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1.3 Applications of Systems of Linear Equations

Set up and solve a system of equations to fit a polynomial function

to a set of data points.

Set up and solve a system of equations to represent a network.

Systems of linear equations arise in a wide variety of applications. In this section you

will look at two applications, and you will see more in subsequent chapters. The first

application shows how to fit a polynomial function to a set of data points in the plane.

The second application focuses on networks and Kirchhoff’s Laws for electricity.

POLYNOMIAL CURVE FITTING

Suppose points in the -plane

represent a collection of data and you are asked to find a polynomial function of degree

whose graph passes through the specified points. This procedure is called polynomial curve

fitting. If all -coordinates of the points are distinct, then there is precisely one polynomial

function of degree (or less) that fits the points, as shown in Figure 1.4.

To solve for the coefficients of substitute each of the points into the 

polynomial function and obtain linear equations in variables 

Example 1 demonstrates this procedure with a second-degree polynomial.

Polynomial Curve Fitting

Determine the polynomial whose graph passes through the

points and 

SOLUTION

Substituting 2, and 3 into and equating the results to the respective -values

produces the system of linear equations in the variables and shown below.

The solution of this system is 

and 

so the polynomial function is

Figure 1.5 shows the graph of p.
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Simulation
Explore this concept further with 
an electronic simulation available
at www.cengagebrain.com.
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Polynomial Curve Fitting

Find a polynomial that fits the points 

and 

SOLUTION

Because you are given five points, choose a fourth-degree polynomial function

Substituting the given points into produces the following system of linear 

equations. 

The solution of these equations is

which means the polynomial function is

Figure 1.6 shows the graph of 

The system of linear equations in Example 2 is relatively easy to solve because 

the -values are small. For a set of points with large -values, it is usually best to 

translate the values before attempting the curve-fitting procedure. The next example

demonstrates this approach.

Translating Large -Values Before Curve Fitting

Find a polynomial that fits the points

SOLUTION

Because the given -values are large, use the translation to obtain

This is the same set of points as in Example 2. So, the polynomial that fits these points is

Letting you have
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An Application of Curve Fitting

Find a polynomial that relates the periods of the three planets that are closest to the Sun

to their mean distances from the Sun, as shown in the table. Then test the accuracy of

the fit by using the polynomial to calculate the period of Mars. (In the table, the mean

distance is given in astronomical units, and the period is given in years.)

SOLUTION

Begin by fitting a quadratic polynomial function

to the points 

and 

The system of linear equations obtained by substituting these points into is

The approximate solution of the system is

which means that an approximation of the polynomial function is

Using to evaluate the period of Mars produces

years.

Note that the actual period of Mars is 1.881 years. Figure 1.7 compares the estimate

with the actual period graphically.

Figure 1.7

P
er

io
d

 (
in

 y
ea

rs
)

Mean distance from the Sun

(in astronomical units)

x

1.5

2.0

1.0

0.5

0.5 1.0 1.5 2.0

Mercury (0.387, 0.241)
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(1.524, 1.881)
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y = p(x)

ps1.524d < 1.918

psxd

psxd 5 20.0634 1 0.6119x 1 0.4515x2.

a2 < 0.4515a1 < 0.6119,a0 < 20.0634,

 a0 1  a1 1  a2 5 1. 

 a0 1  0.723a1 1  s0.723d2a2 5 0.615 

 a0 1  0.387a1 1  s0.387d2a2 5 0.241 

psxd

s1, 1d.s0.723, 0.615d,s0.387, 0.241d,

psxd 5 a0 1 a1x 1 a2x 2

Planet Mercury Venus Earth Mars

Mean Distance 0.387 0.723 1.000 1.524

Period 0.241 0.615 1.000 1.881
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Planet Mercury Venus Earth Mars

Mean Distance xxc 0.387 0.723 1.000 1.524

ln x 20.949 20.324 0.0 0.421

Period x yc 0.241 0.615 1.000 1.881

ln y 21.423 20.486 0.0 0.632

As illustrated in Example 4, a polynomial that fits some of the points in a data 

set is not necessarily an accurate model for other points in the data set. Generally, the

farther the other points are from those used to fit the polynomial, the worse the fit. For

instance, the mean distance of Jupiter from the Sun is 5.203 astronomical units. Using

in Example 4 to approximate the period gives 15.343 years—a poor estimate of

Jupiter’s actual period of 11.860 years.

The problem of curve fitting can be difficult. Types of functions other than 

polynomial functions may provide better fits. For instance, look again at the curve-fitting

problem in Example 4. Taking the natural logarithms of the given distances and periods

produces the following results.

Now, fitting a polynomial to the logarithms of the distances and periods produces the

linear relationship

shown in Figure 1.8.

Figure 1.8

From it follows that or In other words, the square of the

period (in years) of each planet is equal to the cube of its mean distance (in astronomical

units) from the Sun. Johannes Kepler first discovered this relationship in 1619.
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LINEAR 
ALGEBRA 
APPLIED

Researchers in Italy studying the acoustical noise levels

from vehicular traffic at a busy three-way intersection on a

college campus used a system of linear equations to model

the traffic flow at the intersection. To help formulate the

system of equations, “operators” stationed themselves at

various locations along the intersection and counted the

numbers of vehicles going by. (Source: Acoustical Noise

Analysis in Road Intersections: A Case Study, Guarnaccia, Claudio,

Recent Advances in Acoustics & Music, Proceedings of the 11th

WSEAS International Conference on Acoustics & Music: Theory &

Applications, June, 2010)

gemphotography/Shutterstock.com  
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NETWORK ANALYSIS

Networks composed of branches and junctions are used as models in such fields 

as economics, traffic analysis, and electrical engineering. In a network model,

you assume that the total flow into a junction is equal to the total flow out of the 

junction. For instance, the junction shown in Figure 1.9 has 25 units flowing into 

it, so there must be 25 units flowing out of it. You can represent this with the 

linear equation

Figure 1.9

Because each junction in a network gives rise to a linear equation, you can analyze

the flow through a network composed of several junctions by solving a system of 

linear equations. Example 5 illustrates this procedure.

Analysis of a Network

Set up a system of linear equations to represent the network shown in Figure 1.10. Then

solve the system.

SOLUTION

Each of the network’s five junctions gives rise to a linear equation, as follows.

The augmented matrix for this system is

Gauss-Jordan elimination produces the matrix

From the matrix above, you can see that

and

Letting you have

where is any real number, so this system has infinitely many solutions.t
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In Example 5, suppose you could control

the amount of flow along the branch labeled 

Using the solution of Example 5, you could then

control the flow represented by each of the other

variables. For instance, letting would

reduce the flow of and to zero, as shown in

Figure 1.11. 

You may be able to see how the type of network analysis demonstrated in Example 5

could be used in problems dealing with the flow of traffic through the streets of a city

or the flow of water through an irrigation system.

An electrical network is another type of network where analysis is commonly

applied. An analysis of such a system uses two properties of electrical networks known

as Kirchhoff’s Laws.

1. All the current flowing into a junction must flow out of it.

2. The sum of the products ( is current and is resistance) around a closed path

is equal to the total voltage in the path.

In an electrical network, current is measured in amperes, or amps resistance is

measured in ohms and the product of current and resistance is measured in 

volts The symbol represents a battery. The larger vertical bar denotes

where the current flows out of the terminal. The symbol denotes resistance. An

arrow in the branch indicates the direction of the current.

Analysis of an Electrical Network

Determine the currents and for the electrical network shown in Figure 1.12.

SOLUTION

Applying Kirchhoff’s first law to either junction produces

Junction 1 or Junction 2

and applying Kirchhoff’s second law to the two paths produces

Path 1

Path 2

So, you have the following system of three linear equations in the variables 

and .

Applying Gauss-Jordan elimination to the augmented matrix

produces the reduced row-echelon form

which means amp, amps, and amp.I3 5 1I2 5 2I1 5 1
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0

0
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 I1 2  I2 1  I3 5  0

I3

I2,I1,

R2I2 1 R3I3 5 2I2 1 4I3 5 8.

R1I1 1 R2I2 5 3I1 1 2I2 5 7
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REMARK
A closed path is a sequence 

of branches such that the

beginning point of the first

branch coincides with the end

point of the last branch.

Figure 1.12

1 2

Path 1

Path 2

I1

I2

I3

R1 = 3

R2 = 2

R3 = 4 8 V

7 V

Ω

Ω

Ω



Analysis of an Electrical Network

Determine the currents and for the electrical network shown in

Figure 1.13.

Figure 1.13

SOLUTION

Applying Kirchhoff’s first law to the four junctions produces

Junction 1

Junction 2

Junction 3

Junction 4

and applying Kirchhoff’s second law to the three paths produces

Path 1

Path 2

Path 3

You now have the following system of seven linear equations in the variables 

and .

The augmented matrix for this system is

Using Gauss-Jordan elimination, a graphing utility, or a software program, solve this

system to obtain

and

meaning amp, amps, amp, amp, amps, and amps.I6 5 2I5 5 3I4 5 1I3 5 1I2 5 2I1 5 1
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