Chapter 4

The Time Value of Money

Topics Covered

FFuture Values and Compound Interest OPresent Values

- Multiple Cash Flows
-Perpetuities and Annuities
OInflation and Time Value

- Effective Annual Interest Rate

Future Values

Future Value - Amount to which an investment will grow after earning interest.

Compound Interest - Interest earned on interest.

Simple Interest - Interest earned only on the original investment.

Future Values

Example - Simple Interest

Interest earned at a rate of 6% for five years on a principal balance of $\$ 100$.

Interest Earned Per Year $=100 \times .06=\$ 6$

Future Values

Example - Simple Interest
Interest earned at a rate of 6\% for five years on a principal balance of $\$ 100$.

Today Future Years

$\begin{array}{lrrrrrr} & & \underline{1} & \underline{2} & \underline{3} & \underline{4} & \underline{5} \\ \text { Interest } & \text { Earned } & 6 & 6 & 6 & 6 & 6 \\ \text { Value } & 100 & 106 & 112 & 118 & 124 & 130\end{array}$

Value at the end of Year $5=\$ 130$

Future Values

Example - Compound Interest

Interest earned at a rate of 6% for five years on the previous year's balance.

Interest Earned Per Year =Prior Year Balance x . 06

Future Values

Example - Compound Interest

Interest earned at a rate of 6% for five years on the previous year's balance.

Value at the end of Year 5 = \$133.82 (p. 75 Figure 4-1)

Future Values

Future Value of $\$ 100=$ FV

$$
F V=\$ 100 \times(1+r)^{t}
$$

* FVIF $_{r, t}=(1+r)^{t}$ (Future Value Interest Factor for r and t) (Table A-1)

Future Values

$$
F V=\$ 100 \times(1+r)^{t}
$$

Example - FV

What is the future value of $\$ 100$ if interest is compounded annually at a rate of 6% for five years?

$$
F V=\$ 100 \times(1+.06)^{5}=\$ 133.82
$$

Future Values with Compounding

Manhattan Island Sale

Peter Minuit bought Manhattan Island for \$24 in 1626. Was this a good deal?

To answer, determine $\$ 24$ is worth in the year 2006, compounded at 8%.

$$
\begin{aligned}
F V & =\$ 24 \times(1+.08)^{380} \\
& =\$ 120.57 \text { trillion }
\end{aligned}
$$

FYI - The value of Manhattan Island land is well below this figure.

Present Values

Present Value
 Value today of a future cash flow

Discount Rate

Interest rate used to compute present values of future cash flows

Present Values

Present Value=PV

$$
\mathrm{PV}=\frac{\text { Future Value after t periods }}{(1+r)^{t}}
$$

Present Values

Example

You want to buy a new computer for \$3,000 2 years later. If you can earn 8% on your money, how much money should you set aside today in order to make the payment when due in two years?

$$
P V=\frac{3000}{(1.08)^{2}}=\$ 2,572
$$

Present Values

Discount Factor = DF = PV of \$1

$$
D F=\frac{1}{(1+r)^{t}}
$$

〇Discount Factors can be used to compute the present value of any cash flow

* PVIF $_{r, t}=1 /(1+r)^{t}$ (Present Value Interest Factor for r and t) (Table A-2)

Time Value of Money (applications)

OThe PV formula has many applications. Given any variables in the equation, you can solve for the remaining variable.

$$
P V=F V \times \frac{1}{(1+r)^{t}}
$$

Present Values with Compounding

Time Value of Money (applications)

ЭValue of Free Credit (p. 81 Example 4.4)
OImplied Interest Rates (p.83~84)
〇Time necessary to accumulate funds (p. 84 Example 4.5)

Time Value of Money (applications)

ЭAn introduction to financial calculators (p.80)
\rightarrow HP-10B
\rightarrow TI BA II Plus
\rightarrow Sharp EL-733A
\rightarrow Casio FC-200V

PV of Multiple Cash Flows

Example

Your auto dealer gives you the choice to pay \$15,500 cash now, or make three payments: \$8,000 now and \$4,000 at the end of the following two years. If your cost of money is 8%, which do you prefer?

Immediate payment $8,000.00$

$$
\begin{gathered}
P V_{1}=\frac{4,000}{(1+.08)^{1}}=3,703.70 \\
P V_{2}=\frac{4,000}{(1+.08)^{2}}=3,429.36 \\
\hline
\end{gathered}
$$

Total PV = \$15,133.06

PV of Multiple Cash Flows

∂ PVs can be added together to evaluate multiple cash flows.

$$
P V=\frac{C_{1}}{(1+r)^{1}}+\frac{C_{2}}{(1+r)^{2}}+\ldots
$$

PV of Multiple Cash Flows

Finding the present value of multiple cash flows by using a spreadsheet

Time until CF	Cash flow	Present value	Formula in Column C	
0	8000	$\$ 8,000.00$	$=\mathrm{PV}(\$ \mathrm{~B} \$ 11, \mathrm{~A} 4,0,-\mathrm{B} 4)$	
1	4000	$\$ 3,703.70$	$=\mathrm{PV}(\$ \mathrm{~B} \$ 11, \mathrm{~A} 5,0,-\mathrm{B} 5)$	
2	4000	$\$ 3,429.36$	$=\mathrm{PV}(\$ \mathrm{~B} \$ 11, \mathrm{~A} 6,0,-\mathrm{B} 6)$	
SUM：		$\$ 15,133.06$	$=\mathrm{SUM}(\mathrm{C} 4: \mathrm{C} 6)$	
Discount rate：	0.08			

PV（Rate，Nper，Pmt，FV，Type）（p．83）

Rate：每期利率
Nper：期數
Pmt：除了最後一期之每期現金流量
FV：最後一期之現金流量
Type： 1 為期初給付， 0 或省略為期末給付

Derietwities ex Aninitities

Perpetuity

A stream of level cash payments that never ends.

Annuity
Equally spaced level stream of cash flows for a limited period of time.

Perpetuities \& Annuities

PV of Perpetuity Formula

$$
P V=\frac{C}{r}
$$

$C=$ cash payment per period
$r=$ interest rate per period

Perpetuities \& Annuities

Example - Perpetuity

In order to create an endowment, which pays \$100,000 per year, forever, how much money must be set aside today in the rate of interest is 10% ?

$$
P V=\frac{100,000}{0.1}=\$ 1,000,000
$$

Perpetuities \& Annuities

Example - continued

If the first perpetuity payment will not be received until three years from today, how much money needs to be set aside today?

$$
P V=100,000 \frac{1}{0.1} \frac{1}{(1+0.1)^{3}}=\$ 751,315
$$

Perpetuities \& Annuities

The Formula of the PV of Annuity

$$
P V=C\left[\frac{1}{r}-\frac{1}{r(1+r)^{t}}\right]
$$

$C=$ cash payment
$r=$ interest rate
$t=$ number of years cash payment is received

Perpetuities \& Annuities

PV Annuity Factor (PVAF) - The present value of $\$ 1$ a year for each of t years

$$
P V A F=\left[\frac{1}{r}-\frac{1}{r(1+r)^{t}}\right]
$$

* PVIFA ${ }_{r, t}$ (Present Value Interest Factor for Annuity) (Table A-3)

Perpetuities \& Annuities

Example - Annuity

You are purchasing a car. You are scheduled to make 3 annual installments of $\$ 4,000$ per year. Given a rate of interest of 10%, what is the price you are paying for the car (i.e. what is the PV)?

$$
P V=4,000\left[\frac{1}{.10}-\frac{1}{.10(1+.10)^{3}}\right]
$$

$$
P V=\$ 9,947.41
$$

Derintuitieg ex Aninitities

Applications

ЭValue of payments (p.90-91 Example 4.9, 4.10)
OImplied interest rate for an annuity (car loan)
Calculation of periodic payments
\rightarrow Mortgage payment (p.91-92 Table 4.5)
\rightarrow Annual income from an investment payout (房束)
© Future Value of annual payments

$$
F V=[C \times P V A F] \times(1+r)^{t}
$$

Perpetuities \& Annuities

Example - Future Value of annual payments
You plan to save $\$ 4,000$ every year for 20 years and then retire. Given a 10% rate of interest, what will be the FV of your retirement account?

$$
\begin{aligned}
& F V=4,000\left[\frac{1}{.10}-\frac{1}{.10(1+.10)^{20}}\right] \times(1+.10)^{20} \\
& F V=\$ 229,100
\end{aligned}
$$

* FVIFA $_{r, t}$ (Future Value Interest Factor for an Annuity) (Table A-4)

Derintuities ex Aninitities

Annuity Due

Level stream of cash flows starting immediately

Present value of an annuity due
$=(1+r) x$ present value of an annuity

Inflation

Inflation - Rate at which prices as a whole are increasing.

Nominal Interest Rate - Rate at which money invested grows.

Real Interest Rate - Rate at which the purchasing power of an investment increases.

Inflation

$1+$ real interest rate $=\frac{1+\text { nominal interest rate }}{1+\text { inflation }}$ $1+$ inflation rate

* Approximation formula is as follows:
real interest rate \approx nominal interest rate - inflation rate

Inflation

Example

If the interest rate on one year government bonds is 5.0% and the inflation rate is 2.2%, what is the real interest rate?

$$
\begin{aligned}
& 1+\text { real interest rate }=\frac{1+.050}{1+.022} \\
& 1+\text { real interest rate }=1.027 \\
& \text { real interest rate }=.027 \text { or } 2.7 \%
\end{aligned}
$$

$$
\text { Approximation }=.050-.022=.028 \text { or } 2.8 \%
$$

(p. 99 Example 4.14, Table 4-7 and Figure 4-13 for CPI)
(p. 103 Example 4.16 vs. p. 91 Example 4.10)

Effective Interest Rates

Effective Annual Interest Rate - Interest rate that is annualized using compound interest.

Annual Percentage Rate - Interest rate that is annualized using simple interest.

Effective Interest Rates

Example

Given a monthly rate of 1%, what is the Effective Annual Rate (EAR)? What is the Annual Percentage Rate (APR)?

$$
\begin{aligned}
& \mathrm{EAR}=(1+.01)^{12}-1=\mathrm{r} \\
& \mathrm{EAR}=(1+.01)^{12}-1=.1268 \text { or } 12.68 \%
\end{aligned}
$$

$$
\mathrm{APR}=.01 \times 12=.12 \text { or } 12.00 \%
$$

Effective Interest Rates

Period per year (m)
Final Sum
EAR
$\$ 1.06 \quad 6.0000 \%$
$\$ 1.03^{2}=1.0609$
\$1.015 ${ }^{4}=1.061364$
$\$ 1.005^{12}=1.061678$
$\$ 1.0001644^{365}=1.061831 \quad 6.1831 \%$
$\mathrm{e}^{0.06}=1.061837$
6.0900\%
6.1364\%
6.1678\%
6.1837\%

