

 $3x + 5y \leq 43$

 $10x - 7y \le 25$

 $3x + 5y \ge -28$

 $y \leq -x + 5$

 $y \ge 0$

Maximum profit: \$5500

25. 12 audits, 0 tax returns

Minimum cost: \$240

Maximum is 2100 at any point on the line segment between (30, 45) and (60, 20).

- **27.** (a) $t \ge 6$ (b) $2.4 \le t \le 6$ (c) $t \le 2.4$ (d) Not possible
- **29.** Answers will vary. Sample answer: z = x + 5y
- **31.** Answers will vary. Sample answer: z = 4x + y

Section 9.3 (page 468)

- 1. Objective function should be maximized, not minimized.
- **3.** All constraints must be \leq .

5.						Basic
	x_1	x_2	S_1	s_2	b	Variables
	2	1	1	0	8	s_1
	1	1	0	1	5	s_2
	-1	-2	0	0	0	

7.							Basic
	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	s_1	<i>s</i> ₂	b	Variables
	1	2	0	1	0	12	s_1
	1	0	1	0	1	8	<i>s</i> ₂
	-2	-3	-4	0	0	0	

- **9.** (8, 0, 112, 0, 4) **11.** Maximum is 8 at (8, 0).
- **13.** Maximum is 17 at (3, 4). **15.** Maximum is 740 at (60, 20).
- **17.** Maximum is 43 at (7, 3).
- **19.** Maximum is 210 at (0, 21, 21).
- **21.** Maximum is 25 at (23, 0, 2) or $\left(\frac{43}{3}, 0, \frac{32}{3}\right)$.
- **23.** Maximum is 24 at (0, 12, 0, 0).
- 25. Maximum is 2640 at (105, 150, 70).
- **27.** 8 audits, 8 tax returns
- **29.** $\frac{5000}{3}$ liters of the the first drink $\frac{2500}{3}$ liters of the second drink Maximum profit: about \$1416.67
- **31.** 322 of model A 764 of model B 484 of model C
 - Maximum profit: \$79,310
- **33.** 50 acres of crop X 0 acres of crop Y and crop Z Maximum profit: \$3000
- **35.** $t \ge 5/2$
- 37. After one iteration, the simplex tableau is as follows.

x_1	<i>x</i> ₂	s_1	<i>s</i> ₂	b	Basic Variables
$-\frac{1}{2}$	0	1	$\frac{3}{2}$	7	s_1
$-\frac{1}{2}$	1	0	$\frac{1}{2}$	2	<i>x</i> ₂
-2	0	0	1	4	

- **39.** After one iteration, $x_1 = 2$, $x_2 = 0$, and z = 5. Bringing x_2 into the basis after another iteration, $x_1 = \frac{20}{19}$, $x_2 = \frac{45}{19}$, and z still equals 5.
- **41.** Maximum is about 480.8 at (0, 5.16, 53.20, 31.37).
- **43.** Maximum is about 346.88 at (14.78, 0, 60.51, 0).
- **45.** False. The entering variable corresponds to the most negative entry.

Section 9.4 (page 478)

1. (Maximize) 3. (Maximize) Objective function: Objective function: $z = 6y_1 + 6y_2$ $z = 5y_1 + 8y_2 + 6y_3$ Constraints: Constraints: $2y_1 + y_2 \le 2$ $y_1 + 2y_2 + 2y_3 \le 9$ $y_1 + 2y_2 \le 2$ $2y_1 + 2y_2 + y_3 \le 6$ $y_1, y_2, y_3 \geq 0$ $y_1, y_2 \ge 0$ 5. (Maximize) Objective function: $z = 7y_1 + 4y_2$ Constraints: $y_1 + y_2 \le 14$ $y_1 + 2y_2 \le 20$ $2y_1 + y_2 \le 24$ $y_1, y_2 \ge 0$ 7. (a) Minimum is 6 at (1, 1). 9. (a) Minimum is 13 at (1, 1). (b) (Maximize) (b) (Maximize) Objective function: Objective function: $z = 3y_1 + 5y_2$ $z = 3y_1 + 5y_2$ Constraints: Constraints: $y_1 + 3y_2 \le 3$ $y_1 + 3y_2 \le 5$ $2y_1 + 2y_2 \le 3$ $2y_1 + 2y_2 \le 8$ $y_1, y_2 \ge 0$ $y_1, y_2 \ge 0$ (c) Maximum is 6 at $\left(\frac{3}{4}, \frac{3}{4}\right)$. (c) Maximum is 13 at $\left(\frac{7}{2}, \frac{1}{2}\right)$. **11.** (a) Minimum is 8 at $(\frac{4}{3}, \frac{5}{3})$. (b) (Maximize) Objective function: $z = 3y_1 + 2y_2$ Constraints: $y_1 - y_2 \leq 1$ $y_1 + 2y_2 \le 4$ $y_1, y_2 \ge 0$ (c) Maximum is 8 at (2, 1). **13.** (a) Minimum is 9 at $(\frac{1}{2}, 2)$. (b) (Maximum) Objective function: $z = 4y_1 + 2y_2$ Constraints: $4y_1$ ≤ 6 $y_1 + y_2 \le 3$ $y_1, y_2 \ge 0$ (c) Maximum is 9 at $\left(\frac{3}{2}, \frac{3}{2}\right)$. **15.** Minimum is $\frac{9}{5}$ at $(1, \frac{9}{5})$. **17.** Minimum is 8 at (0, 8). **19.** Minimum is 5 at (5, 0). **21.** Minimum is 18 at $(\frac{1}{5}, 2, \frac{7}{5})$. **23.** Minimum is 64 at $(\frac{4}{3}, 4, 16)$. 25. 22.5 days for plant 1 10.5 days for plant 2 4.75 days for plant 3 Minimum operating cost: \$2,152,500 27. Answers will vary. 29. 1 liter of drink A 31. 3 liters of drink A 1 liter of drink B 0 liters of drink B Minimum cost: \$5 Minimum cost: \$3 **33.** Minimum is 87.14 at (21.43, 2.86, 25.71, 0).

- **9.** Maximum is 12 at (0, 6).
- **11.** Minimum is 16 at any point on the line segment between (0, 8)and (2, 7).
- **13.** Maximum is 25 at (5, 20, 0).
- **15.** Maximum is 12 at (0, 6). The solution is the same.
- 17. Maximum is 16 at (2, 7). The value of w is the same, but the point (x_1, x_2) is different. (Note: Any point on the line segment between (0, 6) and (2, 7) is an optimal solution.)
- **19.** Maximum is 25 at (5, 20, 0). The solution is the same.
- **21.** Maximum is 40 at (0, 8). 23. Maximum is 108 at (0, 36).
- **25.** Minimum is 15 at (5, 10). **27.** Maximum is 30 at (5, 20, 0).
- **29.** Minimum is -20 at $(11, \frac{1}{2}, 0)$. (Note: Any point on the line segment between $(11, \frac{1}{2}, 0)$ and (10, 0, 0) is an optimal solution.)
- **31.** Maximum is 9 at (4, 1). **33.** Maximum is 4 at (1, 4).
- **35.** Maximum is 6 at (0, 3). **37.** Maximum is 24 at (1, 4).
- **39.** Maximum is 0 at (2, 0). **41.** Maximum is 9 at (4, 5). **45.** Maximum is -4 at (2, 0).

49. 600 tires from S_1 to C_2

500 tires from S_2 to C_1

Minimum cost: \$1100

- **43.** Maximum is 3 at (0, 3).
- **47.** 300 tires from S_1 to C_1 600 tires from S_1 to C_2 200 tires from S_2 to C_1 Minimum cost \$1100

F 1		- 7
<u> </u>	1.2	۱.
JI.	10	ι
		-

(a)		Outlet I	Outlet II	
	Plant A	а	5000 - a	
	Plant B	3000 - a	а	

(b) Minimum cost: \$40,000

53. (a)		Customer 1	Customer 2
	Factory 1	0	200
·	Factory 2	200	100

(b) Minimum cost: \$14,500

55. 9 television ads

4 newspaper ads

Maximum audience: 147,000,000

- **57.** Feasible solution; s_1 and s_2 are positive.
- **59.** Feasible solution; s_1 and s_2 are positive.
- **61.** Not a feasible solution; s_3 is negative.
- 63. True. See paragraph before Example 2.

(page 491) **Review Exercises**

- 7. Minimum is 0 at (0, 0). Maximum is 47 at (5, 8).
- Minimum is 0 at (0, 0). 9. Maximum is 20 at (5, 0).
- **11.** Minimum is 0 at (0, 0). Maximum is 2100 at $y = -\frac{5}{6}x + 70$ where $30 \le x \le 60$.
- **13.** Minimum is 0 at (0, 0). **15.** Minimum is 3 at (3, 0). Maximum is 125 at (25, 0). Maximum is 11 at (5, 2).
- **17.** Minimum is -6 at (0, 6). **19.** Maximum is 26 at (12, 7). Maximum is $\frac{64}{3}$ at $\left(8, \frac{8}{3}\right)$.
- **21.** Maximum is 20 at $\left(0, \frac{48}{5}, \frac{4}{5}\right)$. (Note: Any point on the line segment between $(0, \frac{48}{5}, \frac{4}{5})$ and (0, 0, 20) is an optimal solution.)
- 23. Maximum is 232 at (100, 132).
- 25. Maximum is 3599 at (110, 537, 146). 27. (Maximize) Objective function: $z = 30y_1 + 75y_2$ Constraints: $y_1 + 3y_2 \le 7$
 - $y_1 + 6y_2 \le 3$
 - $2y_1 + 4y_2 \le 1$
 - $y_1, y_2 \ge 0$

- **29.** Minimum is 75 at (5, 2).
- **31.** Minimum is 6006 at $\left(\frac{81}{2}, 138, 111\right)$.
- **33.** Minimum is $\frac{118}{3}$ at $(\frac{4}{3}, \frac{1}{3}, 0)$. **35.** Maximum is 31 at (1, 5).
- **37.** Maximum is 67 at (7, 27, 26).
- **39.** Minimum is 90 at (10, 0, 0).
- **41.** $x + y \le 1500, x \ge 400, y \ge 600$

- **43.** (a) 2 vests, 5 purses (b) \$500
- 45. ⁵/₃ liters of dietary drink I
 ⁴/₃ liters of dietary drink II
 Minimum cost: \$19
 47. 5 liters of dietary drink I
 0 liters of dietary drink II
 Minimum cost: \$5
- **49.** 3 bags of Brand X 6 bags of Brand Y Minimum cost: \$345
- **51.** Minimum cost is \$4800 when mines A, B, and C are operated for 7, 5, and 24 days, respectively. (*Note:* Any point in the triangular region bounded by (7, 5, 24), (12, 0, 24), and (7, 0, 34), is an optimal solution.)