Chapter 5

Valuing Bonds

Topics Covered

- **⇒** Bond Characteristics
 - → Reading the financial pages after introducing the terminologies of bonds in the next slide (p.119 Figure 5-2)
- **⊃**Bond Prices and Yields
 - → Bond prices and interest rates
 - → YTM vs. current yield
 - → Rate of Return
 - → Interest Rate Risk
 - → The Yield Curve
 - → Nominal and Real Rates of Interest
 - → Default Risk
 - → Variations in Corporate Bonds

Bonds

Terminology

- Dond Security that obligates the issuer to make specified payments to the bondholder. □
- Coupon The interest payments made to the bondholder.
- Face Value (Par Value or Maturity Value) Payment at the maturity of the bond.
- Coupon Rate Annual interest payment, as a percentage of face value.

Bonds

WARNING

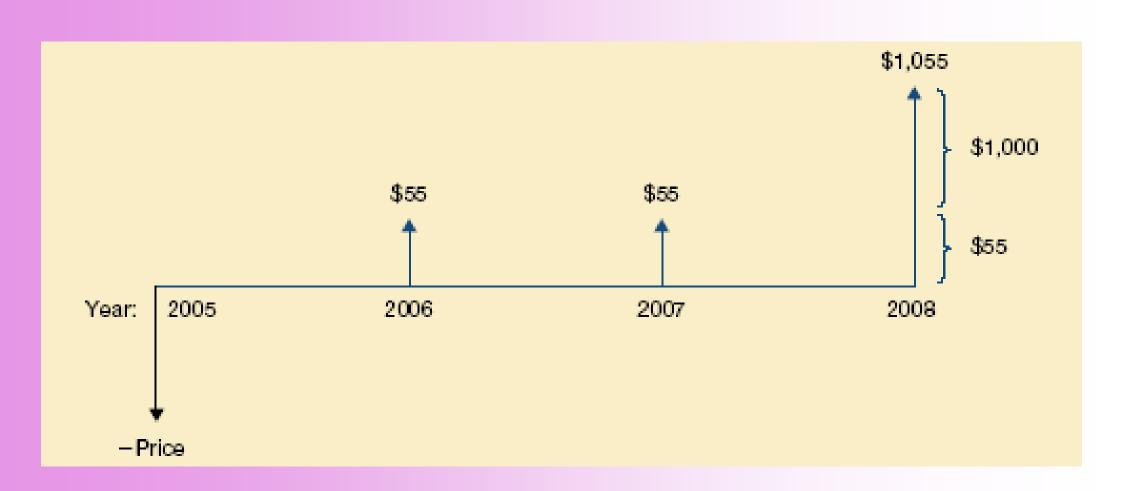
The <u>coupon rate</u> IS NOT the <u>discount rate</u> used in the Present Value calculations.

The coupon rate merely tells us what cash flow the bond will produce.

Since the coupon rate is listed as a %, this misconception is quite common.

The price of a bond is the Present Value of all cash flows generated by the bond (i.e. coupons and face value) discounted at the required rate of return.

$$PV = \frac{cpn}{(1+r)^{1}} + \frac{cpn}{(1+r)^{2}} + \dots + \frac{(cpn+par)}{(1+r)^{t}}$$


Example

What is the price of a 5.5 % annual coupon bond, with a \$1,000 face value, which matures in 3 years? Assume a required return of 3.5%.

$$PV = \frac{55}{(1.035)^{1}} + \frac{55}{(1.035)^{2}} + \frac{1,055}{(1.035)^{3}}$$

$$PV = $1,056.03$$

Example (continued)

What is the price of the bond if the required rate of return is 5.5 %?

$$PV = \frac{55}{(1.055)^{1}} + \frac{55}{(1.055)^{2}} + \frac{1,055}{(1.055)^{3}}$$

$$PV = $1,000$$

Example (continued)

What is the price of the bond if the required rate of return is 15 %?

$$PV = \frac{55}{(1.15)^1} + \frac{55}{(1.15)^2} + \frac{1,055}{(1.15)^3}$$

$$PV = $783.09$$

Conclusion:

- **○** When the market interest rate exceeds the coupon rate, bonds sell for less than face value
- **○** When the market interest rate is below the coupon rate, bonds sell for more that face value
- **○** When the market interest rate equals the coupon rate, bonds are worth its face value.

Example

What is the price of the bond if the required rate of return is 3.5% AND the coupons are paid semiannually?

$$PV = \frac{27.50}{(1.0175)^{1}} + \frac{27.50}{(1.0175)^{2}} + \dots + \frac{27.50}{(1.0175)^{5}} + \frac{1,027.50}{(1.0175)^{6}}$$

$$PV = $1,056.49$$

Example

Q: How did the calculation change, given semiannual coupons versus annual coupon payments?

Time Periods

Paying coupons twice a year, instead of once doubles the total number of cash flows to be discounted in the PV formula

Discount Rate

Since the time periods are now half years, the discount rate is also changed from the annual rate to the half year rate

- Current Yield Annual coupon payments divided by bond price.
- → Yield To Maturity Interest rate for which the present value of the bond's payments equal the price.

Calculating Yield to Maturity (YTM=r)

If you are given the price of a bond (PV) and the coupon rate, the yield to maturity can be found by solving for r.

$$PV = \frac{cpn}{(1+r)^{1}} + \frac{cpn}{(1+r)^{2}} + \dots + \frac{(cpn+par)}{(1+r)^{t}}$$

Example

What is the YTM of a 5.5 % annual coupon bond, with a \$1,000 face value, which matures in 3 years? The market price of the bond is \$1,056.03.

$$PV = \frac{55}{(1+r)^{1}} + \frac{55}{(1+r)^{2}} + \frac{1,055}{(1+r)^{3}}$$

$$PV = \$1,056.03$$

WARNING

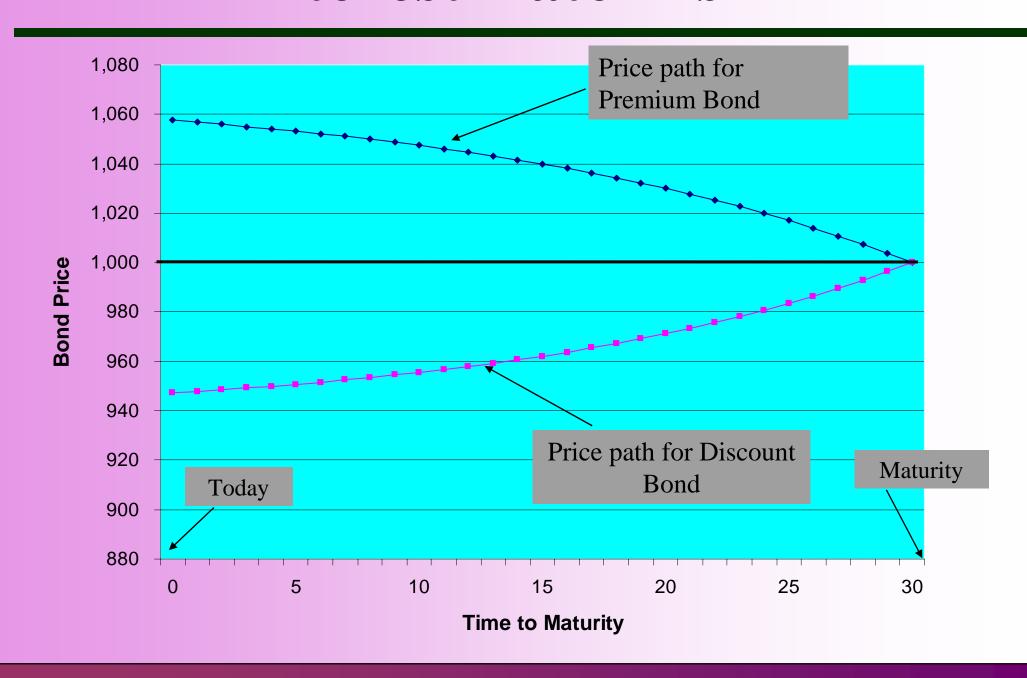
Calculating YTM by hand can be very tedious

* It is highly recommended that you learn to use the "IRR" or "YTM" or "i" functions on a financial calculator (p.125)

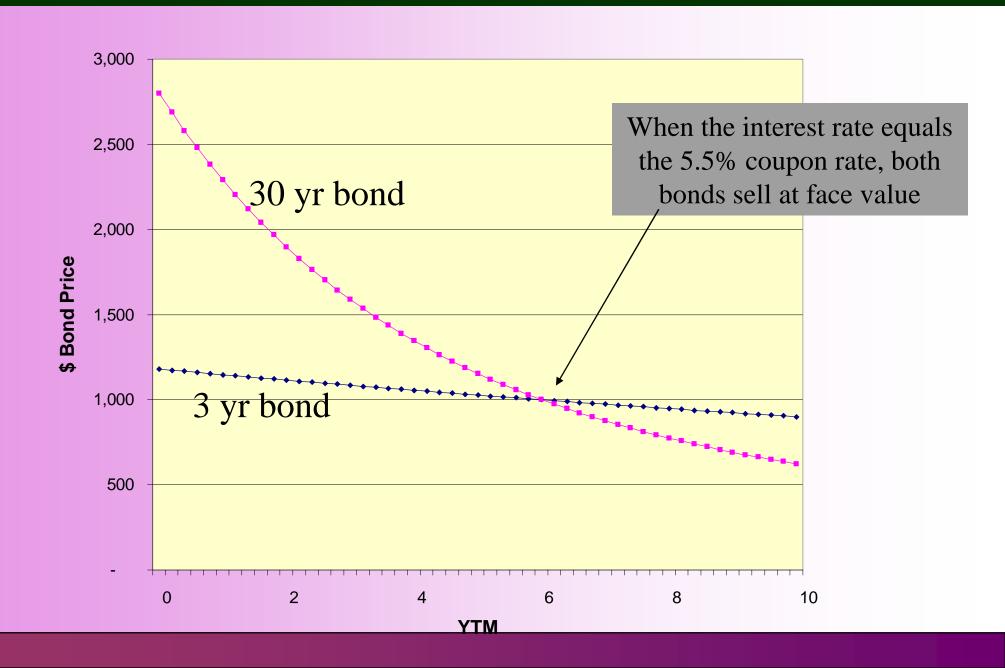
Rate of Return - Earnings per period per dollar invested.

Rate of return=
$$\frac{\text{total income}}{\text{investment}} = \frac{\text{coupon income+price change}}{\text{investment}}$$

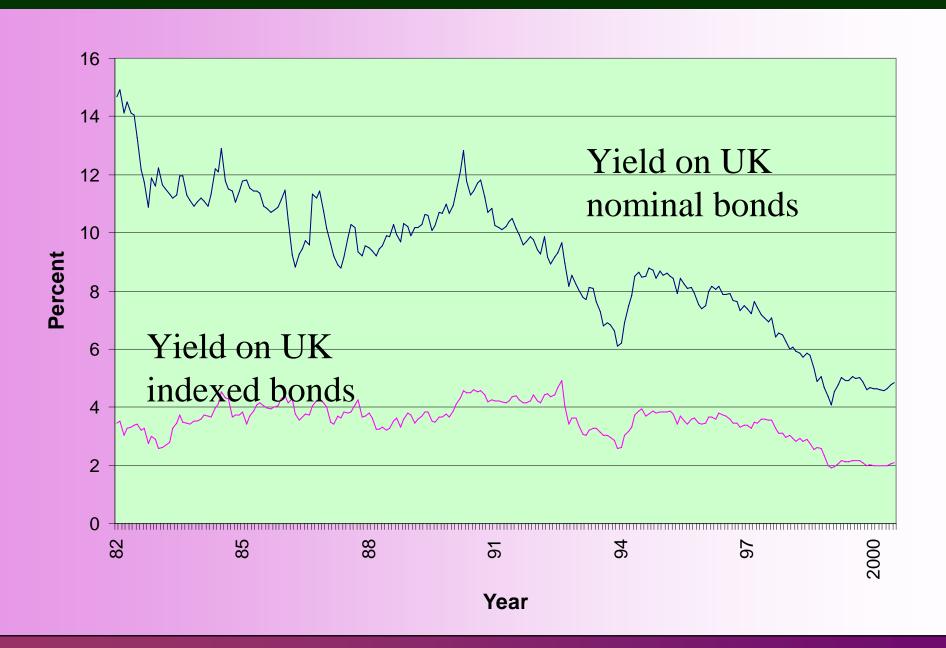
- * Rate of Return vs. Yield to Maturity (p.127 Example 5.5)
 - When interest rates do no change, the bond price changes with time so that the total return on the bond is equal to the yield to maturity.
 - If the bond's yield to maturity increases, the rate of return during the period will be less than that yield.
 - If the bond's yield to maturity decreases, the rate of return during the period will be greater that that yield.


Bond Valuation Spreadsheet

	Valuing bonds using a spreadsheet			
	5.5 % coupon maturing May 2005		5.5% coupon 10-year maturity	
Settlement date Maturity date	5/15/05 5/15/08		1/1/05 1/1/15	
Annual coupon rate Yield to maturity	0.055 0.035		0.055 0.035	
Redemption value (% of face value) Coupon payments per year	100		100	
Bond price (% of par)	105.603		116.633	
		=PRICE(B7,E	B8,B9,B10,B1	1,B12)


Bond Yield Spreadsheet

	Finding vield	to maturity i	usina a snrea	dshoot		
		Finding yield to maturity using a spreadsheet				/00r0
	Way 2006 Illa	May 2008 maturity bond, coupon rate = 5.5%, mat				/ears
	Annual coupe	ons	Semiannual	coupons		
Settlement date	5/15/05		5/15/05			
Maturity date	5/15/08		5/15/08			
Annual coupon rate	0.055		0.055			
Bond price	105.603		105.603			
Redemption value (% of face value)	100		100			
Coupon payments per year	1		2			
Yield to maturity (decimal)	0.035		0.0352			
	*					
	=YIELD(B7,B8,B9,B10,B11,B12)					


Interest Rate Risk

Interest Rate Risk

Nominal and Real rates

Default Risk

- Default risk (Credit risk)
 - The risk that a bond issuer may default on its bonds
- Default premium
 - The additional yield on a bond investors require for bearing credit risk
- ⇒Investment grade
 - Bonds rated Baa or above by Moody's or BBB or above by Standard & Poor's
- **⊃**Junk bonds

Bond with a rating below Baa or BBB

Default Risk

Moody' s	Standard & Poor's	<u>Safety</u>
Aaa	AAA	The strongest rating; ability to repay interest and principal is very strong.
Aa	AA	Very strong likelihood that interest and principal will be repaid
A	A	Strong ability to repay, but some vulnerability to changes in circumstances
Baa	BBB	Adequate capacity to repay; more vulnerability to changes in economic circumstances
Ba	BB	Considerable uncertainty about ability to repay.
В	В	Likelihood of interest and principal payments over sustained periods is questionable.
Caa	CCC	Bonds in the Caa/CCC and Ca/CC classes may already be
Ca	CC	in default or in danger of imminent default
С	С	C-rated bonds offer little prospect for interest or principal on the debt ever to be repaid.

Corporate Bonds

- 2 Zero coupons (issued at prices considerably below par)
- The Floating rate bonds (Current Treasury bill rate + 2%)
- Convertible bonds (with the right to exchange it for a specified number of shares of common stock, and with lower required interest rates)

Corporate Bonds

Callable bonds and Yield to Call (8.5% coupon, 30-year maturity bond sells for \$1,040 and is callable in 10 years with a call price \$1,060

	Calculator Input	Yield to Call	Yield to Maturity
Coupon Payment	PMT	85	85
Number of Periods	n	10	30
Final Payment	FV	1,060	1,000
Price	PV	-1,040	-1,040
Answer	Compute i	8.3%	8.14%

The Yield Curve

Term Structure of Interest Rates - A listing of bond maturity dates and the interest rates that correspond with each date.

Yield Curve - Graph of the term structure (p.130 Figure 5-7)