Chapter 5

Valuing Bonds

Topics Covered

© Bond Characteristics

\rightarrow Reading the financial pages after introducing the terminologies of bonds in the next slide (p. 119 Figure 5-2)
© Bond Prices and Yields
\rightarrow Bond prices and interest rates
\rightarrow YTM vs. current yield
\rightarrow Rate of Return
\rightarrow Interest Rate Risk
\rightarrow The Yield Curve
\rightarrow Nominal and Real Rates of Interest
\rightarrow Default Risk
\rightarrow Variations in Corporate Bonds

Bonds

Terminology

Bond - Security that obligates the issuer to make specified payments to the bondholder.
Coupon - The interest payments made to the bondholder.
©Face Value (Par Value or Maturity Value) - Payment at the maturity of the bond.
Coupon Rate - Annual interest payment, as a percentage of face value.

Bonds

WARNING

The coupon rate IS NOT the discount rate used in the Present Value calculations.

The coupon rate merely tells us what cash flow the bond will produce.

Since the coupon rate is listed as a \%, this misconception is quite common.

Bond Pricing

The price of a bond is the Present Value of all cash flows generated by the bond (i.e. coupons and face value) discounted at the required rate of return.

$$
P V=\frac{c p n}{(1+r)^{1}}+\frac{c p n}{(1+r)^{2}}+\ldots+\frac{(c p n+p a r)}{(1+r)^{t}}
$$

Bond Pricing

Example

What is the price of a 5.5% annual coupon bond, with a $\$ 1,000$ face value, which matures in 3 years? Assume a required return of 3.5\%.

$$
\begin{aligned}
& P V=\frac{55}{(1.035)^{1}}+\frac{55}{(1.035)^{2}}+\frac{1,055}{(1.035)^{3}} \\
& P V=\$ 1,056.03
\end{aligned}
$$

Bond Pricing

Bond Pricing

Example (continued)

What is the price of the bond if the required rate of return is 5.5% ?

$$
\begin{aligned}
& P V=\frac{55}{(1.055)^{1}}+\frac{55}{(1.055)^{2}}+\frac{1,055}{(1.055)^{3}} \\
& P V=\$ 1,000
\end{aligned}
$$

Bond Pricing

Example (continued)

What is the price of the bond if the required rate of return is 15% ?

$$
\begin{aligned}
& P V=\frac{55}{(1.15)^{1}}+\frac{55}{(1.15)^{2}}+\frac{1,055}{(1.15)^{3}} \\
& P V=\$ 783.09
\end{aligned}
$$

Bond Pricing

Conclusion:

© When the market interest rate exceeds the coupon rate, bonds sell for less than face value
© When the market interest rate is below the coupon rate, bonds sell for more that face value
© When the market interest rate equals the coupon rate, bonds are worth its face value.

Bond Pricing

Example

What is the price of the bond if the required rate of return is 3.5% AND the coupons are paid semiannually?

$$
\begin{aligned}
& P V=\frac{27.50}{(1.0175)^{1}}+\frac{27.50}{(1.0175)^{2}}+\ldots+\frac{27.50}{(1.0175)^{5}}+\frac{1,027.50}{(1.0175)^{6}} \\
& P V=\$ 1,056.49
\end{aligned}
$$

Bond Pricing

Example

Q: How did the calculation change, given semiannual coupons versus annual coupon payments?

Time Periods

Paying coupons twice a year, instead of once
doubles the total number of cash flows to be discounted in the PV formula

Discount Rate

Since the time periods are now half years, the discount rate is also changed from the annual rate to the half year rate

Bond Yields

Current Yield - Annual coupon payments divided by bond price.
OYield To Maturity - Interest rate for which the present value of the bond's payments equal the price.

Bond Yields

Calculating Yield to Maturity (YTM=r)

If you are given the price of a bond (PV) and the coupon rate, the yield to maturity can be found by solving for r.

$$
P V=\frac{c p n}{(1+r)^{1}}+\frac{c p n}{(1+r)^{2}}+\ldots .+\frac{(c p n+p a r)}{(1+r)^{t}}
$$

Bond Yields

Example

What is the YTM of a 5.5% annual coupon bond, with a $\$ 1,000$ face value, which matures in 3 years? The market price of the bond is $\$ 1,056.03$.

$$
\begin{aligned}
& P V=\frac{55}{(1+r)^{1}}+\frac{55}{(1+r)^{2}}+\frac{1,055}{(1+r)^{3}} \\
& P V=\$ 1,056.03
\end{aligned}
$$

Bond Yields

WARNING

Calculating YTM by hand can be very tedious

* It is highly recommended that you learn to use the "IRR" or "YTM" or " i " functions on a financial calculator (p.125)

Bond Yields

Rate of Return - Earnings per period per dollar invested.

$$
\text { Rate of return }=\frac{\text { total income }}{\text { investment }}=\frac{\text { coupon income }+ \text { price change }}{\text { investment }}
$$

* Rate of Return vs. Yield to Maturity (p. 127 Example 5.5)
- When interest rates do no change, the bond price changes with time so that the total return on the bond is equal to the yield to maturity.
- If the bond's yield to maturity increases, the rate of return during the period will be less than that yield.
- If the bond's yield to maturity decreases, the rate of return during the period will be greater that that yield.

Bond Valuation Spreadsheet

Bond Yield Spreadsheet

Interest Rate Risk

Interest Rate Risk

Nominal and Real rates

Default Risk

Default risk (Credit risk)

The risk that a bond issuer may default on its bonds
〇Default premium
The additional yield on a bond investors require for bearing credit risk
OInvestment grade
Bonds rated Baa or above by Moody's or BBB or above by Standard \& Poor’s
OJunk bonds
Bond with a rating below Baa or BBB

Default Risk

Standard

Moody' s \& Poor's $\underline{\text { Safety }}$
\(\left.$$
\begin{array}{lll}\text { Aaa } & \text { AAA } & \begin{array}{l}\text { The strongest rating; ability to repay interest and principal } \\
\text { is very strong. }\end{array} \\
\text { Aa } & \text { AA } & \begin{array}{l}\text { Very strong likelihood that interest and principal will be } \\
\text { repaid } \\
\text { Strong ability to repay, but some vulnerability to changes in } \\
\text { circumstances }\end{array}
$$

A \& A \& BBB

Adequate capacity to repay; more vulnerability to changes

in economic circumstances\end{array}\right]\)| Considerable uncertainty about ability to repay. |
| :--- |
| Ba |

Corporate Bonds

© Zero coupons (issued at prices considerably below par)
OFloating rate bonds (Current Treasury bill rate $+2 \%$)
Convertible bonds (with the right to exchange it for a specified number of shares of common stock, and with lower required interest rates)

Corporate Bonds

- Callable bonds and Yield to Call (8.5\% coupon, 30year maturity bond sells for $\$ 1,040$ and is callable in 10 years with a call price $\$ 1,060$

	Calculator Input	Yield to Call	Yield to Maturity
Coupon Payment	PMT	85	85
Number of Periods	n	10	30
Final Payment	FV	1,060	1,000
Price	PV	$-1,040$	$-1,040$
Answer	Compute i	8.3%	8.14%

The Yield Curve

Term Structure of Interest Rates - A listing of bond maturity dates and the interest rates that correspond with each date.

Yield Curve - Graph of the term structure (p. 130 Figure 5-7)

