Chapter 4

The Time Value of Money

Topics Covered

- **Compound Interest**
- **Present Values**
- **O**Multiple Cash Flows
- Perpetuities and Annuities
- ➔Inflation and Time Value
- **Certive Annual Interest Rate**

<u>Future Value</u> - Amount to which an investment will grow after earning interest.

<u>Compound Interest</u> - Interest earned on interest.

<u>Simple Interest</u> - Interest earned only on the original investment.

Example - Simple Interest

Interest earned at a rate of 6% for five years on a principal balance of \$100.

Interest Earned Per Year = 100 x .06 = \$6

Example - Simple Interest

Interest earned at a rate of 6% for five years on a principal balance of \$100.

	Today		Futur	re Year	rs		
		<u>1</u>	<u>2</u>	<u>3</u>	<u>4</u>	<u>5</u>	
Interest E	arned	6	6	6	6	6	
Value	100	106	112	118	124	<i>130</i>	

Value at the end of Year 5 = \$130

Example - Compound Interest

Interest earned at a rate of 6% for five years on the previous year's balance.

Interest Earned Per Year = Prior Year Balance x .06

Example - Compound Interest

Interest earned at a rate of 6% for five years on the previous year's balance.

	Today			Future Years			
		1	2	3	4	5	
Interest Earned		6.00	6.36	6.74	7.15	7.57	
Value	100	106.00	112.36	119.10	126.25	133.82	

Value at the end of Year 5 = \$133.82 (p.75 Figure 4-1)

Future Value of \$100 = FV

$$FV = \$100 \times (1+r)^{t}$$

* $FVIF_{r,t} = (1+r)^t$ (Future Value Interest Factor for *r* and *t*) (Table A-1)

$$FV = \$100 \times (1+r)^t$$

Example - FV

What is the future value of \$100 if interest is compounded annually at a rate of 6% for five years?

 $FV = \$100 \times (1 + .06)^5 = \133.82

Future Values with Compounding

Manhattan Island Sale

Peter Minuit bought Manhattan Island for \$24 in 1626. Was this a good deal?

To answer, determine \$24 is worth in the year 2006, compounded at 8%.

 $FV = \$24 \times (1 + .08)^{380}$ = \\$120.57 trillion

FYI - The value of Manhattan Island land is well below this figure.

Present Value

Value today of a future cash flow

Discount Factor

Present value of a \$1 future payment

Discount Rate

Interest rate used to compute present values of future cash flows

Present Value=PV

$$\mathbf{PV} = \frac{\text{Future Value after t periods}}{(1+r)^{t}}$$

Example

You want to buy a new computer for \$3,000 2 years later. If you can earn 8% on your money, how much money should you set aside today in order to make the payment when due in two years?

Discount Factor = DF = PV of \$1

$$DF = \frac{1}{(1+r)^t}$$

- Discount Factors can be used to compute the present value of any cash flow
- * $PVIF_{r,t}=1/(1+r)^t$ (Present Value Interest Factor for *r* and *t*) (Table A-2)

Time Value of Money (applications)

The PV formula has many applications. Given any variables in the equation, you can solve for the remaining variable.

Present Values with Compounding

Time Value of Money (applications)

Value of Free Credit (p.81 Example 4.4)
Implied Interest Rates (p.83~84)
Time necessary to accumulate funds (p.84 Example 4.5)

Time Value of Money (applications)

⇒An introduction to financial calculators (p.80)
⇒HP-10B
⇒TI BA II Plus
⇒Sharp EL-733A
⇒Casio FC-200V

PV of Multiple Cash Flows

Example

Your auto dealer gives you the choice to pay \$15,500 cash now, or make three payments: \$8,000 now and \$4,000 at the end of the following two years. If your cost of money is 8%, which do you prefer?

Immediate payment 8,000.00 $PV_1 = \frac{4,000}{(1+.08)^1} = 3,703.70$ $PV_2 = \frac{4,000}{(1+.08)^2} = 3,429.36$ Total PV = \$15,133.06

PV of Multiple Cash Flows

⇒PVs can be added together to evaluate multiple cash flows.

$$PV = \frac{C_1}{(1+r)^1} + \frac{C_2}{(1+r)^2} + \dots$$

PV of Multiple Cash Flows

Finding the present value of multiple cash flows by using a spreadsheet						
Time until CF	Cash flow	Present value	Formula in Column C			
0	8000	\$8,000.00	=PV(\$B\$11,A4,0,-B4)			
1	4000	\$3,703.70	=PV(\$B\$11,A5,0,-B5)			
2	4000	\$3,429.36	=PV(\$B\$11,A6,0,-B6)			
SUM:		\$15,133.06	=SUM(C4:C6)			
Discount rate:	0.08					

PV(Rate, Nper, Pmt, FV, Type) (p. 83)

Rate: 每期利率

Nper: 期數

Pmt:除了最後一期之每期現金流量

FV: 最後一期之現金流量

Type: 1為期初給付, 0或省略為期末給付

Perpetuity

A stream of level cash payments that never ends.

Annuity

Equally spaced level stream of cash flows for a limited period of time.

PV of Perpetuity Formula

$$PV = \frac{C}{r}$$

C = cash payment per periodr = interest rate per period

Example - Perpetuity

In order to create an endowment, which pays \$100,000 per year, forever, how much money must be set aside today in the rate of interest is 10%?

$$PV = \frac{100,000}{0.1} = \$1,000,000$$

Example - continued

If the first perpetuity payment will not be received until three years from today, how much money needs to be set aside today?

$$PV = 100,000 \frac{1}{0.1} \frac{1}{(1+0.1)^3} = \$751,315$$

The Formula of the PV of Annuity

- C = cash payment
 - r =interest rate
- *t* = number of years cash payment is received

PV Annuity Factor (PVAF) - The present value of \$1 a year for each of *t* years

 * PVIFA_{r,t} (Present Value Interest Factor for Annuity) (Table A-3)

Example - Annuity

You are purchasing a car. You are scheduled to make 3 annual installments of \$4,000 per year. Given a rate of interest of 10%, what is the price you are paying for the car (i.e. what is the PV)?

$$PV = 4,000 \left[\frac{1}{.10} - \frac{1}{.10(1+.10)^3} \right]$$

PV = \$9,947.41

Applications

- Value of payments (p.90-91 Example 4.9, 4.10)
- ⇒Implied interest rate for an annuity (car loan)
- Calculation of periodic payments
 - →Mortgage payment (p.91-92 Table 4.5)
 - →Annual income from an investment payout (房東)
- **C**Future Value of annual payments

$$FV = \left[C \times PVAF\right] \times (1+r)^{t}$$

Example - Future Value of annual payments

You plan to save \$4,000 every year for 20 years and then retire. Given a 10% rate of interest, what will be the FV of your retirement account?

$$FV = 4,000 \left[\frac{1}{.10} - \frac{1}{.10(1+.10)^{20}} \right] \times (1+.10)^{20}$$

FV = \$229,100

* FVIFA_{*r*,*t*} (Future Value Interest Factor for an Annuity) (Table A-4)

Annuity Due

Level stream of cash flows starting immediately

Present value of an annuity due = (1+r) x present value of an annuity

Inflation

Inflation - Rate at which prices as a whole are increasing.

Nominal Interest Rate - Rate at which money invested grows.

<u>Real Interest Rate</u> - Rate at which the purchasing power of an investment increases.

Inflation

$1 + real interest rate = \frac{1 + nominal interest rate}{1 + inflation rate}$

* Approximation formula is as follows:

real interest rate ≈ nominal interest rate - inflation rate

Inflation

Example

If the interest rate on one year government bonds is 5.0% and the inflation rate is 2.2%, what is the real *interest rate?*

1 + real interest rate = $\frac{1+.050}{1+.022}$

1 + real interest rate = 1.027

real interest rate = .027 or 2.7%

Approximation = .050 - .022 = .028 or 2.8%

(p.99 Example 4.14, Table 4-7 and Figure 4-13 for CPI)(p.103 Example 4.16 vs. p.91 Example 4.10)

Effective Interest Rates

<u>Effective Annual Interest Rate</u> - Interest rate that is annualized using compound interest.

<u>Annual Percentage Rate</u> - Interest rate that is annualized using simple interest.

Effective Interest Rates

Example

Given a monthly rate of 1%, what is the Effective Annual Rate (EAR)? What is the Annual Percentage Rate (APR)?

EAR = $(1+.01)^{12} - 1 = r$ EAR = $(1+.01)^{12} - 1 = .1268$ or 12.68%

$$APR = .01 \times 12 = .12 \text{ or } 12.00\%$$

Effective Interest Rates

Period per year (m)	Final Sum	EAR	
1	\$1.06	6.0000%	
2	$1.03^2 = 1.0609$	6.0900%	
4	\$1.0154=1.061364	6.1364%	
12	\$1.005 ¹² =1.061678	6.1678%	
365	$1.0001644^{365} = 1.061831$	6.1831%	
∞	$e^{0.06} = 1.061837$	6.1837%	