}-\frac{f\left(p_{n}\right)}{f^{\prime}\left(p_{n}\right)}$
this implies that
$p-p_{n+1}=-\frac{f^{\prime \prime}(\xi)}{2 f^{\prime}\left(p_{n}\right)}\left(p-p_{n}\right)^{2}$
若 $f^{\prime \prime}$ is bounded by $\mathrm{M} \Rightarrow\left|p-p_{n+1}\right| \leq-\frac{M}{2\left|f^{\prime}\left(p_{n}\right)\right|}\left|p-p_{n}\right|^{2} \Rightarrow$ converge quadratically．（因每次的 error 會比之前 error 之平方還小）P． $49 \sim 50$ Example 1

－此法之限制

（i）$f^{\prime}(p) \neq 0$ ，則根的地方一階微分爲 0 ，還是可收斂，但收斂速度會慢很多．P． 46 Figure 2.7
（ii）可能不收斂．例：反曲點．

2．5 Error Analysis and Accelerating Conver－ gence

－Aitken＇s Δ^{2} Method（用來加速 linearly convergent）
$\widehat{p}_{n}=p_{n}-\frac{\left(p_{n+1}-p_{n}\right)^{2}}{p_{n+2}-2 p_{n+1}+p_{n}}$
（because $\frac{p_{n+1}-p}{p_{n}-p} \approx \frac{p_{n+2}-p}{p_{n+1}-p}$ ，非鋸齒型逼近才有此性質）
P． 51 Example 2 與 Table 2.8

2．6 Müller＇s Method

－Müller＇s Method：（二次之 Secant method）有機會找到所有的根（包括實數，複數），之前的方法除非一開始猜複數根，不然是無法找出複數根的．
Given initial approximations p_{0}, p_{1} and p_{2} ，generate
$p_{3}=p_{2}-\frac{2 c}{b+\operatorname{sgn}(b) \sqrt{b^{2}-4 a c}}$
where
$c=f\left(p_{2}\right)$
$b=\frac{\left(p_{0}-p_{2}\right)^{2}\left[f\left(p_{1}\right)-f\left(p_{2}\right)\right]-\left(p_{1}-p_{2}\right)^{2}\left[f\left(p_{0}\right)-f\left(p_{2}\right)\right]}{\left(p_{0}-p_{2}\right)\left(p_{1}-p_{2}\right)\left(p_{0}-p_{1}\right)}$
and
$a=\frac{\left(p_{1}-p_{2}\right)\left[f\left(p_{0}\right)-f\left(p_{2}\right)\right]-\left(p_{0}-p_{2}\right)\left[f\left(p_{1}\right)-f\left(p_{2}\right)\right]}{\left(p_{0}-p_{2}\right)\left(p_{1}-p_{2}\right)\left(p_{0}-p_{1}\right)}$
$\operatorname{sgn}(b)$ 之原因：原本應有兩個解爲 0 ，取與 b 同號使得分母不會有幾乎爲 0 之情況，使得 p_{3} 接近 p_{2} 。
Then continue the iteration，with p_{1}, p_{2} and p_{3} replacing p_{0}, p_{1} and p_{2}
P． 55 Example 1

Initial interval containing the root	Continuity of f^{\prime}
Y	N
N	Y
Y	Y
N	Y
N	N

Others
Bisection Robust；need a good initial interval； singulatority may be caught as if were a root；
一定收斂，但速度很慢，
因只用到 $\operatorname{sgn}(\mathrm{f})$ ，而沒用到 f 之値。
Secant
未必收斂，
但如果收斂速度比 Bisection 快，因爲其爲 Newton＇s 一種變形。
False Position 未必比 Bisection 快。
Newton＇s
need a good initial guess；
iterative convergence rate is high；
可用於 complex roots， if initial variable is a complex number．
Müller＇s 適合來 approximation polynomial 之 roots，
因其 roots 通常是 complex number；
need three initial points；
且 initial points 是 real number
依然可找到 complex roots；
但 three initial points 之選擇依然是問題；
效率比 Newton＇s 差，但比 Secant 好。
－高階多根時，每找到一個根，就降階，再繼續找下個根。（如此可以減少計算）
－最後再將找到的所有根，當作 Newton＇s Method 之initial guess，放回原式中，找到精準的根。（如此可去掉降階之誤差）
－BS formula，Hull，Ch 12.

- Implied Volatility.

