
Ch 12. Stochastic Interest Rate and Credit Models

I. Equilibrium Interest Rate Models

II. No-Arbitrage Interest Rate Models

III. Stochastic Forward Rate Models

IV. Credit Risk Models

• This chapter introduces stochastic interest rate models first. Two categories of the stochas-
tic interest rate models, the equilibrium and no-arbitrage models, will be explored. In
addition, the forward rate models are also discussed, in which the risk factor is the in-
stantaneous forward rate rather than the instantaneous short rate in the interest rate
models. Finally, two classical credit risk models, the reduced-form and structural models,
are introduced.

I. Equilibrium Interest Rate Models

• After the emergence of the Black-Scholes model, some academics try to model the bond
price following the lognormal or normal distribution and thus derive the pricing formulas
of the bond options following the Black-Scholes model. However, the critical problem of
these model is that the bond price is neither lognormally nor normally distributed.

• Furthermore, for all bonds and bonds options, their prices are affected by the change of
the term structure of interest rates, which implies that they share a common source of risk
factor. So it is inappropriate to model the movement of the price of each bond separately,
i.e., the price of each bond is assumed to follow an individual stochastic process.

• It is well known that there exist a relationship between the bond price and the interest
rate theoretically. Hence, some academics turn to consider the stochastic process of
interest rates. They try to model the short rate process dr, which is by definition the
instantaneous interest rate for an infinitesimal period of time.

• It is worth noting that any interest rate we can observe in the market is associated with
a time to maturity and thus the interest rates we can observe in the market is called the
long rates. Unlike the long rates, the short rate is unobservable.

12-1



• To model the short rate, there are two streams of models: the equilibrium and no-arbitrage
models. In this section, two famous equilibrium interest rate models are introduced: the
Vasicek and Cox-Ingersoll-Ross (CIR) models.

• Vasicek model

� dr = β(µ− r)dt+ σdZ, where µ is the long-term mean of r, and β measures the speed
of mean reversion.∥∥∥∥∥∥∥∥∥∥∥∥∥∥

By performing the stochastic integral for linear processes, we express r(T ) as follows.

r(T ) = e−β(T−t)(r(t) + µ(eβ(T−t) − 1) + σ
∫ T
t
eβ(τ−t)dZ(τ)),

where r(t) is the level of short rate today.

From the above equation, we know that r(T ) is normally distributed, and

Et[r(T )] = µ+ (r(t)− µ)e−β(T−t),

vart(r(T )) = σ2

2β (1− e−2β(T−t)).

∗ Denote P to be the current price of a zero coupon bond with 1 dollar payoff at maturity,
and P is a function of t (the time point today), r, and T (the maturity date). According
to the Itô’s Lemma,

dP (t, r, T ) = (∂P∂t + β(µ− r)∂P∂r + 1
2σ

2 ∂2P
∂r2 )dt+ σ ∂P∂r dZ

≡ P · µ(t, r, T )dt+ P · σ(t, r, T )dZ.

(Note that the maturity date T is a constant in the bond contract, so it is not necessary
to consider the differentiation with respect to T in the Itô’s Lemma.)

Construct a portfolio W by

{
longing σ(t, r, T2)P (t, r, T2) shares of P (t, r, T1)
shorting σ(t, r, T1)P (t, r, T1) shares of P (t, r, T2)

,

⇒ dW = {[σ(t, r, T2)P (t, r, T2)]µ(t, r, T1)P (t, r, T1)−[σ(t, r, T1)P (t, r, T1)]µ(t, r, T2)P (t, r, T2)}dt
= r(t)Wdt = r(t)[σ(t, r, T2)P (t, r, T2)P (t, r, T1)−σ(t, r, T1)P (t, r, T1)P (t, r, T2)]dt

⇒ µ(t, r, T1)σ(t, r, T2)− r(t)σ(t, r, T2) = µ(t, r, T2)σ(t, r, T1)− r(t)σ(t, r, T1)

⇒ µ(t,r,T1)−r(t)
σ(t,r,T1)

=
µ(t,r,T2)−r(t)
σ(t,r,T2)

= λ

(For zero-coupon bonds with different maturity dates, the ratio of their excess returns
over volatilities are identical. It is reasonable since all these bonds share a common risk
factor dr and they should be with the same market price of risk, which is, by definition,
the (excess return)-volatility ratio of any derivatives based on r.)

⇒ µ(t, r, T )− r(t) = λσ(t, r, T ).
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Substitute µ(t, r, T ) and σ(t, r, T ) of dP (t, r, T ) to derive

( ∂P
∂t

+β(µ−r) ∂P
∂r

+ 1
2
σ2 ∂2P

∂r2
)

P − r(t) = λ
σ ∂P
∂r

P

⇒ ∂P
∂t + (β(µ− r)− λσ)∂P∂r + 1

2σ
2 ∂2P
∂r2 = rP .

(Based on the Vasicek short rate model, the price of any zero coupon bond should satisfy
the above partial differential equation.)

∗ To solve the above partial differential equation, we can derive the theoretical value of
any zero coupon bond as follows.

P (t, r, T ) = A(t, T )e−B(t,T )r(t),

where r(t) is the current short rate level, and

A(t, T ) =

{
exp[

(B(t,T )−T+t)(β2µ−σ
2

2
)

β2 + σλ
β (B(t, T )− (T − t))− σ2B(t,T )2

4β ] if β 6= 0

exp[
σ2(T−t)3

6 ] if β = 0
,

B(t, T ) =

{
1−e−β(T−t)

β if β 6= 0

T − t if β = 0
.

∗ Note that in the risk-neutral world, the market price of risk, λ, is zero, and the above
pricing formula becomes identical to that presented in Hull (2011).

∗ The formula of the zero coupon bond price P (t, r, T ) makes it possible to derive the whole
term structure based on the Vasicek short rate process. This is because given the zero
coupon bond price P (t, r, T ) and the identity function P (t, r, T ) = exp(−r(t, T )(T − t)),
the zero rate corresponding to the maturity date T , r(t, T ), can be derived through
r(t, T ) = − ln(P (t, r, T ))/(T − t).

∗ In a word, once you specify the values of the parameters β, µ, and σ and the initial
value of the short rate r(t), you can derive a corresponding term structure. The Vasicek
model can generate normal, inverted, and humped-shape term structures.

∗ One possible way to calibrate the estimations of β, µ, σ, and r(t) is to employ the least
squares approach such that the generated term structure can best fit the prevailing term
structure in the market.
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� The binomial tree to simulate the Vasicek interest rate process:

Since the volatility term is constant in the Vasicek model, it is straightforward to apply
the method in Cox and Rubinstein (1985) to constructing the corresponding binomial
tree.

Figure 12-1

r t 

r t 

r

p(r) = 1
2 +

β(µ−r)∆t
2σ
√

∆t
. If p(r) is not in [0, 1], consider a smaller ∆t to fix this problem.

When ∆t approaches zero, p(r) will approach 0.5.

• Cox-Ingersoll-Ross (CIR) model

� dr = β(µ− r)dt+ σ
√
rdZ∥∥∥∥ Et[r(T )] = µ+ (r(t)− µ)e−β(T−t),

vart(r(T )) = r(t)σ
2

β [e−β(T−t) − e−2β(T−t)] + µσ
2

2β (1− e−β(T−t))2.

∗ In comparison with the Vasicek interest rate process, the only difference is the volatility
term, which is from a constant σ to become σ

√
r(t). The modification decreases the

volatility of the short rate when the interest rate is low. When the short rate reaches zero
(the volatility term approaching zero as well), the positive drift makes the subsequent
short rate become positive. Hence, the CIR model remedies the negative interest rate
problem in the Vasicek model.

∗ Technically speaking, if σ2 > 2βµ, r(t) can reach zero; if σ2 ≤ 2βµ, the upward drift is
sufficiently large to make the origin inaccessible.

∗ It is worth noting that Cox, Ingersoll, and Ross (1985) do not develop their model by
simply modifying the volatility term of the Vasicek interest rate process. Instead, they
derive this interest rate model based on a general equilibrium asset pricing model.

∗ In fact, the CIR process can be defined as the sum of squared Ornstein-Uhlinbeck
processes as follows.

r(t) =
∑

X2
i (t), where dXi(t) = −1

2
αXi(t)dt+

1

2
σdZi(t).

Consequently, the short rate r(t) follows a noncentral Chi-square distribution and thus is
always positive.
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∗ Following the similar procedure in the Vasicek model and the assumption of λ = 0,
the partial differential equation of the zero coupon bond based on the CIR model is as
follows:

∂P
∂t + β(µ− r)∂P∂r + 1

2σ
2r ∂

2P
∂r2 = rP.

Solve the above partial differential equation, the theoretical value of the zero-coupon bond
today is

P (t, r, T ) = A(t, T )e−B(t,T )r(t),

where r(t) is the short rate level today, and

A(t, T ) = [ 2υe(β+υ)(T−t)/2

(β+υ)[eυ(T−t)−1]+2υ
]2βµ/σ

2

,

B(t, T ) =
2[eυ(T−t)−1]

(β+υ)[eυ(T−t)−1]+2υ
,

υ =
√
β2 + 2σ2.

� The binomial tree approach to simulate the CIR interest rate process:

Because the CIR model is with a non-constant volatility, we need to apply the method
in Nelson and Ramaswamy (1990) to construct the corresponding binomial tree.

Consider X = 2
√
r

σ ⇒ r = f(X) ≡ X2σ2

4 .

Therefore, dX = m(x)dt+ dZ, where m(x) = 2βµ
σ2X −

βX
2 −

1
2X .

Finally, we construct the recombined X-tree first (see Figure 12-2) and then derive the
r-tree by transforming the value of X into the corresponding value of r via f(X) (see
Figure 12-3).

Figure 12-2
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Figure 12-3
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• Multifactor CIR Model:

r = r1 + r2,

where

dr1 = β1(µ1 − r1)dt+ σ
√
r1dZ1,

dr2 = β2(µ2 − r2)dt+ σ
√
r2dZ2,

and corr(dZ1, dZ2) = ρ.

∗ Since both r1 and r2 are short rates, the characteristics of this model are similar to
those of the single-factor CIR model.
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Table 12-1 Equilibrium models vs. No-arbitrage models

Equilibrium models No-arbitrage models

Match today’s no yes
term structure

Today’s term output input
structure is for

Drift term is a function of r a function of both t and r

(usually for mean reversion) (for matching today’s term structure)

and retaining the mean reversion)

Volatility term is a constant or a function of r a constant or a function of t

(for matching today’s volatility

term structure)

Disadvantages (i) Cannot match today’s term (i) Since the drift and volatility terms

structure and thus the bond prices are specified to be functions of

in the markets. t in order to match the current

(ii) For interest rate or bond options, interest rate and volatility term

the pricing error is unacceptable. structures, its exactness of matching

(A 1% error in the price of the term structures disappears with the

underlying asset may generally lead passage of time.

to a 25% error in the option price.) (ii) Thus, this type of models is not

suited for prediction.

Advantages (i) It provides more reliable prediction for (i) Match the term structure today

future interest rate movements. exactly and thus value interest-rate-

(ii) Thus, this type of models is more relative products more accurately.

suited for the risk management of (ii) This type of models is useful for

financial institutions. traders, who need accurate valuations

for both spots and derivatives of

interest rates or bonds.
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II. No-Arbitrage Interest Rates Models

• This section introduces three no-arbitrage interest rate models. The first one is proposed
by Black, Derman, and Toy (1990), in which the short rate follows the lognormal distri-
bution. The second and third models are respectively Ho and Lee (1986) and Hull and
White (1994), in which the short rate follows the normal distribution.

• Black-Derman-Toy (BDT) model:

� Similar to the stock price process under the Black-Scholes framework, the short rate is
assumed to follow the lognormal distribution.

d ln r = θ(r, σ, t)dt+ σ(t)dZ.

∗ θ(r, σ, t) = θ(t)+
σ′(t)
σ(t)

ln r (see Hull and White (1990)), where θ(t) is introduced to match

the term structure of interest rates today, and if σ′(t) < 0, the interest rate exhibits the
mean reverting to θ(t).

∗ The advantage of this assumption is to ensure that the interest rate is nonnegative.
However, lognormal models for the interest rates usually do not give analytical solutions
for even basic fix-income securities.

� Due to the assumption of lognormal distribution, it is straightforward to employ a
binomial tree method to simulate the BDT interest rate process.

Figure 12-4

r

hr

lr

t t t  2t t 

0.5p 

1 0.5p 

1

1

∗ Note that r is applied to the period [t, t+∆t), and for the period [t+∆t, t+2∆t), there
is 50% of probability that the interest rate is rh and 50% of probability that the interest
rate is rl.
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∗ Similar to the CRR binomial tree model,

rh = reσt
√

∆t and rl = re−σt
√

∆t.

Then we can express the spacing parameter v to be the ratio of rh over rl.

rh
rl

= e2σt
√

∆t = υt.

� Given the 5-year information of the yield curve and the expected future local volatilities
as follows (∆t = 1yr):

T (indexed by j) 0 1 2 3 4 5

r(0, j) 0.1 0.11 0.12 0.125 0.13

F (j, j + 1) 0.1 0.12 0.14 0.14 0.15

expected σj of ln rj , 0.2 0.19 0.18 0.17

which is the short rate ‖ ‖ ‖ ‖
applied in (j∆t, (j + 1)∆t] σ1 σ2 σ3 σ4

∗ In the above table, r(0, j) denotes the interest rate for the time to maturity j∆t (which
is observable in the market), F (j, j + 1) is the implied forward rate in the period of
[j∆t, (j+1)∆t) based on r(0, j), and σj is the expected future local volatility of the short
rate applied in the period of [j∆t, (j + 1)∆t).
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Figure 12-5 The Binomial Interest Rate Tree for the BDT model.

r0=10%
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r1v1=14.4399%
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∗ Note that given σj for each period, we already know υj = e2σj
√

∆t, which can match the
expected volatility term structure. In addition, based on the prevailing term structure of
interest rates, the remaining job is to decide rj , for j = 0, 1, ..., 4, such that the prevailing
term structure of interest rates can be matched exactly.

� Solve the base line interest rate rj by matching the expected forward rate based on the
binomial tree and the implied forward rate based on the current yield curve.

⇒
j∑
i=0

2−j
(
j

i

)
rj(υj)

i = F (j, j + 1), for j = 1, . . . , n− 1.

(In the period of (j∆t, (j+1)∆t], the expected forward rate equals the sum of the product
the short rate and the corresponding probability of each node at j∆t.)

⇒ rj · 2−j ·
j∑
i=0

(
j

i

)
(υj)

i = F (j, j + 1), for j = 1, . . . , n− 1.
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∥∥∥∥∥∥∥∥∥
j∑
i=0

(
j

i

)
(υj)

i

=

(
j

0

)
· (υj)0 · 1j +

(
j

1

)
· (υj)1 · 1j−1 + · · ·+

(
j

j

)
· (υj)1 · 10 = (1 + υj)

j

⇒ rj = ( 2
1+υj

)j · F (j, j + 1), for j = 1, . . . , n− 1.

� The above method is fast, but matching the expected and implied forward rates for
each time step cannot guarantee the BDT interest rate tree to match the prevailing term
structure of interest rates exactly.

∗ Since f(0, 1) = r(0, 1) = 10%, it is straightforward to solve r0 to be 10%, and there is
no error for pricing P (0, 1).

∗ Based on r(0, 2), we can derive the market price of the 2-year zero-coupon bond should
be P (0, 2)= 1

(1+r(0,2))2
= 1

(1.11)2
= 0.8116. However, applying the tree constructed through

the above fast method cannot generate the correct price of the 2-year zero-coupon bond
(see Figure 12-6).

Figure 12-6

10%

9.6315%

0 1 2

0.5p 

1 0.5p  14.3685%

1

1

The expected forward rate for the second year is 0.5 · 9.6315% + 0.5 · 14.3685% = 12%.

The price of the 2-year zero-coupon bond based on the above binomial tree is

P (0, 2) = 1
1+0.1 [1

2 ·
1

1+9.6315%
+ 1

2 ·
1

1+14.3685%
] = 0.8121,

which does not equal the correct one based on the prevailing term structure of interest
rates. This result demonstrates that the binomial tree constructed by the fast method
cannot match the current term structure of interest rates exactly.
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� The bootstrap method to calibrate rj by matching the current yield curve.

∗ Based on r(0, 1) = 10%, we can solve r0 = 10% such that the price of 1-year zero
coupon bond is P (0, 1) = 1

1+r0
= 1

1+r(0,1)
= 1

1.1 = 0.9090.

Figure 12-7 Calibration for r1

10%

0 1 2

0.5p 

1 0.5p 

r1

r1v1

v1 12 1.4918te   

1

1

⇒ 1
1+0.1 [1

2 ·
1

1+r1
+ 1

2 ·
1

1+r1υ1
] = 0.8116. Since υ1 is known, solving the equation to derive

r1 = 9.6794%.

Figure 12-8 Calibration for r2

110%
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0.5p 

1 0.5p 

1

9.6794%

14.4399%

3

0.5p 

0.5p 

1 0.5p 

1 0.5p 

r2

1

r2v2

r2v22

v2 22 1.4623te   

⇒ 1
1+0.1{

1
2

1
1+9.6794%

[1
2

1
1+r2

+ 1
2

1
1+r2υ2

] + 1
2

1
1+14.4399%

[1
2

1
1+r2υ2

+ 1
2

1
1+r2(υ2)2

]} = 1
(1+r(0,3))3

=

0.7118. Solve this equation for the only unknown, r2, which is 9.3742%.
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∗ A similar interest rate model proposed by Black and Karasinski (1991) is ln r = [θ(t)−
a(t) ln(r)]dt + σ(t)dZ. However, the introduction of a(t) makes this model more general
but also more difficult to use. This is because how to calibrate the term a(t) is a problem.
Black and Karasinski suggest that in addition to the zero curve r(0, j) and the expected
future local volatility σ(t), the volatilities for r(0, j) with different maturities are also
needed for parameter calibration.

• Ho-Lee model: the first no-arbitrage model proposed in 1986.

dr = θ(t)dt+ σdZ,

where θ(t) is determined by today’s term structure of interest rates. Theoretically speak-
ing θ(t) = Ft(0, t) + σ2t, where F (0, t) is the instantaneous forward rate at t based on
the current term structure of interest rates. In fact, θ(t) ≈ Ft(0, t) since the term σ2t is
relatively smaller.

∗ Note that E[rt+∆t]−E[rt] = θ(t)∆t by the definition of the Ho-Lee model. With θ(t) ≈
Ft(0, t), it can be inferred that E[rt+∆t]− E[rt] ≈ F (0, t + ∆t)− F (0, t). Therefore, the
expected change in the short rate is approximately equal to the change of the instaneous
forward rate. Moreover, since r(0) = F (0, 0) by definition, the mean level of r(t) is
approximately equal to the level of F (0, t) as shown in Figure 12-9.

Figure 12-9 The Graphical Illustration of the Ho-Lee Model

r

T

Implied forward rate curve 
according to the term structure 
of interest rates today

∗ The details to derive the expression of θ(t) for various no-arbitrage models can refer to
Hull and White (1993), “One-Factor Interest-Rate Models and the Valuation of Interest-
Rate Derivative Securities,” Journal of Financial and Quantitative Analysis 28, pp. 235–
254.
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� The theoretical value of the zero-coupon bond based on the Ho-Lee model is

P (t, r, T ) = A(t, T )e−r(t)(T−t),

where lnA(t, T ) = ln
P (0,T )
P (0,t)

+ (T − t)F (0, t)− 1
2σ

2t(T − t)2.

∗ Ho and Lee (1986) also propose a binomial tree model to simulate the change of the
term structure of interest rates. In addition, they assume the changes of the bond prices
follow the implied forward bond price plus a perturbation. The details can refer to Ho and
Lee (1986), “ Term Structure Movements and Pricing Interest Rate Contingent Claims,”
Journal of Finance 41, pp. 1011–1029.

∗ The disadvantage of the Ho and Lee’s (1986) model is the lack of the feature of mean
reversion, which is commonly found in the movements of interest rates. Next, the Hull
and White interest rate model is introduced, in which the Ho-Lee model is extended to
incorporate the feature of mean reversion.

• Hull-White model:

dr = [θ(t)− ar]dt+ σdZ

= a[
θ(t)
a − r]dt+ σdZ.

(The Hull-White model can be viewed as the Ho-Lee model plus the mean reversion with
the speed a or as a extension of Vasicek model to be a no-arbitrage model.)

� θ(t) is determined based on today’s term structure of interest rates, and its continuous-
time equivalence is

θ(t) = Ft(0, t) + aF (0, t) + σ2

2a(1− e−2at).

� The theoretical value of the zero-coupon bond is

P (t, r, T ) = A(t, T )e−B(t,T )r(t),

where B(t, T ) = 1−e−a(T−t)
a , and lnA(t, T ) = ln

P (0,T )
P (0,t)

+ B(t, T )F (0, t) − 1
4a3σ

2(e−aT −
e−at)2(e2at − 1).
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� The trinomial tree approach to simulate the Hull-White interest rate process:

(The details of this trinomial tree model can refer to Hull and White (1994), “Numerical
Procedure for Implementing Term Structure Models I: Single-Factor Models, Journal of
Derivatives 2, pp.7–16)

Consider the discrete version ∆R∗ = [θ(t) − aR∗]∆t + σ∆Z, in which the length of the
time step is ∆t.

First Stage: to build the trinomial tree for ∆R = −aR∆t + σ∆Z. Note that the long
term mean-reverting level for R is zero. The trinomial tree for R is illustrated in Figure
12-10.

Figure 12-10

j = 0

j = 1

j = –2

j = 2

j = –1

case 1
case 3

case 2

�min = −�max  

�max = ⌈0.184/(�Δ�)⌉ 

∗ The spacing parameter for the process R is defined as δR ≡ σ
√

3∆t for error minimiza-
tion. Due to the mean reverting feature, the trinomial tree is truncated when the level of
R(t) is too high or too low. Hull and White suggest that maximum deviation of R(t) from
zero (corresponding to the layer indexed by j = 0) is jmaxδR, where jmax = d0.184/(a∆t)e.
∗ Define node(i, j) to be the node at t = i∆t and the level of Ri,j is jδR. Three branching
cases on the Hull-White trinomial interest rate tree are as follows.
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◦ Case 1: the normal situation.

Figure 12-11
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pu · (δR)2 + pd · (δR)2 = σ2δt+ a2j2(δR)2(∆t)2 (matching variance)
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.

◦ Case 2: Ri,j = jδR is negatively too small such that the mean of ∆R, −ajδRδt, is too
large for the normal case.

Figure 12-12
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��  
pu · (2δR) + pm · δR = −ajδR∆t (matching mean)

pu · (2δR)2 + pm · (δR)2 = σ2δt+ a2j2(δR)2(∆t)2 (matching variance)

pu + pm + pd = 1 (total probability equal to 1)

⇒


pu = 1

6 +
a2j2(∆t)2+aj∆t

2

pm = −1
3 − a

2j2(∆t)2 − 2aj∆t

pd = 7
6 +

a2j2(∆t)2+3aj∆t
2

.
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◦ Case 3: Ri,j = jδR is too high such that the mean of ∆R, −ajδRδt, is too negative for
the normal case.

Figure 12-13
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pm · (−δR) + pd · (−2δR) = −ajδR∆t (matching mean)

pm · (−δR)2 + pd · (−2δR)2 = σ2δt+ a2j2(δR)2(∆t)2 (matching variance)

pu + pm + pd = 1 (total probability equal to 1)

⇒


pu = 7

6 +
a2j2(∆t)2−3aj∆t

2

pm = −1
3 − a

2j2(∆t)2 + 2aj∆t

pd = 1
6 +

a2j2(∆t)2−aj∆t
2

.

Second Stage: to consider the difference between R∗ and R.

Define α(t) = R∗(t) − R(t), and assume the continuous limits of ∆R∗ and ∆R are as
follows. {

dR∗ = [θ(t)− aR∗]dt+ σdZ

dR = −aRdt+ σdZ

⇒ dα = dR∗ − dR
= [θ(t)− aR∗ + aR]dt

= [θ(t)− a(R∗ −R)]dt

= [θ(t)− aα]dt.

Since we already know θ(t) = Ft(0, t) + aF (0, t) + σ2

2a(1− e−2at), we can solve α(t) from
the above differential equation.

α(t) = F (0, t) + σ2

2a2 (1− e−at)2 if a 6= 0

α(t) = F (0, t) + σ2t2

2 if a = 0

.
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∗ If we add α(t), which is a function of t, to each time-t node on the R-tree, we can derive
the R∗-tree. However, due to the discretization error for the trinomial tree model, the
resulting R∗-tree cannot match the current term structure of interest rates exactly.

∗ Moreover, if we ignore the second term in the formula of α(t), it can be inferred that
α(t) is approximately equal to the instantaneous forward rate F (0, t). In other words,
we can derive R∗-tree approximately by adding the forward rate of each period to the
corresponding nodes on the R-tree.

∗ In order to achieve the exact match with the current term structure of interest rates,
the following method is considered.

� The bootstrap method to calibrate α(t) by matching the current yield curve.

Consider a numerical example in which σ = 0.01, a = 0.1, ∆t = 1, and we can derive
δR = 0.01

√
3 = 1.732%, jmax = d0.184

0.1 e = 2 = −jmin. After the first stage, the tree for R
is in Figure 12-14.

Figure 12-14 R-tree after the first stage
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1.732% 1.732%
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Suppose the term structure of interest rates today as follows.

T 1 2 3 4

r(0, T ) 3.824% 4.512% 5.086% 5.566%

The following goal is to find α(t) by which is the upward shifting level of R(t) such that
the resulting R∗-tree can match today’s term structure of interest rates exactly.

Figure 12-15 Calibration of α(0)

0                               1

%0)0( 
1

Solve α(0) by matching the 1-year zero-coupon bond prices based the yield curve and
based on the trinomial tree.

P (0, 1) = e−3.824%·1 = e−α(0)·1 ⇒ α(0) = 3.824%.

Figure 12-16 Calibration of α(1)

1

1

1%824.3

1667
.0

1667
.0

6666.0

%732.1)1( 

%0)1( 

%732.1)1( 

0 1 2

Match the 2-year zero-coupon bond prices to derive

P (0, 2) = e−4.512%·2 = e−3.824%[0.1667e−(α(1)+1.732%)+0.6666e−(α(1)+0%)+0.1667e−(α(1)−1.732%)].

Solve the above equation to derive α(1) = 5.205%.

(Note that α(1) is very close to the forward rate in the second year, which is 5.200%.)
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Figure 12-17 The Calibration of α(2)
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Considering the 3-year zero coupon bond price P (0, 3), you can solve for α(2) = 6.252%.
As to α(t) for t > 2, the desired results can be derived by performing the similar bootstrap
method recursively.

(Note that α(2) is very close to the forward rate in the third year, which is 6.234%.)

� The approximation of θ(t) based on α(t) derived in the bootstrap method.

Note that the interest rate levels of the midpoint nodes of the R∗-tree are α(0), α(1), and
so on. Thus the drift term of these nodes is, by definition, θ(t)− ar = θ(t)− aα(t), As a
consequence, we can obtain,

(θ(t)− aα(t))∆t ≈ α(t+ ∆t)− α(t)

⇒ θ̂(t)mid =
α(t+∆t)−α(t)

∆t + aα(t),

where θ̂(t)mid is the approximation of θ(t) based on the midpoint nodes because the above
equation is true only for the midpoint nodes. Since the tree is symmetric around the
midpoint nodes and thus the midpoint nodes are the most representative nodes, θ̂(t)mid

can be an practical approximation of θ(t).

Comparing with the continuous limit formula of θ(t) = Ft(0, t) + aF (0, t) + σ2

2a(1− e−2at),
the above approximation is in effect to consider the discrete approximation of the first
two terms of the continuous limit formula of θ(t) because it is known that α(t) ≈ F (0, t).
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III. Stochastic Forward Rate Models

• Heath, Jarrow, and Morton (HJM) model:

Instead of considering the short rate process, Heath, Jarrow, and Morton (1992) focus
on the instantaneous forward rate process. Note that the instantaneous forward rate is
more general than the short rate due to its additional maturity dimension. Therefore, the
short rate can be viewed as the special case of the instantaneous forward rate matured
immediately.

� Define f(t, T1, T2) to be the forward rat for the period of [T1, T2] observed at t, and
F (t, T ) to be the instantaneous forward rate for the period of [T, T + dt] observed at t.
By definition,

F (t, T ) = lim
T1→T

T2→T+dt

f(t, T1, T2).

Moreover, denote r(t) as the short rate in the following infinitesimal period [t, t+ dt].
According to the definition of F (t, T ), we can derive

r(t) = F (t, t).

� The most important result of the HJM model is to discover the relationship of the
drift and volatility terms of the instantaneous forward rate process, dF (t, T ), and their
connection with the volatility of the zero-coupon bond price process.

∗ Suppose the price process of the zero-coupon bond P (t, T ) under the risk neutral mea-
sure as follows.

dP (t, T ) = r(t)P (t, T )dt+ v(t, T )P (t, T )dZ,

where v(t, T ) is the volatility of the bond price. Since the bond price at maturity (i.e.,
when t approaches T ) is known, we must have

v(t, t) = 0.

∗ The forward rate process can be expressed with the zero-coupon bond price process as
follows.

df(t, T1, T2) =
d ln(P (t, T1))− d ln(P (t, T2))

T2 − T1
,

where the processes d ln(P (t, T1)) and d ln(P (t, T2)) can be derived by the Itô’s Lemma
as follows.

d ln(P (t, T1)) = [r(t)− v(t, T1)2

2
]dt+ v(t, T1)dZ,

d ln(P (t, T2)) = [r(t)− v(t, T2)2

2
]dt+ v(t, T2)dZ.
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As a result,

df(t, T1, T2) =
v(t, T2)2 − v(t, T1)2

2(T2 − T1)
dt+

v(t, T1)− v(t, T2)

T2 − T1
dZ.

∗ According to the straightforward differential calculation, we can derive

1

2

∂[v(t, T )2]

∂T
= v(t, T )vT (t, T ),

where vT (t, T ) denotes the partial derivative with respect to T . Next we consider T1 = T

and T2 = T + dt, and thus can rewrite the process df(t, T1, T2) as follows.

dF (t, T ) = v(t, T )vT (t, T )dt− vT (t, T )dZ.

If we define s(t, T ) as −vT (t, T ), then the drift term v(t, T )vT (t, T ) can be expressed as
follows.

v(t, T )vT (t, T ) = (v(t, t) +

∫ T

t

−s(t, τ)dτ)(−s(t, T )) = s(t, T )

∫ T

t

s(t, τ)dτ.

∗ The key result and the problems of the HJM model:

dF (t, T ) = (s(t, T )

∫ T

t

s(t, τ)dτ)dt+ s(t, T )dZ.

∗ From the above equation, we can find the drift term of the forward rate process depends
on the historical of its volatility terms. Hence, the forward rate as well as the correspond-
ing short rate processes are non-Markovian, which makes the HJM model difficult to use
in practice. Moreover, the volatility term s(t, T ) is not constant, and thus the tree model
for the HJM is nonrecombined. It is well known that due to the constraint of the memory
space of computers, the nonrecombined tree is infeasible when the number of time steps
is large.

∗ Another disadvantage of the HJM model is that the instantaneous forward rate is
unobservable in financial markets. This disadvantage inspires the development of the
Brace, Gatarek, and Musiela (1997) model, in which the process of df(t, T1, T2) rather
than dF (t, T ) is considered.
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• (Advanced content) Brace, Gatarek, and Musiela (BGM) model

Brace, Gatarek, and Musiela propose this (long) forward rate model in 1997, and this
model is also termed the LIBOR market model (LMM) since it is widely applied for
pricing LIBOR-based derivatives. The BGM model is extremely complicated. More
details can refer to Brace, Gatarek, and Musiela (1997), “The Market Model of Interest
Rate Dynamics,” Mathematical Finance 7, pp. 127–155. Or you can read Chapter 31
of Hull (2011), in which Hull introduces a simpler version of the BGM model and the
derivation in Hull (2011) is much easier to understand. Also due to its complexity, there
is no other available numerical method to implement the BGM interest rate model except
the Monte Carlo simulation.

IV. Credit Risk Models

• This section introduces two categories of credit risk (or default) models: the reduced-form
and structural models. In reduced-form models, the default is triggered by a Poisson jump
and thus occurs unpredictably. In contrast, the structural models takes the asset and
liability values of a firm into consideration and thus the default probability is correlated
with the level and the volatility of the liability ratio of a firm.

• Reduced-form models:

� Default probability and default intensity:

λt = 1− e−ξt∆t,

where λt is the default probability in (t, t + ∆t], ξt is the default intensity and usually
modeled as a Poisson process.

� Based on the reduced-form model, there exists an explicit relationship between the
default probability and the credit spread of bonds:

∗ Consider a 1-year risky zero coupon bond with the face value of $1. Its default proba-
bility is λ in the future one year. If the risky bond defaults, the investor loses L out of
the $1 principal at maturity. Thus, the value of this 1-year risky zero coupon bond can
be expressed as follows.

e−R = (1− λ) · e−r + λ · e−r(1− L)

⇒ 1−R ≈ (1− λ)(1− r) + λ(1− r)(1− L)

= 1− λ− r + λr + λ− λr − λL+ λrL

⇒ 1−R = 1− r − λL+ λrL (λrL is relatively smaller and thus ignored)

⇒ R ≈ r + λL.
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∗ As a result, the credit spread S = R−r equals approximately the product of the default
probability, λ, and the loss rate given default, L. In other words, if you are given the
information of the credit spread from the market and the estimation of the loss rate given
default, the default probability of the risky bond can be implied from the above equation.

• A tree approach to simulate the riskless and risky interest rate processes:

Here I introduce a tree-based reduced-form model to simulate the riskless and risky in-
terest rate processes. This method is proposed by Jarrow and Turnbull (1995), “Pricing
Derivatives on Financial Securities Subject to Credit Risk,” Journal of Finance 50, pp.
53–85.

� Given the market prices of the riskless and risky zero-coupon bonds, P (0, T ) and
V (0, T ) for different maturity dates T , and the recovery rate δ = 1 − L, one can derive
the default probability of the reference firm for each period.

Figure 12-18 One-Period Risk-free Interest Rate Tree
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Figure 12-19 One-Period Risky Interest Rate Tree

10

r(0)

0
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V (0, 1) = e−r(0)[λµ0 · δ + (1− λµ0) · 1]

=P (0, 1)[λµ0 · δ + (1− λµ0) · 1].

Given the market prices of V (0, 1) and P (0, 1), solve λµ0 , the default probability of the
first period (year), from the above equation.
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Figure 12-20 Two-Period Risk-free Interest Rate Tree
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Figure 12-21 Two-Period Risky Interest Rate Tree
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V (0, 2) = e−r(0){e−r(1)u · π · λµ0 · δ+
e−r(1)d · (1− π) · λµ0 · δ+
e−r(1)u · π · (1− λµ0) · [λµ1 · δ + (1− λµ1) · 1]+

e−r(1)d · (1− π) · (1− λµ0) · [λµ1 · δ + (1− λµ1) · 1]}
= P (0, 2){λµ0 · δ + (1− λµ0) · [λµ1 ·+(1− λµ1) · 1]},

where P (0, 2) = e−r(0)[e−r(1)u · π · 1 + e−r(1)d · (1 − π) · 1] can be derived according to
Figure 12-20.

Since P (0, 2), V (0, 2), and λµ0 is known, it is straightforward to find the only unknown
λµ1 by solving the above equation. This bootstrap method to solve the default probability
of each period, λµt , can be performed recursively given different T .
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• Structural model

�One of the most classical structural model is the KMV credit model, which was proposed
by Kealhofer, McQuown, and Vasicek in 1989. This credit risk model was acquired by
the credit rating agency Moody’s in 2002 and thus renamed as Moody’s KMV.

� The basic idea of the KMV model is simple: the firm equity value can be viewed as a
call option on the firm asset value.

∗ Since the priority of the debt holder’s claim on the firm asset value is higher than the
equity holder, on the maturity debt of the corporate debt, what the equity holder can
receive is the firm asset value in excess of the firm debt. Once the firm asset value is lower
than the face value of the firm debt at maturity, the default occurs.

Figure 12-22

TE

TD
TV

∗ The payoff of the equity holder is depicted in the above figure, which is the same as
the the payoff of the call option if we treat the firm asset value as the underlying asset.
Since the firm equity value can be viewed as a call option on the firm asset value, it can
be priced with the Black-Scholes model.

� Notation system:

V0: the firm asset value today.

E0: the firm equity value today (as a call option on VT with a strike price DT ).

DT : the face value of the firm debt needed to repay at T .

σE : the volatility of the firm equity value.

σV : the volatility of the firm asset value.
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Based on the Black-Scholes formula, we have

E0 = V0N(d1)−DT e
−rTN(d2), (1)

where d1 =
ln(

V0
DT

)+(r+
σ2V
2

)T

σV
√
T

, and d2 = d1 − σV
√
T .

∗ In the real world, we know E0 and can estimate σE from historical stock prices. However,
the value of V0 is not observable and thus σV cannot be estimated in the traditional way.
To solve for these two unkonwns, we need one more equation in addition to Equation (1).

Suppose the processes of V and E follow the geometric Brownian motions (GBM) under
the risk neutral measure as

dV = rV dt+ σV V dZ,

dE = rEdt+ σEEdZ.

Since E should be a function of V and t, according to the Itô’s Lemma, we have

dE = (· · ·)dt+ (
∂E

∂V
V σV )dZ.

Compare with the two GBM processes for E, the following equation can be derived

σEE =
∂E

∂V
V σV ⇒ σE =

∂E
∂V V σV

E
=
N(d1)V σV

E
. (2)

Finally, we can solve the system consisting of Equations (1) and (2) for V0 and σV .
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Based on the results of V0 and σV , we can estimate the default probability at T :

Figure 12-23 The Graphical Illustration for the KMV Model
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Expected default probability = Prob(VT ≤ DT ) = Prob(lnVT ≤ lnDT )

= Prob(lnV0 + (r − σ2
V

2 )T + σV
√
TεV ≤ lnDT )

= Prob(εV ≤
ln(

DT
V0

)−(r−σ
2
V
2

)T

σV
√
T

)

= Prob(εV ≤ −d2) = N(−d2).

∗ The determination of DT : since the corporate bonds with different time to maturities
may exist concurrently, a rule is needed to decide the value of DT .

∗ The KMV model suggests the consideration of T is set to be 1 year and the value of
DT equals the sum of the face value of the current liability and the half of the face value
of the long-term liability.
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� Disadvantages of the KMV model:

(1) The generated expected default probabilities are significantly lower than the historical
default probabilities. (risk-neutral vs. physical default probabilities)

(2) The expected default probabilities for the very near future are almost zero. If the firm
has not defaulted until now, it can be inferred that V0 ≥ DT . When T → 0, since the
volatility σV

√
T is almost zero, VT ≥ DT is almost sure such that the Prob(VT ≤ DT )

→ 0.

(3) The expected default probabilities approach zero when T approach infinity. This is
because the firm asset value is with a constant growth rate of r, but the paid off debt
level is a constant. With the passage of time, the increasing expected value of the firm
asset will be in general higher than the debt level. As a result, the expected default
probabilities approach zero when T approach infinity.

∗ To solve the second problem, usually the jump of the firm asset value is taken into
account. For the third problem, a stationary debt ratio process is introduced in Collin-
Dufresne and Goldstein (2001), “Do Credit Spreads Reflect Sationary Leverage Ratios,”
Journal of Finance 56, pp. 1929–1957.

∗ Two solutions for the first problem are introduced.

(i) The widely adopted solution in practice is to take the default distance (DD) into
consideration and next map the value of DD to the historical default probability.

Default Distance (DD) =
E[VT ]−DT

E[VT ]σV
.

The relationship between the DD value of the KMV model and the historical default
probability :

Default Distance 0-1 1-2 2-3 3-4 4-5 5-6

Historical Default Probability 80% 30% 10% 4.3% 0.7% 0.4%

Number of defaults 720 450 200 150 28 17

Number of firm samples 900 1500 2000 35000 40000 42000

∗ Note that the figures in this table are hypothetical.
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(ii) Another solution is to consider the possibility that the firm could default before the
maturity of the debt. This credit model is known as the first-passage default model
proposed in Black and Cox (1976). The first-passage default model is more appropriate
to describe the default behavior in the real world, and in the meanwhile, this method
theoretically generates a higher expected default probability than the KMV model does.

Figure 12-24 The Graphical Illustration of the First-Passage Default Model
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∗ Note that Dt is interpreted as the default threshold at t. The default threshold is highly
correlated but not necessarily equal to the debt level of the firm.

∗ There exist closed-form solutions for the expected default probability based on the first-
passage default model with a constant or exponential default threshold by regarding the
equity price as the value of a down-and-out barrier call option on the firm asset value.
See Shreve (2004) under the constant interest rate assumption or Collin-Dufresne and
Goldstein (2001) under the assumption of Vasicek stochastic interest process.
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