Chapter 6
The Three Common Approaches for
Calculating Value at Risk




Introduction

e The VaR is started in 1993, when it was endorsed by
the Group of Thirty (G-30) as part of “best practices”
for dealing with derivatives

e The methodology behind VaR is the combination of
finance theory and statistics

= Finance theory: pricing and calculating the sensitivity of
financial instruments

m Statistics: studying the behavioral of the distributions of risk
factors
e VaR Is viewed as the best single measure to assess
market risk because it combines information on the
sensitivity of the value to changes in market-risk
factors with information on the probable amount of
change In those factors



Introduction

o Definition 1: VaR is the calculation of the level of loss
(outcome) that Is so bad that there isonly a 1 in 100
chance of there being a loss (outcome) worse that the
calculated VaR

e Definition 2: VaR Is reported as the deviation between
the mean and the percentile

* |If the time horizon Is very short, the average return is close to
zero and can be ignored, so the two definitions usually give
similar values

e Three approaches to calculate VaR:
= Parametric VaR (Definition 2)
= Historical Simulation (Definition 1)
= Monte Carlo-Simulation(Definition-1)



Parametric VaR

e * ftlLinear VaR, Variance-Covariance VaR, Greek-
normal VaR, Delta-Normal VVaR, Delta-Gamma
Normal VaR

1. Define the set of risk factors

- o Portfolio (p)
2. Find 0 Risk Factor (7))

3. Using historical data of the risk factors to calculate the
standard deviation of the changes and the correlations
between them

o 0
40—22;;ﬂ1

i=l j=1

5. Assume the loss dlstrlbutlon IS normally distributed, then
VaR g, =2.32%x 0,




o Example 1 : stock (5), p.106 ~107
2 : bond (»), p.107 ~108
3 : foreign bond (r, FX), p.108 ~ 112

4 : foreign bond (r, FX) + foreign currency (FX),
p.113 ~ 114

5 : foreign bond (», FX) (% Jgreturns = normal
distributions) p.132 ~ 133

o Exponentially Weighted Moving Average (EWMA) p. 134 ~135

The covariance is calculated recursively using yesterday’s estimate of the
covariance and today’s market change.

B 2
O, i~ (1- ﬂ‘)xi,txj,t T X’Gz’.j,t—l

*In the RiskMetrics model of J. P. Morgan, A is estimated to be 0.94 for
daily data or 0.97 for monthly data.
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1. 3% B B
2. ¥ 2+ 5 d1VaRz_ contribution (explained in Ch7)

o ik ,ﬁ‘,h
If p(r) # &linear function » | * sensitivity if = > € 3%
Ty

2. X% f9 it extreme tail events, such as crises (%] 3%

normal distribution)

3. assume variance-covariance between risk factors is stable

and constant over time



e VVaR Calculator (p.114 Figure 6-2)

e The VaR is typically run overnight, and ideally, at the
start of the day, senior management should get a
report of VVaR to show how much could be lost today,
and the main causes of such a loss

e Intraday calculation of VaR:
= T0 manage some fast-moving positions

= To let the trader know his VaR limit which is the important
Information for him to decide the next trade

* Incremental calculation: :& ¥ #-%7= % derivative
vectors4c + w — p sderivative vectors » B % wn— p ¥
srcovariance matrix -k 2+ & intraday VaR (p.116 Flgure ;

2 2D\



Historical-Simulation VaR

1. Calculate the percentage change of the risk factor on
each day (usually the data of the last 250 trading days Is
taken as input)

2. Each percentage change is then multiplied by today’s
market values to represent 250 scenarios for tomorrow’s
values

3. For each of these scenarios, the portfolio Is valued using
full, nonlinear pricing models

4. The third-worst scenarios is selected as being the 99%
VaR

*p.116~117, Table 6-2
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2. Unpleasant “window effect” : § 250* srwindow # %7
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Monte Carlo Simulation VaR

1. Randomly creating many scenarios for future rates of
the risk factors (The scenarios start from today’s
market condition and go one day forward to give
possible values at the end of that day)

2. Using nonlinear pricing model to estimate the change
In value for each end-of-day scenario

3. Calculating VaR according to the 1-percentile worst
result

*p.119 Figure 6-4
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o ILEE
L Azparametrict® - F] 2 E_& * = & cnonlinear pricing
model > m 2% &R+ i\approxmatlon#;x“ A B

1L

L A=historical VaR+4# » %] & ¥ generate infinite number
of scenarios

o X HL
1. #grisk factor F =+ =t > A r 2t E F F S EBR
2. B F_¥ 2 ftjoint distribution of the risk factors 4 E3%

° ﬁ‘xiﬁi/%gi A 4 7 Brandom variablessnde % > ¥ £ % 4
H variance-covariancez_ 3% %_> i ¥ & f|* the
technique of the covariance matrix decomposition
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(]:[) { ;x — O-x 1
r, = O'y(Zl P+ Z,\1- p? )
oL 5 AZ1E = B FHcIL } )T}m T B
Cholesky Decomposition
Eigenvalue Decomposition

% In Excel, “=NORMSINV (RAND() )" 7 r2 fici &) #-2F ¥
iy & fie 7
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Cholesky Decomposition

. _ .
Covariance matrix C = A" 4. # ¥ g% 4 :{ ﬂ}

0 ¢
a=0, b:PUXUy} {az off }
— =

b=po.0, c =0'y2 aff B+ ¢°
— b b*
77 =7 jg : o = a’ = —, — e —
ﬁ*‘: l p \/; ¢ g

~ ~
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‘ Eigenvalue Decomposition

C=E"-A-E
_/11 0
/12 T
where A = , CEE =1
0 A,

*If A, &~ > % risk factori & & %
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where A2 =

1 \/72

—B"B where B=A2-E

N

[ry 7y - ;:N]lxN =[Z,

Z
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2 77 ZN]lxN .[B]NXN
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o\Why the Cholesky and Eigenvalue decompositions work?
The variance-covariance matrix of [ r, --- 1, ]is

__ VT [ _

E|['[nn ]| =E| 47| 7 |[z2, - 2, ]4
A | 4N
e _

—ATE|| P[22, - zy]|A= AT A= AT4=C
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o P.124, FX &3 rz_ |+
e p.125~126, yield curvez_ ]+
* %] % E&_d eigenvectorsti = - @ eigenvectorsE_F 4p jb =
(¢ ETE=[» ¥ {8 4v) > #70i B¢ chi fprow > 3825 4pfb
S TUT BT g A S T Aplh 52 TR

—

(independent scenarios of movements of market factors)

* For example, changes in the yield curve can be regarded as
Independent movements of shift, twist, flex, and wiggle
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Improve the speed of Monte Carlo Simulation

o Parallel Processing (* % & & "&— 42§3)

o Stabilization of Results (; > scenarlos)

()7 * =& = 3Rcreate?™ & % scenarios » ¥ & &tk & 2 A ;rv;':{
Frisk-factor & m % > %% X_F]7 Fscenariosm % > 4ot
ko TR ABEEZEF F =t K “average out” the random
fluctuations

(i) ¥ - 2 normally distribution > change variance-
covariance matrix and the weight of each security daily In
the portfolio (4-® B %5t ? - BE A 4 - = » 54 % 1
% o ¥ - A E R SRS 0 fRiE 4P e fseed)

R T - IR e § - M\ pedistribution® & 37
Fb )
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e Variance-reduction technique

= Antitheticsampling Z, - Z ,, Z, - Z
2 2
) )
7, -7,
2
= Stratification o o .
(p.129, one dimension <4 — —
1) 1 2 e N
(p.128 == p.129 Figure 6-6,
two dimensions =]/ “'?FFT) r,
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= Importance sampling

focus on an important region » Bl4e & 5 crisis in the tail of the
distribution » B]4c ~ g & ¥ 0 % ﬁ‘zc FEABEr R RE

B 5 (- M7 iR — g% & change measure - ;L:—mean

# Fltail - #4 ¥ {6 » £ #achange measure » #-mean# v %)

= Latin Hypercube

I Stratification— % > 7 i ¥ 2= {4545 - Fsample » @ F_=F 5

58—

% 7§ risk factorsrgic p 3 4r > F it en 2 E;szi # well-balanced

pseudorandom numbers > & 2h:® & & & > risk factor » &% F_
concentrate on the more important risk factors

o Approximate Pricing (* v- $2 % 4F 3 iy 7

2 %

T B3 0 Blde o % BS model % % & American

/r/,l.

optionz § 1&
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Attributes and limitations shared by all three
methods

o iz = 88 VaRe™ 2
= p.104,Figure 6.1

x Common attributes:

1. Use Market-Risk factor to price thousands of different securities

held by the bank (&[4, 7, , FX, Equity Index, Forward Prices,
Implied Volatility)

2. Use the distribution of historical price changes (large amounts of
information (& % #p c0f £ 73k) vs. fresh information (& #1:m

FL )
= Common limitations and disadvantages:

1. Assume that past relationships between the risk factors will be
repeated

2. Each approach uses binning to put cash flows into a finite number
of-buckets
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Binning:
(cash flows gz 3 2 12 % » kA FE 2 2 FIH P > $piT0
¥ = — group)

bl r iz B Ak HEE T B E 24 2 cashflow >
pedl= B2 g2 B 2 2 cash flow* 2t match:

_ *
O cash-flow amount T S

@ present value CE R AL
© duration* F 4 = 3 % #Cs Co
O Stand-alone VaR

C 5 =C 3 +C 6

D5:D3+D6
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Some Caveats for using VaR

e VaR is not the worst loss

¢ VaR does not describe the losses In the left talil

= With the same value of VaR, there may be very different
maximal losses

= Therefore, the VaR of a portfolio may be greater than the
sum of the VaRs for its components (VaR fails to qualify
as a subadditive risk measure)

e VaR Is measured with some error
= Sampling period error
= Simplification error
= Higher confidence levels cause less precise VaR
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Properties for Risk Measures

o Artzner, Delbaen, Eber, Heath (1999) list four
desirable properties of risk measures for capital
adequacy purposes: (x stands for random returns)

= Monotonicity: if X, < X,, p(X,) > p(X,)

» Translation Invariance: o(X +k) = p(X) -k
= Homogeneity: p(bX)=bp(X)

= Subadditivity: p(X; +X,) < p(X,)+ p(X,)

o By definition, the VaR measure does not pass the
subadditivity property, but the conditional VaR, E/-

X|X<-VaR], will satisfy all the above properties (In
fact, only the parametric VVaR qualifies the

subadditivity property because the volatility of a
portfolio Is less than the sum of volatilities)
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o Consider a portfolio consisting of three corporate
bonds, A, B, and C, with face value of $100,000 and
default probability of 0.5% individually

= By definition, the VaR for each bond is $0, and the
summation of the VVaR for each bond is $0 as well

= The VaR for this bond portfolio is $100,000

State Bonds Probability Payoff

No default 0.995x 0.995x 0.995 = 0.9851 $0
1default |A B, C 3x 0.005x 0.995x 0.995 = 0.0149 -$100,000
2 default | AB, BC, CA | 3x 0.005x 0.005x 0.995 = 0.0000746 -$200,000
3 default | ABC 0.005x 0.005x 0.05=0.0000001 -$300,000
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