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7.4 Applications of Eigenvalues and Eigenvectors

Model population growth using an age transition matrix and an

age distribution vector, and find a stable age distribution vector.

Use a matrix equation to solve a system of first-order linear 

differential equations.

Find the matrix of a quadratic form and use the Principal Axes

Theorem to perform a rotation of axes for a conic and a 

quadric surface.

POPULATION GROWTH

Matrices can be used to form models for population growth. The first step in this

process is to group the population into age classes of equal duration. For instance, if the

maximum  life span of a member is years, then the following intervals represent the

age classes.

First age class

Second age class

th age class

The age distribution vector represents the number of population members in each

age class, where

Over a period of years, the probability that a member of the th age class will 

survive to become a member of the age class is given by where

The average number of offspring produced by a member of the th age class is given by

where

These numbers can be written in matrix form, as follows.

Multiplying this age transition matrix by the age distribution vector for a specific time

period produces the age distribution vector for the next time period. That is,

Example 1 illustrates this procedure.
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A Population Growth Model

A population of rabbits has the following characteristics.

a. Half of the rabbits survive their first year. Of those, half survive their second year.

The maximum life span is 3 years.

b. During the first year, the rabbits produce no offspring. The average number of 

offspring is 6 during the second year and 8 during the third year.

The population now consists of 24 rabbits in the first age class, 24 in the second,

and 20 in the third. How many rabbits will there be in each age class in 1 year?

SOLUTION

The current age distribution vector is

and the age transition matrix is

After 1 year, the age distribution vector will be

Finding a Stable Age Distribution Vector

Find a stable age distribution vector for the population in Example 1.

SOLUTION

To solve this problem, find an eigenvalue and a corresponding eigenvector such that

The characteristic polynomial of is 

(check this), which implies that the eigenvalues are and 2. Choosing the positive

value, let Verify that the corresponding eigenvectors are of the form

For instance, if then the initial age distribution vector would be

and the age distribution vector for the next year would be

Notice that the ratio of the three age classes is still 16 : 4 : 1, and so the percent of 

the population in each age class remains the same.
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Simulation
Explore this concept further with 
an electronic simulation available
at www.cengagebrain.com.

REMARK
If the pattern of growth in

Example 1 continued for 

another year, then the rabbit

population would be

From the age distribution 

vectors and you can

see that the percent of rabbits

in each of the three age classes

changes each year. To obtain 

a stable growth pattern, one 

in which the percent in each

age class remains the same

each year, the age

distribution vector must be 

a scalar multiple of the 

age distribution vector. That is,

Example 2

shows how to solve this 

problem.
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SYSTEMS OF LINEAR DIFFERENTIAL 
EQUATIONS (CALCULUS)

A system of first-order linear differential equations has the form

where each is a function of and If you let

and

then the system can be written in matrix form as

Solving a System of Linear 
Differential Equations

Solve the system of linear differential equations.

SOLUTION

From calculus, you know that the solution of the differential equation is

So, the solution of the system is

The matrix form of the system of linear differential equations in Example 3 is or

So, the coefficients of in the solutions are given by the eigenvalues of the

matrix 

If is a diagonal matrix, then the solution of

can be obtained immediately, as in Example 3. If is not diagonal, then the solution

requires more work. First, attempt to find a matrix that diagonalizes Then, the

change of variables and produces

where is a diagonal matrix. Example 4 demonstrates this procedure.P 21AP
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Solving a System of Linear 
Differential Equations

Solve the system of linear differential equations.

SOLUTION

First, find a matrix that diagonalizes The eigenvalues of are 

and with corresponding eigenvectors and

Diagonalize using the matrix whose columns consist of and 

to obtain

and

The system has the following form.

The solution of this system of equations is

To return to the original variables and , use the substitution and write

which implies that the solution is

If has eigenvalues with multiplicity greater than 1 or if has complex 

eigenvalues, then the technique for solving the system must be modified.

1. Eigenvalues with multiplicity greater than 1: The coefficient matrix of the system

is

The only eigenvalue of is and the solution of the system is

2. Complex eigenvalues: The coefficient matrix of the system

is

The eigenvalues of are and and the solution of the system is

Try checking these solutions by differentiating and substituting into the original 

systems of equations.
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QUADRATIC FORMS

Eigenvalues and eigenvectors can be used to solve the rotation of axes problem 

introduced in Section 4.8. Recall that classifying the graph of the quadratic equation

Quadratic equation

is fairly straightforward as long as the equation has no -term (that is, ). If the

equation has an -term, however, then the classification is accomplished most easily

by first performing a rotation of axes that eliminates the -term. The resulting 

equation (relative to the new -axes) will then be of the form

You will see that the coefficients and are eigenvalues of the matrix

The expression

Quadratic form

is called the quadratic form associated with the quadratic equation 

and the matrix is called the matrix of the quadratic form. Note that the matrix is

symmetric. Moreover, the matrix will be diagonal if and only if its corresponding

quadratic form has no -term, as illustrated in Example 5.

Finding the Matrix of a Quadratic Form

Find the matrix of the quadratic form associated with each quadratic equation.

a. b.

SOLUTION

a. Because and the matrix is

Diagonal matrix (no -term)

b. Because and the matrix is

Nondiagonal matrix ( -term)

In standard form, the equation is

which is the equation of the ellipse shown in Figure 7.3. Although it is not apparent 

by inspection, the graph of the equation is similar. 

In fact, when you rotate the - and -axes counterclockwise to form a new 

-coordinate system, this equation takes the form

which is the equation of the ellipse shown in Figure 7.4.

To see how to use the matrix of a quadratic form to perform a rotation of axes, let
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Figure 7.3
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Then the quadratic expression can be written in

matrix form as follows.

If then no rotation is necessary. But if then because is symmetric, you

can apply Theorem 7.10 to conclude that there exists an orthogonal matrix such that

is diagonal. So, if you let

then it follows that and 

The choice of the matrix must be made with care. Because is orthogonal, its 

determinant will be It can be shown (see Exercise 65) that if is chosen so that

then will be of the form

where gives the angle of rotation of the conic measured from the positive -axis to the

positive -axis. This leads to the Principal Axes Theorem.

Rotation of a Conic

Perform a rotation of axes to eliminate the -term in the quadratic equation 

SOLUTION

The matrix of the quadratic form associated with this equation is

Because the characteristic polynomial of is (check this), it follows

that the eigenvalues of are and So, the equation of the rotated conic is 

which, when written in the standard form

is the equation of an ellipse. (See Figure 7.4.)
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REMARK
Note that the matrix product

has the form

1 s2d sin u 1 e cos udy9.

sd cos u 1 e sin udx9

fd     egPX9

Principal Axes Theorem 

For a conic whose equation is the 

rotation given by eliminates the -term when is an orthogonal

matrix, with that diagonalizes That is,

where and are eigenvalues of The equation of the rotated conic is 

given by
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In Example 6, the eigenvectors of the matrix are

and

which you can normalize to form the columns of as follows.

Note first that which implies that is a rotation. Moreover, because 

cos the angle of rotation is as shown in Figure 7.4.

The orthogonal matrix specified in the Principal Axes Theorem is not unique. Its

entries depend on the ordering of the eigenvalues and and on the subsequent

choice of eigenvectors and For instance, in the solution of Example 6, any of the

following choices of would have worked.

For any of these choices of the graph of the rotated conic will, of course, be the

same. (See Figure 7.5.)

Figure 7.5

The following summarizes the steps used to apply the Principal Axes Theorem.
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form the columns of 
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Example 7 shows how to apply the Principal Axes Theorem to rotate a conic whose

center has been translated away from the origin.

Rotation of a Conic

Perform a rotation of axes to eliminate the -term in the quadratic equation

SOLUTION

The matrix of the quadratic form associated with this equation is

The eigenvalues of are 

and

with corresponding eigenvectors of 

and

This implies that the matrix is 

where 

Because and the angle of rotation is 

Finally, from the matrix product

the equation of the rotated conic is

In standard form, the equation

is the equation of a hyperbola. Its graph is shown in Figure 7.6.

Quadratic forms can also be used to analyze equations of quadric surfaces in 

which are the three-dimensional analogs of conic sections. The equation of a quadric

surface in is a second-degree polynomial of the form

There are six basic types of quadric surfaces: ellipsoids, hyperboloids of one 

sheet, hyperboloids of two sheets, elliptic cones, elliptic paraboloids, and hyperbolic 

paraboloids. The intersection of a surface with a plane, called the trace of the surface

in the plane, is useful to help visualize the graph of the surface in The six basic types

of quadric surfaces, together with their traces, are shown on the next two pages.
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Ellipsoid

Ellipse Parallel to xy-plane

Ellipse Parallel to xz-plane

Ellipse Parallel to yz-plane

The surface is a sphere when

a 5 b 5 c Þ 0.

Plane              Trace  
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1
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c2
5 1

Hyperboloid of One Sheet

Ellipse Parallel to xy-plane

Hyperbola Parallel to xz-plane

Hyperbola Parallel to yz-plane

The axis of the hyperboloid 

corresponds to the variable whose

coefficient is negative.
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Hyperboloid of Two Sheets

Ellipse Parallel to xy-plane
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The axis of the hyperboloid 

corresponds to the variable whose

coefficient is positive. There is 

no trace in the coordinate plane 

perpendicular to this axis.
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Elliptic Cone

Ellipse Parallel to xy-plane

Hyperbola Parallel to xz-plane

Hyperbola Parallel to yz-plane

The axis of the cone corresponds 

to the variable whose coefficient 

is negative. The traces in the 

coordinate planes parallel to this

axis are intersecting lines.
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Elliptic Paraboloid

Ellipse Parallel to xy-plane
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Parabola Parallel to yz-plane

The axis of the paraboloid 

corresponds to the variable raised

to the first power.
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LINEAR 
ALGEBRA 
APPLIED

Some of the world’s most unusual architecture makes use

of quadric surfaces. For instance, Catedral Metropolitana

Nossa Senhora Aparecida, a cathedral located in Brasilia,

Brazil, is in the shape of a hyperboloid of one sheet. It was

designed by Pritzker Prize winning architect Oscar Niemeyer,

and dedicated in 1970. The sixteen identical curved steel

columns, weighing 90 tons each, are intended to represent

two hands reaching up to the sky. Pieced together between

the columns, in the 10-meter-wide and 30-meter-high 

triangular gaps formed by the columns, is semitransparent

stained glass, which allows light inside for nearly the entire

height of the columns.

The quadratic form of the equation

Quadric surface

is defined as

Quadratic form

The corresponding matrix is

In its three-dimensional version, the Principal Axes Theorem relates the eigenvalues

and eigenvectors of to the equation of the rotated surface, as shown in Example 8.

Rotation of a Quadric Surface

Perform a rotation of axes to eliminate the -term in the quadratic equation

SOLUTION

The matrix associated with this quadratic equation is

which has eigenvalues of and So, in the rotated -system,

the quadratic equation is which in standard form is

The graph of this equation is an ellipsoid. As shown in Figure 7.7, the -axes represent

a counterclockwise rotation of about the -axis. Moreover, the orthogonal matrix

whose columns are the eigenvectors of has the property that is diagonal.P TAPA,
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Figure 7.7
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